Editorial Special Issues

Bacterial adherence: much more than a bond

  • Received: 09 July 2018 Accepted: 10 July 2018 Published: 11 July 2018
  • Citation: Patrick Di Martino. Bacterial adherence: much more than a bond[J]. AIMS Microbiology, 2018, 4(3): 563-566. doi: 10.3934/microbiol.2018.3.563

    Related Papers:



  • 加载中
    [1] Stones DH, Krachler AM (2016) Against the tide: the role of bacterial adhesion in host colonization. Biochem Soc Trans 44: 1571–1580. doi: 10.1042/BST20160186
    [2] Berne C, Ducret A, Hardy GG, et al. (2015) Adhesins involved in attachment to abiotic surfaces by Gram-negative bacteria. Microbiol Spectr 3.
    [3] Hymes JP, Klaenhammer TR (2016) Stuck in the middle: fibronectin-binding proteins in Gram-positive bacteria. Front Microbiol 7: 1504.
    [4] Krishnan V (2015) Pilins in Gram-positive bacteria: A structural perspective. IUBMB Life 67: 533–543. doi: 10.1002/iub.1400
    [5] Cordeiro AL, Hippius C, Werner C (2011) Immobilized enzymes affect biofilm formation. Biotechnol Lett 33: 1897–1904. doi: 10.1007/s10529-011-0643-3
    [6] Vuong C, Kocianova S, Voyich JM, et al. (2004) A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem 279: 54881–54886. doi: 10.1074/jbc.M411374200
    [7] Sridharan U, Ponnuraj K (2016) Isopeptide bond in collagen- and fibrinogen-binding MSCRAMMs. Biophys Rev 8: 75–83.
    [8] Henderson B, Nair S, Pallas J, et al. (2011) Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins. FEMS Microbiol Rev 35: 147–200. doi: 10.1111/j.1574-6976.2010.00243.x
    [9] Arena MP, Capozzi V, Spano G, et al. (2017) The potential of lactic acid bacteria to colonize biotic and abiotic surfaces and the investigation of their interactions and mechanisms. Appl Microbiol Biotechnol 101: 2641–2657. doi: 10.1007/s00253-017-8182-z
    [10] Hill C, Guarner F, Reid G, et al. (2014) Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11: 506–514. doi: 10.1038/nrgastro.2014.66
    [11] Reid G, Sanders ME, Gaskins HR, et al. (2003) New scientific paradigms for probiotics and prebiotics. J Clin Gastroenterol 37: 105–118. doi: 10.1097/00004836-200308000-00004
    [12] Lebeer S, Claes I, Tytgat HL, et al. (2012) Functional analysis of Lactobacillus rhamnosus GG pili in relation to adhesion and immunomodulatory interactions with intestinal epithelial cells. Appl Environ Microbiol 78: 185–193. doi: 10.1128/AEM.06192-11
    [13] Meyrand M, Guillot A, Goin M, et al. (2013) Surface proteome analysis of a natural isolate of Lactococcus lactis reveals the presence of pili able to bind human intestinal epithelial cells. Mol Cell Proteomics 12: 3935–3947. doi: 10.1074/mcp.M113.029066
    [14] Wallis JK, Krömker V, Paduch JH (2018) Biofilm formation and adhesion to bovine udder epithelium of potentially probiotic lactic acid bacteria. AIMS Microbiol 4: 209–224. doi: 10.3934/microbiol.2018.2.209
    [15] Trunk T, Khalil HS, Leo JC (2018) Bacterial autoaggregation. AIMS Microbiol 4: 140–164. doi: 10.3934/microbiol.2018.1.140
    [16] Fan E, Chauhan N, Udatha DB, et al. (2016) Type V secretion systems in bacteria. Microbiol Spectr 4.
    [17] Di Martino P (2018) Extracellular polymeric substances, a key element in understanding biofilm phenotype. AIMS Microbiol 4: 274–288. doi: 10.3934/microbiol.2018.2.274
    [18] Stones DH, Krachler AM (2015) Fatal attraction: how bacterial adhesins affect host signaling and what we can learn from them. Int J Mol Sci 16: 2626–2640. doi: 10.3390/ijms16022626
    [19] Jeffery C (2018) Intracellular proteins moonlighting as bacterial adhesion factors. AIMS Microbiol 4: 362–376. doi: 10.3934/microbiol.2018.2.362
    [20] Ruer S, Pinotsis N, Steadman D, et al. (2015) Virulence-targeted antibacterials: Concept, promise, and susceptibility to resistance mechanisms. Chem Biol Drug Des 86: 379–399. doi: 10.1111/cbdd.12517
    [21] Hartmann M, Papavlassopoulos H, Chandrasekaran V, et al. (2012) Inhibition of bacterial adhesion to live human cells: Activity and cytotoxicity of synthetic mannosides. FEBS Lett 586: 1459–1465. doi: 10.1016/j.febslet.2012.03.059
    [22] Mydock-McGrane LK, Hannan TJ, Janetka JW (2017) Rational design strategies for FimH antagonists: new drugs on the horizon for urinary tract infection and Crohn's disease. Expert Opin Drug Dis 12: 711–731. doi: 10.1080/17460441.2017.1331216
    [23] Hung DT, Shakhnovich EA, Pierson E, et al. (2005) Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science 310: 670–674. doi: 10.1126/science.1116739
    [24] Reffuveille F, Nicol M, Dé E, et al. (2016) Design of an anti-adhesive surface by a pilicide strategy. Colloid Surface B 146: 895–901. doi: 10.1016/j.colsurfb.2016.07.037
    [25] Pinkner JS, Remaut H, Buelens F, et al. (2006) Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria. P Natl Acad Sci USA 103: 17897–17902. doi: 10.1073/pnas.0606795103
    [26] Cegelski L, Pinkner JS, Hammer ND, et al. (2009) Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat Chem Biol 5: 913–919. doi: 10.1038/nchembio.242
    [27] Andersson EK, Chapman M (2013) Small molecule disruption of B. subtilis biofilms by targeting the amyloid matrix. Chem Biol 20: 5–7.
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4787) PDF downloads(858) Cited by(26)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog