Loading [MathJax]/jax/output/SVG/jax.js
Review

Ground glass hepatocytes provide targets for therapy or prevention of hepatitis B virus-related hepatocellular carcinoma

  • Received: 12 November 2017 Accepted: 08 March 2018 Published: 14 March 2018
  • Ground glass hepatocyte (GGH) represents a histologic hallmark of chronic hepatitis B virus (HBV) infection and is characterized by the accumulation of pre-S mutant surface antigens in the endoplasmic reticulum (ER). In the past decade, GGHs have been recognized as pre-neoplastic lesions of hepatocellular carcinoma (HCC). The accumulation of pre-S mutant protein in ER may induce a misfolded protein response or ER stress signals with activation of VEGF/Akt/mTOR and COX-2/NF-κB signals, leading to oxidative DNA damage, aneuploidy, and genomic instability. Molecular studies revealed clonal HBV DNA integration in type II GGHs which continue to express and secrete surface antigens, representing the sustained surface antigens in the serum after NA antiviral treatment. The persistence of GGHs in the liver after anti-viral therapy not only constitute the challenge to eliminate HBV infection but also carry the high risk to develop HCC. DNA chip and ELISA kit are designing to detect the pre-S mutants in serum. Novel or second generation anti-HBV drugs are under phase II development and include the combination of anti-virals, immunomodulators, agents for host DNA damage, and siRNA to target at the transcription of HBsAg gene in cccDNA or integrated HBV DNA. In the past years, we explored the possibility to provide drugs or natural agents targeting at ER stress signals in GGHs to prevent HCC development. In a transgenic mice model of pre-S mutant and HBx, a combination of silymarin and resveratrol targeting at mTOR and NF-κB signals could reduce a 80% of HCC development. In a pilot clinical trial, liposomal curcumin (Meriva®) combined with anti-virals and immumodulators P1101 have been designed and attempted to eliminate the serum surface antigen and hence the recurrence of HCC after surgical resection. Therefore, the detection of pre-S mutants in serum or GGHs in the liver should provide rational target design for therapy or prevention of HCC in these high risk patients of chronic HBV infection.

    Citation: Hong-Yi Chang, Hung-Wen Tsai, Chiao-Fang Teng, Lily Hui-Ching Wang, Wenya Huang, Ih-Jen Su. Ground glass hepatocytes provide targets for therapy or prevention of hepatitis B virus-related hepatocellular carcinoma[J]. AIMS Medical Science, 2018, 5(2): 90-101. doi: 10.3934/medsci.2018.2.90

    Related Papers:

    [1] Yanli Guo, Xingyou Yao . Distortional buckling behavior and design method of cold-formed steel lipped channel with rectangular holes under axial compression. Mathematical Biosciences and Engineering, 2021, 18(5): 6239-6261. doi: 10.3934/mbe.2021312
    [2] Xiaoyu Du, Yijun Zhou, Lingzhen Li, Cecilia Persson, Stephen J. Ferguson . The porous cantilever beam as a model for spinal implants: Experimental, analytical and finite element analysis of dynamic properties. Mathematical Biosciences and Engineering, 2023, 20(4): 6273-6293. doi: 10.3934/mbe.2023270
    [3] Panagiotes A. Voltairas, Antonios Charalambopoulos, Dimitrios I. Fotiadis, Lambros K. Michalis . A quasi-lumped model for the peripheral distortion of the arterial pulse. Mathematical Biosciences and Engineering, 2012, 9(1): 175-198. doi: 10.3934/mbe.2012.9.175
    [4] Zhizhou Ma, Yujun Qi, Weiqing Liu . A comparative study of pull-out performance of bolted joints in pultruded FRP with drilled holes or punched holes. Mathematical Biosciences and Engineering, 2019, 16(5): 4213-4228. doi: 10.3934/mbe.2019210
    [5] Zheng Liu, Hangxin Guo, Yuanjun Zhao, Bin Hu, Lihua Shi, Lingling Lang, Bangtong Huang . Research on the optimized route of cold chain logistics transportation of fresh products in context of energy-saving and emission reduction. Mathematical Biosciences and Engineering, 2021, 18(2): 1926-1940. doi: 10.3934/mbe.2021100
    [6] Yan Li, Junwei Wang, Shuangkui Ge, Xiangyang Luo, Bo Wang . A reversible database watermarking method with low distortion. Mathematical Biosciences and Engineering, 2019, 16(5): 4053-4068. doi: 10.3934/mbe.2019200
    [7] Liyun Liu, Zichi Wang, Zhenxing Qian, Xinpeng Zhang, Guorui Feng . Steganography in beautified images. Mathematical Biosciences and Engineering, 2019, 16(4): 2322-2333. doi: 10.3934/mbe.2019116
    [8] Juncai Yao, Jing Shen, Congying Yao . Image quality assessment based on the perceived structural similarity index of an image. Mathematical Biosciences and Engineering, 2023, 20(5): 9385-9409. doi: 10.3934/mbe.2023412
    [9] Xiujuan Zheng, Zhanheng Li, Xinyi Chun, Xiaomei Yang, Kai Liu . A model-based method with geometric solutions for gaze correction in eye-tracking. Mathematical Biosciences and Engineering, 2020, 17(2): 1396-1412. doi: 10.3934/mbe.2020071
    [10] Dingwei Tan, Yuliang Lu, Xuehu Yan, Lintao Liu, Longlong Li . High capacity reversible data hiding in MP3 based on Huffman table transformation. Mathematical Biosciences and Engineering, 2019, 16(4): 3183-3194. doi: 10.3934/mbe.2019158
  • Ground glass hepatocyte (GGH) represents a histologic hallmark of chronic hepatitis B virus (HBV) infection and is characterized by the accumulation of pre-S mutant surface antigens in the endoplasmic reticulum (ER). In the past decade, GGHs have been recognized as pre-neoplastic lesions of hepatocellular carcinoma (HCC). The accumulation of pre-S mutant protein in ER may induce a misfolded protein response or ER stress signals with activation of VEGF/Akt/mTOR and COX-2/NF-κB signals, leading to oxidative DNA damage, aneuploidy, and genomic instability. Molecular studies revealed clonal HBV DNA integration in type II GGHs which continue to express and secrete surface antigens, representing the sustained surface antigens in the serum after NA antiviral treatment. The persistence of GGHs in the liver after anti-viral therapy not only constitute the challenge to eliminate HBV infection but also carry the high risk to develop HCC. DNA chip and ELISA kit are designing to detect the pre-S mutants in serum. Novel or second generation anti-HBV drugs are under phase II development and include the combination of anti-virals, immunomodulators, agents for host DNA damage, and siRNA to target at the transcription of HBsAg gene in cccDNA or integrated HBV DNA. In the past years, we explored the possibility to provide drugs or natural agents targeting at ER stress signals in GGHs to prevent HCC development. In a transgenic mice model of pre-S mutant and HBx, a combination of silymarin and resveratrol targeting at mTOR and NF-κB signals could reduce a 80% of HCC development. In a pilot clinical trial, liposomal curcumin (Meriva®) combined with anti-virals and immumodulators P1101 have been designed and attempted to eliminate the serum surface antigen and hence the recurrence of HCC after surgical resection. Therefore, the detection of pre-S mutants in serum or GGHs in the liver should provide rational target design for therapy or prevention of HCC in these high risk patients of chronic HBV infection.


    To evaluate a lot of genuine life troubles, MADM is the most dominant and feasible procedure from the decision-making strategy to survive with intricate data in authentic life scenarios. Under the beneficial processes of MADM conception, a lot of people have employed it in the circumstance of diverse territories. But, to accomplish with more than two sorts of opinions, Zadeh [1] firstly invented such sort of idea which includes more than two sorts of opinions in the shape of truth grade (TG) is called fuzzy set (FS). A large number of scholars have modified the conception of FS were to present the intuitionistic FS (IFS) [2], soft set (SS) [3], N-SS [4], fuzzy N-SS [5,6], Hesitant N-SS [7], bipolar valued FS (BFS) [8] and bipolar SS (BSS) [9]. All these theories have their importance but IFS proves to be a valuable procedure to convey the awkward fuzzy knowledge because it has TG $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{if}}\left(\mathcal{b}\right) $ and falsity grade (FG) $ {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{if}}\left(\mathcal{b}\right) $, with $ 0\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{if}}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{if}}\left(\mathcal{b}\right)\le 1 $. Further, Yager [10] diagnosed another well-known conception of Pythagorean FS (PFS), with a valuable technique $ 0\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{pf}}^{2}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{pf}}^{2}\left(\mathcal{b}\right)\le 1 $. Some implementations have been invented by distinct peoples likewise, correlation coefficient [11], different sort of methods [12], Pythagorean m-polar FSs [13], TOPSIS methods [14], and Chebyshev measure [15] by using the PFSs.

    The conception of FS was extended by Ramot et al. [16]. They initiated the technique of complex FS (CFS), signifying TG $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{cp}}\left(\mathcal{b}\right) = {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)\right)} $, with $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right), {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)\in \left[\mathrm{0, 1}\right] $. But in a lot of scenarios, they are unable to identify real-life dilemmas. In that spot, the complex IFS (CIFS), invented by Alkouri and Salleh [17]. CIFS includes the TG $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{cp}}\left(\mathcal{b}\right) = {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)\right)} $ and FG $ {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{cp}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)\right)} $, with $ 0\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right)\le \mathrm{1, 0}\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)\le 1 $. Several modifications are illustrated here: for instance, CIF classes [18], CIF graph [19], CIF soft sets [20], CIF aggregation operators (AOs) [21], CIF quaternion number [22], CIF group [23], CIF algebraic structure [24]. Further, Ullah et al. [25] diagnosed the complex PFS (CPFS), which includes a new well-known strategy in the shape $ 0\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}^{2}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}}^{2}\left(\mathcal{b}\right)\le \mathrm{1, 0}\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}^{2}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}}^{2}\left(\mathcal{b}\right)\le 1 $. A lot of applications have been employed by Akram and Naz [26], Akram and Sattar [27], Akram et al. [28], Ma et al. [29], Akram and Khan [30], and Garg [31].

    IFSs, PFSs, CIFSs, and CPFSs have achieved a lot of well-wishes from the side of scholars under the very well-known techniques of all prevailing conceptions. The distinct sort of implementations are stated in the shape: geometric AOs for IFSs [32], Hamacher AOs for IFSs [33], frank power AOs for IFSs [34], Heronian AOs for IFSs [35], Harmonic AOs for IFSs [36], Bonferroni AOs for IFSs [37], Prioritized AOs for IFSs [38], Power AOs for IFSs [39], Maclaurin symmetric mean for IFSs [40], AOs for PFSs [41], Einstein AOs for PFSs [42], Hamacher AOs for PFSs [43], Choquet frank AOs for PFSs [44], Heronian AOs for IFSs [45], Bonferroni AOs for PFSs [46], Prioritized AOs for PFSs [47], Power AOs for IFSs [48], Maclaurin symmetric mean for PFSs [49]. Under the above circumstances, a decision-making strategy always includes a lot of major hurdles as:

    1) How to demonstrate the data on the appropriate procedures to clarify the data.

    2) How to calculate the distinct attribute objects and arrange the generally favorite quantity.

    3) How to study the beneficial ideal from a lot of collections in the shape of alternatives.

    Hence, the major contribution of the theme is to invent the beneficial decision-making strategy under CPFSs by using the AOs for CLs. The prevailing conceptions are the specific parts of the invented CPFSs under implementing the distinct sort techniques. In CPFS, the intellectual faced two sorts of theory in the shape of real and unreal terms, which can help to decision-maker for taking a beneficial decision. But the prevailing IFSs, PFSs have a grip on one aspect at a time due to their weak mathematical structure. The unreal terms have been completely missed in these two ideas and due to these issues, the decision-maker loses a lot of data during the decision-making procedure. The importance of the unreal term in CPFS is that if an expert wants to lunch the car enterprise based on the well-known considerations in the shape of its name of the car and production dates. Here, the name of the car shows the real part, and the production of the car date shows the unreal part. For managing with such sort of scenario, the technique of IFS and PFS has been unsuccessful. For this, we consider the well-known conception of CPFS to try to demonstrate the beneficial results. The key factors of the invented works are implemented in the shape:

    1) To analyze some new operational laws based on CLs for CPF setting.

    2) To demonstrate the concept of CCPFWA, CCPFOWA, CCPFWG, and CCPFOWG operators are invented.

    3) Several significant features of the invented works are also diagnosed.

    4) To investigate the beneficial optimal from a large number of alternatives, a MADM analysis is analyzed based on CPF data. A lot of examples are demonstrated based on invented works to evaluate the supremacy and ability of the initiated works.

    5) To identify the sensitive analysis and merits of the invented works with the help of comparative analysis and they're graphical shown.

    The sensitive analysis of the prevailing and proposed works is diagnosed in the shape of Table 1.

    Table 1.  Show the invented works are more powerful is compared to prevailing works.
    Model IFSs PFSs CIFSs CPFSs
    Geometric AOs $ \surd $ $ \surd $ $ \surd $ $ \times $
    Hamacher AOs $ \surd $ $ \surd $ $ \times $ $ \times $
    frank power AOs $ \surd $ $ \surd $ $ \times $ $ \times $
    Heronian AOs $ \surd $ $ \surd $ $ \times $ $ \times $
    Harmonic AOs $ \surd $ $ \surd $ $ \times $ $ \times $
    Bonferroni AOs $ \surd $ $ \surd $ $ \surd $ $ \times $
    Prioritized AOs $ \surd $ $ \surd $ $ \times $
    Power AOs $ \surd $ $ \surd $ $ \surd $ $ \times $
    Maclaurin symmetric mean $ \surd $ $ \surd $ $ \times $ $ \times $
    Einstein AOs $ \times $ $ \surd $ $ \times $ $ \surd $
    Proposed work $ \times $ $ \surd $ $ \times $ $ \surd $

     | Show Table
    DownLoad: CSV

    In Table 1, we easily get that the symbol " $ \surd $ " stated the operators were developed someone and the symbol $ \times $, stated the operators cannot be developed by anyone up to date. We know that the conception of CPFS is very well-known and interesting, but up to date, no one has employed it in the region of any sorts of operators to investigate the feasibility and consistency of the invented works. For more convenience, we illustrated Figure 1, which stated the invented works.

    Figure 1.  Stated the practical structure of the invented works.

    Lastly, the main characteristics of the CPFSs under a lot of points are illustrated in Table 2.

    Table 2.  Stated the sensitivity analysis.
    Model Uncertainty Falsity Hesitation Periodicity 2-D information Square in Power
    FSs $ \surd $ $ \times $ $ \times $ $ \times $ $ \times $ $ \times $
    IFSs $ \surd $ $ \surd $ $ \surd $ $ \times $ $ \times $ $ \times $
    PFSs $ \surd $ $ \surd $ $ \surd $ $ \times $ $ \times $ $ \times $
    CFSs $ \surd $ $ \times $ $ \times $ $ \surd $ $ \surd $ $ \times $
    CIFSs $ \surd $ $ \surd $ $ \surd $ $ \surd $ $ \surd $ $ \times $
    CPFSs $ \surd $ $ \surd $ $ \surd $ $ \surd $ $ \surd $ $ \surd $

     | Show Table
    DownLoad: CSV

    Likewise, a narrative MADM process in the viewpoint of these recommended operators is constructed in which rankings are characterized in conditions of CPFNs. The feasibility down with the prevalence of methodology is illustrated over a genuine-life mathematical statistic and verified by differing their results with many prevalent approaches.

    This analysis is constructed in the shape: Section 2 includes some prevailing concepts of CPFSs and their related properties. Section 3 includes analyzing some new operational laws based on CLs for the CPF setting. Moreover, to demonstrate the closeness between finite numbers of alternatives, the conception of CCPFWA, CCPFOWA, CCPFWG, and CCPFOWG operators are invented. Several significant features of the invented works are also diagnosed. Section 4 investigates the beneficial optimal from a large number of alternatives, a MADM analysis is analyzed based on CPF data. A lot of examples are demonstrated based on invented works to evaluate the supremacy and ability of the initiated works. For massive convenience, the sensitivity analysis and merits of the identified works are also explored with the help of comparative analysis and they're graphically shown. The conclusion is referred to in Section 5.

    Several prevailing studies under the CIFSs, CPFSs, and their related properties. The mathematical symbol $ {\mathcal{U}}_{uni} $, diagnosed the universal set with TG and FG in the shape: $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{cp}}\left(\mathcal{b}\right) = {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)\right)} $ and $ {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{cp}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)\right)} $. For the convenience of the reader, here we reviewed the conception of CIFSs, initiated by Alkouri and Salleh [17].

    Definition 1. [17] A mathematical structure of CIFSs $ {\mathcal{C}\mathfrak{f}}_{ci} $, diagnosed by:

    $ {\mathcal{C}\mathfrak{f}}_{ci} = \left\{\left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{ci}}\left(\mathcal{b}\right), {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{ci}}\left(\mathcal{b}\right)\right)/\mathcal{b}\in {\mathcal{U}}_{uni}\right\} $ (1)

    With a well-known characteristic $ 0\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right)\le 1 $ and $ 0\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)\le 1 $. The mathematical shape of CIFN is diagnosed by: $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}} = \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right), \mathfrak{j} = \mathrm{1, 2}, \dots , \mathcal{n}\mathfrak{t} $.

    Definition 2. [17] Assume $ {\mathcal{C}\mathfrak{f}}_{ci-\mathfrak{j}} = \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right), \mathfrak{j} = \mathrm{1, 2} $, stated two CIFNs, then

    $ {\mathcal{C}\mathfrak{f}}_{ci-1}\cup {\mathcal{C}\mathfrak{f}\mathfrak{f}}_{ci-2} = \left(max(TCfRT1(b),TCfRT2(b))ei2π(max(TCfIT1(b),TCfIT2(b))),min(FCfRT1(b),FCfRT2(b))ei2π(min(FCfIT1(b),FCfIT2(b)))\right) $ (2)
    $ {\mathcal{C}\mathfrak{f}}_{ci-1}\cap {\mathcal{C}\mathfrak{f}}_{ci-2} = \left(min(TCfRT1(b),TCfRT2(b))ei2π(min(TCfIT1(b),TCfIT2(b))),max(FCfRT1(b),FCfRT2(b))ei2π(max(FCfIT1(b),FCfIT2(b)))\right) $ (3)
    $ {\mathcal{C}\mathfrak{f}}_{ci-1} \oplus {\mathcal{C}\mathfrak{f}}_{ci-2} = \left(\begin{array}{c}\left(\begin{array}{c}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-1}}\left(\mathcal{b}\right)+{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-2}}\left(\mathcal{b}\right)\\ -{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-1}}\left(\mathcal{b}\right){\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-2}}\left(\mathcal{b}\right)\end{array}\right){e}^{i2\pi \left(TCfIT1(b)+TCfIT2(b)TCfIT1(b)TCfIT2(b)\right)}, \\ {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-1}}\left(\mathcal{b}\right){\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-2}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-1}}\left(\mathcal{b}\right){\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-2}}\left(\mathcal{b}\right)\right)}\end{array}\right) $ (4)
    $ {\mathcal{C}\mathfrak{f}}_{ci-1}\otimes {\mathcal{C}\mathfrak{f}}_{ci-2} = \left(\begin{array}{c}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-1}}\left(\mathcal{b}\right){\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-2}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-1}}\left(\mathcal{b}\right){\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-2}}\left(\mathcal{b}\right)\right)}, \\ \left(\begin{array}{c}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-1}}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-2}}\left(\mathcal{b}\right)\\ -{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-1}}\left(\mathcal{b}\right){\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-2}}\left(\mathcal{b}\right)\end{array}\right){e}^{i2\pi \left(FCfIT1(b)+FCfIT2(b)FCfIT1(b)FCfIT2(b)\right)}\end{array}\right) $ (5)
    $ {\mathrm{\Theta }}_{sc}{\mathcal{C}\mathfrak{f}}_{ci-1} = \left((1(1TCfRT1(b))Θsc)ei2π(1(1TCfIT1(b))Θsc),FΘscCfRT1(b)ei2π(FΘscCfIT1(b))\right) $ (6)
    $ {\mathcal{C}\mathfrak{f}}_{ci-1}^{{\mathrm{\Theta }}_{sc}} = \left(TΘscCfRT1(b)ei2π(TΘscCfIT1(b)),(1(1FCfRT1(b))Θsc)ei2π(1(1FCfIT1(b))Θsc)\right) $ (7)

    Definition 3. [17] Assume $ {\mathcal{C}\mathfrak{f}}_{ci-\mathfrak{j}} = \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right), \mathfrak{j} = \mathrm{1, 2} $, stated two CIFNs. The mathematical structure of score value (SV) is diagnosed by:

    $ {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{ci-\mathfrak{j}}\right) = \frac{{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right)-{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right)+{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)-{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)}{2} \in \left[-\mathrm{1, 1}\right] $ (8)

    Similarly, the mathematical structure of accuracy value (AV) is diagnosed by:

    $ {\mathcal{H}}_{av}\left({\mathcal{C}\mathfrak{f}}_{ci-\mathfrak{j}}\right) = \frac{{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right)+{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)}{2} $ (9)

    Definition 4. [17] Assume $ {\mathcal{C}\mathfrak{f}}_{ci-\mathfrak{j}} = \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right), \mathfrak{j} = \mathrm{1, 2} $, stated two CIFNs. Then some techniques are diagnosed here, if $ {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-1}\right) > {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-2}\right)⟹{\mathcal{C}\mathfrak{f}}_{cp-1} > {\mathcal{C}\mathfrak{f}}_{cp-2} $;

    and if $ {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-1}\right) = {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-2}\right) $ then $ {\mathcal{H}}_{av}\left({\mathcal{C}\mathfrak{f}}_{cp-1}\right) > {\mathcal{H}}_{av}\left({\mathcal{C}\mathfrak{f}}_{cp-2}\right)⟹{\mathcal{C}\mathfrak{f}}_{cp-1} > {\mathcal{C}\mathfrak{f}}_{cp-2} $;

    and $ {\mathcal{H}}_{av}\left({\mathcal{C}\mathfrak{f}}_{cp-1}\right) = {\mathcal{H}}_{av}\left({\mathcal{C}\mathfrak{f}}_{cp-2}\right)⟹{\mathcal{C}\mathfrak{f}}_{cp-1} = {\mathcal{C}\mathfrak{f}}_{cp-2} $.

    For $ {\mathcal{H}}_{av}\left({\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}\right)\in \left[\mathrm{0, 1}\right] $.

    Further, several limitations lie in the technique of CIFSs, for this, here we reviewed the conception of CPFSs, initiated by Ullah et al. [25].

    Definition 5. [25] A mathematical structure of CPFSs $ {\mathcal{C}\mathfrak{f}}_{cp} $, diagnosed by:

    $ {\mathcal{C}\mathfrak{f}}_{cp} = \left\{\left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{cp}}\left(\mathcal{b}\right), {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{cp}}\left(\mathcal{b}\right)\right)/\mathcal{b}\in {\mathcal{U}}_{uni}\right\} $ (10)

    With a well-known characteristic $ 0\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}^{2}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}}^{2}\left(\mathcal{b}\right)\le 1 $ and $ 0\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}^{2}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}}^{2}\left(\mathcal{b}\right)\le 1 $. The mathematical shape of CPFN is diagnosed by: $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}} = \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right), \mathfrak{j} = \mathrm{1, 2}, \dots , \mathcal{n}\mathfrak{t} $. If $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}} = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}} = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}} = 0 $ in Eq (10), then we get FSs, if $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}} = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}} = 0 $ in Eq (10), then we get PFSs, if $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}} = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}} = 0 $ , with putting "1" instead of "2", in Eq (10), then we get IFSs. Moreover, if $ {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}} = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}} = 0 $ in Eq (10), then we get CFSs, by putting "1" instead of "2", in Eq (10), then we get CIFSs. Figure 2, which states the real structure of the unit disc in the complex plane.

    Figure 2.  Stated the geometrical shape of the unit disc.

    Definition 6. [25] Assume $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}} = \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right), \mathfrak{j} = \mathrm{1, 2} $, stated two CPFNs, then

    $ {\mathcal{C}\mathfrak{f}}_{cp-1}\cup {\mathcal{C}\mathfrak{f}}_{cp-2} = \left(max(TCfRT1(b),TCfRT2(b))ei2π(max(TCfIT1(b),TCfIT2(b))),min(FCfRT1(b),FCfRT2(b))ei2π(min(FCfIT1(b),FCfIT2(b)))\right) $ (11)
    $ {\mathcal{C}\mathfrak{f}}_{cp-1}\cap {\mathcal{C}\mathfrak{f}}_{cp-2} = \left(min(TCfRT1(b),TCfRT2(b))ei2π(min(TCfIT1(b),TCfIT2(b))),max(FCfRT1(b),FCfRT2(b))ei2π(max(FCfIT1(b),FCfIT2(b)))\right) $ (12)
    $ {\mathcal{C}\mathfrak{f}}_{cp-1} \oplus {\mathcal{C}\mathfrak{f}}_{cp-2} = \left((T2CfRT1(b)+T2CfRT2(b)T2CfRT1(b)T2CfRT2(b))12ei2π(T2CfIT1(b)+T2CfIT2(b)T2CfIT1(b)T2CfIT2(b))12,FCfRT1(b)FCfRT2(b)ei2π(FCfIT1(b)FCfIT2(b))\right) $ (13)
    $ {\mathcal{C}\mathfrak{f}}_{cp-1}\otimes {\mathcal{C}\mathfrak{f}}_{cp-2} = \left(TCfRT1(b)TCfRT2(b)ei2π(TCfIT1(b)TCfIT2(b)),(F2CfRT1(b)+F2CfRT2(b)F2CfRT1(b)F2CfRT2(b))12ei2π(F2CfIT1(b)+F2CfIT2(b)F2CfIT1(b)F2CfIT2(b))12\right) $ (14)
    $ {\mathrm{\Theta }}_{sc}{\mathcal{C}\mathfrak{f}}_{cp-1} = \left((1(1T2CfRT1(b))Θsc)12ei2π(1(1T2CfIT1(b))Θsc)12,FΘscCfRT1(b)ei2π(FΘscCfIT1(b))\right) $ (15)
    $ {\mathcal{C}\mathfrak{f}}_{cp-1}^{{\mathrm{\Theta }}_{sc}} = \left(TΘscCfRT1(b)ei2π(TΘscCfIT1(b)),(1(1F2CfRT1(b))Θsc)12ei2π(1(1F2CfIT1(b))Θsc)12\right) $ (16)

    Definition 7. [25] Assume $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}} = \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right), \mathfrak{j} = \mathrm{1, 2} $, stated two CPFNs. The mathematical structure of SV is diagnosed by:

    $ {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}\right) = \frac{{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}^{2}\left(\mathcal{b}\right)-{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}}^{2}\left(\mathcal{b}\right)+{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}^{2}\left(\mathcal{b}\right)-{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}}^{2}\left(\mathcal{b}\right)}{2} \in \left[-\mathrm{1, 1}\right] $ (17)

    Similarly, the mathematical structure of AV is diagnosed by:

    $ {\mathcal{H}}_{av}\left({\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}\right) = \frac{{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}^{2}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}}^{2}\left(\mathcal{b}\right)+{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}^{2}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}}^{2}\left(\mathcal{b}\right)}{2} $ (18)

    Definition 8. [25] Assume $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}} = \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right), \mathfrak{j} = \mathrm{1, 2} $, stated two CPFNs. Then some techniques are diagnosed here, if $ {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-1}\right) > {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-2}\right)⟹{\mathcal{C}\mathfrak{f}}_{cp-1} > {\mathcal{C}\mathfrak{f}}_{cp-2} $;

    and if $ {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-1}\right) = {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-2}\right) $ then $ {\mathcal{H}}_{av}\left({\mathcal{C}\mathfrak{f}}_{cp-1}\right) > {\mathcal{H}}_{av}\left({\mathcal{C}\mathfrak{f}}_{cp-2}\right)⟹{\mathcal{C}\mathfrak{f}}_{cp-1} > {\mathcal{C}\mathfrak{f}}_{cp-2} $;

    and $ {\mathcal{H}}_{av}\left({\mathcal{C}\mathfrak{f}}_{cp-1}\right) = {\mathcal{H}}_{av}\left({\mathcal{C}\mathfrak{f}}_{cp-2}\right)⟹{\mathcal{C}\mathfrak{f}}_{cp-1} = {\mathcal{C}\mathfrak{f}}_{cp-2} $.

    For $ {\mathcal{H}}_{av}\left({\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}\right)\in \left[\mathrm{0, 1}\right] $.

    This study includes demonstrating the closeness between a finite number of alternatives, the conception of CCPFWA, CCPFOWA, CCPFWG, and CCPFOWG operators are invented. Several significant features of the invented works are also diagnosed. In this all work, we used the CPFNs by $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}} = \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right), \mathfrak{j} = \mathrm{1, 2}, \dots , \stackrel{⏞}{\mathcal{n}\mathfrak{t}} $, and $ {\Delta :}_{\mathfrak{j}} $ be the CL of $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}} $ with $ 0\le {\Delta :}_{\mathfrak{j}}\le 1 $. The weight vector is diagnosed by: $ {\omega }^{wc} = \left\{{\omega }^{wc-1}, {\omega }^{wc-2}, \dots , {\omega }^{wc-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right\} $ with $ \sum _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\omega }^{wc-\mathfrak{j}} = 1, {\omega }^{wc-\mathfrak{j}}\in \left[\mathrm{0, 1}\right] $.

    Definition 9. The CCPFWA operator is diagnosed by:

    $ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :∎}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) = \sum _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\omega }^{wc-\mathfrak{j}}\left({\Delta :}_{\mathfrak{j}}{\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}\right) =\\ {\omega }^{wc-1}\left({\Delta :}_{1}{\mathcal{C}\mathfrak{f}}_{cp-1}\right) \oplus {\omega }^{wc-2}\left({\Delta :}_{2}{\mathcal{C}\mathfrak{f}}_{cp-2}\right) \oplus \dots , \oplus {\omega }^{wc-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\left({\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right) $ (19)

    Several specific cases are gotten after the implementation of distinct techniques, for instance, if $ {\Delta :}_{\mathfrak{j}} = 0 $ in Eq (19), then we get CPF weighted averaging operator. We got the theory of the CIF weighted averaging operator by changing the value of "2" in Eq (19) into "1". If $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $ in Eq (19), then we get PF weighted averaging operator. We got the theory of IF weighted averaging operator by changing the value of "2" with $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $, in Eq (19) into "1".

    Theorem 1. Under Eq (19), we diagnosed the Eq (20), such that

    $ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) = $
    $ \left((1ntj=1(1T2CfRTj)Δ:jωwcj)12ei2π(1ntj=1(1T2CfITj)Δ:jωwcj)12,ntj=1FΔ:jωwcjCfRTjei2π(ntj=1FΔ:jωwcjCfITj)\right) $ (20)

    Proof: Under the consideration of mathematical induction, in Eq (20), we fix $ \stackrel{⏞}{\mathcal{n}\mathfrak{t}} = 2 $, we gotten

    $ {\omega }^{wc-1}\left({\Delta :}_{1}{\mathcal{C}\mathfrak{f}}_{cp-1}\right) = \left((1(1T2CfRT1)Δ:1ωwc1)12ei2π(1(1T2CfIT1)Δ:1ωwc1)12,FΔ:1ωwc1CfRT1ei2π(FΔ:1ωwc1CfIT1)\right) $
    $ {\omega }^{wc-2}\left({\Delta :}_{2}{\mathcal{C}\mathfrak{f}}_{cp-2}\right) = \left((1(1T2CfRT2)Δ:2ωwc2)12ei2π(1(1T2CfIT2)Δ:2ωwc2)12,FΔ:2ωwc2CfRT2ei2π(FΔ:2ωwc2CfIT2)\right) $
    $ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right)\right) = {\omega }^{wc-1}\left({\Delta :}_{1}{\mathcal{C}\mathfrak{f}}_{cp-1}\right) \oplus {\omega }^{wc-2}\left({\Delta :}_{2}{\mathcal{C}\mathfrak{f}}_{cp-2}\right) =\\ \left((12j=1(1T2CfRTj)Δ:jωwcj)12ei2π(12j=1(1T2CfITj)Δ:jωwcj)12,2j=1FΔ:jωwcjCfRTjei2π(2j=1FΔ:jωwcjCfITj)\right) $

    In Eq (20), we fix $ \stackrel{⏞}{\mathcal{n}\mathfrak{t}} = k $, because for $ \stackrel{⏞}{\mathcal{n}\mathfrak{t}} = 2 $, hold.

    $ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-k}, {\Delta :}_{k}\right)\right) = \\ \left((1kj=1(1T2CfRTj)Δ:jωwcj)12ei2π(1kj=1(1T2CfITj)Δ:jωwcj)12,kj=1FΔ:jωwcjCfRTjei2π(kj=1FΔ:jωwcjCfITj)\right) $

    For $ \stackrel{⏞}{\mathcal{n}\mathfrak{t}} = k+1 $, we have gotten

    $ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-k+1}, {\Delta :}_{k+1}\right)\right) = \\ CCQROFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-k}, {\Delta :}_{k}\right)\right) \oplus {\omega }^{wc-k+1}\left({\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\mathcal{C}\mathfrak{f}}_{cp-k+1}\right) = \\ \left((1kj=1(1T2CfRTj)Δ:jωwcj)12ei2π(1kj=1(1T2CfITj)Δ:jωwcj)12,kj=1FΔ:jωwcjCfRTjei2π(kj=1FΔ:jωwcjCfITj)\right) $
    $ \oplus \left((1(1T2CfRTk+1)Δ:k+1ωwck+1)12ei2π(1(1T2CfITk+1)Δ:k+1ωwck+1)12,FΔ:k+1ωwck+1CfRTk+1ei2π(FΔ:k+1ωwck+1CfITk+1)\right) $
    $ = \left((1k+1j=1(1T2CfRTj)Δ:jωwcj)12ei2π(1k+1j=1(1T2CfITj)Δ:jωwcj)12,k+1j=1FΔ:jωwcjCfRTjei2π(k+1j=1FΔ:jωwcjCfITj)\right) $

    Equation (20) holds for all possible values of $ \stackrel{⏞}{\mathcal{n}\mathfrak{t}} $.

    If $ {\Delta :}_{\mathfrak{j}} = 0 $ in Eq (20), then we get CPF weighted averaging operator. We got the theory of the CIF weighted averaging operator by changing the value of "2" in Eq (20) into "1". If $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $ in Eq (20), then we get PF weighted averaging operator. We got the theory of IF weighted averaging operator by changing the value of "2" with $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $, in Eq (20) into "1".

    The conception of Idempotency, boundedness and monotonicity are illustrated below.

    Property 1. For fixing the value of $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}} = {\mathcal{C}\mathfrak{f}}_{cp} = \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)\right)}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)\right)}\right) $, then

    $ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) = \Delta :{\mathcal{C}\mathfrak{f}}_{cp} $ (21)

    Proof: Assume that $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}} = {\mathcal{C}\mathfrak{f}}_{cp} = \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)\right)}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)\right)}\right) $ i.e., $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}} = {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}, {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}} = {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}} = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}, {\mathcal{F}}_{{\mathcal{C}\mathcal{�}\mathcal{�}}_{IT}} = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}} $, and $ \Delta : = {\Delta :}_{\mathfrak{j}} $, then

    $ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) $
    $ = \left((1ntj=1(1T2CfRT)Δ:jωwcj)12ei2π(1ntj=1(1T2CfIT)Δ:jωwcj)12,ntj=1FΔ:jωwcjCfRTei2π(ntj=1FΔ:jωwcjCfIT)\right) $
    $ = \left((1(1T2CfRT)Δ:ntj=1ωwcj)12ei2π(1(1T2CfIT)Δ:ntj=1ωwcj)12,FΔ:ntj=1ωwcjCfRTei2π(FΔ:ntj=1ωwcjCfIT)\right) $
    $ = \left((1(1T2CfRT)Δ:)12ei2π(1(1T2CfIT)Δ:)12,FΔ:CfRTei2π(FΔ:CfIT)\right) = \Delta :{\mathcal{C}\mathfrak{f}}_{cp} $

    Property 2. For fixing the value of

    $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{-} = \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, \underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right) $ and

    $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{+} = \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, \underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right) $, then

    $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{-}\le CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right)\le {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{+} $ (22)

    Proof: Assume that

    $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{-} = \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, \underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right) $ and

    $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{+} = \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, \underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right) $, then

    $ \underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\le \underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}⟹1-\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\ge 1-{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\ge 1-\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2} $
    $ ⟹\prod \limits_{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\right)}^{\underset{\mathfrak{j}}{\mathrm{min}}{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\ge \prod\limits _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\right)}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\ge \prod\limits _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\right)}^{\underset{\mathfrak{j}}{\mathrm{max}}{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}} $
    $ ⟹{\left(1-\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\right)}^{\underset{\mathfrak{j}}{\mathrm{min}}{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\right)}^{\frac{1}{2}}\le {\left(1-\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\right)}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\right)}^{\frac{1}{2}}\le \\ {\left(1-\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\right)}^{\underset{\mathfrak{j}}{\mathrm{max}}{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\right)}^{\frac{1}{2}} $

    In the same way, we have

    $ ⟹{\left(1-\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{2}\right)}^{\underset{\mathfrak{j}}{\mathrm{min}}{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\right)}^{\frac{1}{2}}\le {\left(1-\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{2}\right)}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\right)}^{\frac{1}{2}} $
    $ \le {\left(1-\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{2}\right)}^{\underset{\mathfrak{j}}{\mathrm{max}}{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\right)}^{\frac{1}{2}} $

    In the same way, we have

    $ ⟹\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\underset{\mathfrak{j}}{\mathrm{max}}\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{\underset{\mathfrak{j}}{\mathrm{max}}{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\ge \prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\ge \prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\underset{\mathfrak{j}}{\mathrm{min}}\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{\underset{\mathfrak{j}}{\mathrm{min}}{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}} $
    $ ⟹\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\underset{\mathfrak{j}}{\mathrm{max}}\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{\underset{\mathfrak{j}}{\mathrm{max}}{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\ge \prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\ge \prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\underset{\mathfrak{j}}{\mathrm{min}}\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{\underset{\mathfrak{j}}{\mathrm{min}}{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}} $

    Under Eq (22), we obtained

    $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{-}\le CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right)\le {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{+} $

    Property 3. Assume that $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}\le {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{\mathfrak{*}} $, i.e., $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{\mathfrak{*}}, {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{\mathfrak{*}}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\ge {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{\mathfrak{*}}, $ and $ {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\ge {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{\mathfrak{*}} $ then

    $ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right)\le \\ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}^{*}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}^{*}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}^{\mathfrak{*}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) $ (23)

    Proof: Assume that $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}\le {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{\mathfrak{*}} $, i.e., $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{\mathfrak{*}}, {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{\mathfrak{*}}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\ge {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{\mathfrak{*}}, $ and $ {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\ge {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{\mathfrak{*}} $ then

    $ 1-{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\ge 1-{{\mathcal{T}}^{\mathcal{*}}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}⟹\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\right)}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\ge \prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-{{\mathcal{T}}^{\mathcal{*}}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\right)}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}} $
    $ ⟹{\left(1-\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\right)}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\right)}^{\frac{1}{2}}\le {\left(1-\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-{{\mathcal{T}}^{\mathcal{*}}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\right)}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\right)}^{\frac{1}{2}} $

    In the same way, we demonstrated

    $ ⟹{\left(1-\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{2}\right)}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\right)}^{\frac{1}{2}}\le {\left(1-\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-{{\mathcal{T}}^{\mathcal{*}}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{2}\right)}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\right)}^{\frac{1}{2}} $
    $ ⟹\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\ge \prod _{i = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{{\mathcal{F}}^{\mathcal{*}}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}, ⟹\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\ge \prod _{i = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{{\mathcal{F}}^{\mathcal{*}}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}} $

    Hence, we demonstrated $ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) = {\mathcal{C}\mathfrak{f}}_{cp}, CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}^{*}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}^{*}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}^{\mathfrak{*}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) = {\mathcal{C}\mathfrak{f}}_{cp}^{*} $ and Eq (17), some axioms are illustrated Here:

    1) If $ {\mathbb{S}}_{\mathit{S}\mathit{V}}\left({\mathcal{C}\mathfrak{f}}_{cp}^{*}\right) > {\mathbb{S}}_{\mathit{S}\mathit{V}}\left({\mathcal{C}\mathfrak{f}}_{cp}\right)⟹{\mathcal{C}\mathfrak{f}}_{cp}^{*} > {\mathcal{C}\mathfrak{f}}_{cp} $ i.e., $ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) < CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}^{*}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}^{*}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}^{\mathfrak{*}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) $;

    2) If $ {\mathbb{S}}_{\mathit{S}\mathit{V}}\left({\mathcal{C}\mathfrak{f}}_{cp}^{*}\right) = {\mathbb{S}}_{\mathit{S}\mathit{V}}\left({\mathcal{C}\mathfrak{f}}_{cp}\right)⟹{\mathcal{C}\mathfrak{f}}_{cp}^{*} = {\mathcal{C}\mathfrak{f}}_{cp} $ i.e., $ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) = CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}^{*}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}^{*}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}^{\mathfrak{*}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) $, then by considering Eq (18), we demonstrated

    i. If $ {\mathbb{H}}_{\mathit{A}\mathit{V}}\left({\mathcal{C}\mathfrak{f}}_{cp}^{*}\right) > {\mathbb{H}}_{\mathit{A}\mathit{V}}\left({\mathcal{C}\mathfrak{f}}_{cp}\right)⟹{\mathcal{C}\mathfrak{f}}_{cp}^{*} > {\mathcal{C}\mathfrak{f}}_{cp} $ i.e., $ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) < CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}^{*}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}^{*}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}^{\mathfrak{*}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) $;

    ii. If $ {\mathbb{H}}_{\mathit{A}\mathit{V}}\left({\mathcal{C}\mathfrak{f}}_{cp}^{*}\right) = {\mathbb{H}}_{\mathit{A}\mathit{V}}\left({\mathcal{C}\mathfrak{f}}_{cp}\right)⟹{\mathcal{C}\mathfrak{f}}_{cp}^{*} = {\mathcal{C}\mathfrak{f}}_{cp} $ i.e., $ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) = CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}^{*}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}^{*}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}^{\mathfrak{*}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) $.

    In last we determined

    $ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right)\le \\ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}^{*}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}^{*}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}^{\mathfrak{*}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) $

    Definition 10. The CCPFOWA operator is exhibited by:

    $ CCPFOWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) $
    $ = \sum _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\omega }^{wc-\mathfrak{j}}\left({\Delta :}_{\mathfrak{j}}{\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}\right) = {\omega }^{wc-1}\left({\Delta :}_{\sigma \left(1\right)}{\stackrel{~}{\mathcal{C}\mathfrak{f}}}_{Cp-\sigma \left(1\right)}\right) \oplus {\omega }^{wc-2}\left({\Delta :}_{\sigma \left(2\right)}{\mathcal{C}\mathfrak{f}}_{Cp-\sigma \left(2\right)}\right) \oplus \dots , $
    $ \oplus {\omega }^{wc-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\left({\Delta :}_{\sigma \left(\stackrel{⏞}{\mathcal{n}\mathfrak{t}}\right)}{\mathcal{C}\mathfrak{f}}_{Cp-\sigma \left(\stackrel{⏞}{\mathcal{n}\mathfrak{t}}\right)}\right) $ (24)

    where $ \sigma \left(\mathfrak{j}\right) $ of $ \left(\mathfrak{j} = \mathrm{1, 2}, \dots , \stackrel{⏞}{\mathcal{n}\mathfrak{t}}\right) $, invented the permutations with $ \sigma \left(\mathfrak{j}-1\right)\ge \sigma \left(\mathfrak{j}\right) $. Several specific cases are gotten after the implementation of distinct techniques, for instance, if $ {\Delta :}_{\mathfrak{j}} = 0 $ in Eq (24), then we get CPF ordered weighted averaging operator. We got the theory of CIF ordered weighted averaging operator by changing the value of "2" in Eq (24) into "1". If $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $ in Eq (24), then we get PF ordered weighted averaging operator. We got the theory of IF ordered weighted averaging operator by changing the value of "2" with $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $, in Eq (24) into "1".

    Theorem 2: Under Eq (24), we get

    $ CCPFOWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) = \\ \left((1ntj=1(1T2CfRTσ(j))Δ:σ(j)ωwcj)12ei2π(1ntj=1(1T2CfITσ(j))Δ:σ(j)ωwcj)12,ntj=1FΔ:σ(j)ωwcjCfRTσ(j)ei2π(ntj=1FΔ:σ(j)ωwcjCfITσ(j))\right) $ (25)

    If $ {\Delta :}_{\mathfrak{j}} = 0 $ in Eq (25), then we get CPF ordered weighted averaging operator. We got the theory of CIF ordered weighted averaging operator by changing the value of "2" in Eq (25) into "1". If $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $ in Eq (25), then we get PF ordered weighted averaging operator. We got the theory of IF ordered weighted averaging operator by changing the value of "2" with $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $, in Eq (25) into "1". Idempotency, boundedness, and monotonicity, stated the properties for Eq (26).

    Property 4. If $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}} = {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}, {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}} = {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}} = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}} = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}} $, and $ \Delta : = {\Delta :}_{\mathfrak{j}} $, then

    $ CCPFOWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) = \Delta :{\mathcal{C}\mathfrak{f}}_{cp} $ (26)

    Property 5. If $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{-} = \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, \underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right) $ and $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{+} = \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, \underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right) $, then

    $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{-}\le CCPFOWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right)\le {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{+} $ (27)

    Property 6. If $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}\le {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{\mathfrak{*}} $, i.e., $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{\mathfrak{*}}, {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{\mathfrak{*}}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\ge {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{\mathfrak{*}}, $ and $ {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\ge {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{\mathfrak{*}} $ then

    $ CCPFOWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right)\le $
    $ CCPFOWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}^{*}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}^{*}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}^{\mathfrak{*}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) $ (28)

    Definition 11. The CCPFWG operator is proved by:

    $ CCPFWG\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) = \prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\omega }^{wc-\mathfrak{j}}\left({\Delta :}_{\mathfrak{j}}{\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}\right) =\\ {\omega }^{wc-1}\left({\Delta :}_{1}{\mathcal{C}\mathfrak{f}}_{Cp-1}\right)\otimes {\omega }^{wc-2}\left({\Delta :}_{2}{\mathcal{C}\mathfrak{f}}_{Cp-2}\right)\otimes , \dots , \otimes {\omega }^{wc-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\left({\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\mathcal{C}\mathfrak{f}}_{Cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right) $ (29)

    Several specific cases are gotten after the implementation of distinct techniques, for instance, if $ {\Delta :}_{\mathfrak{j}} = 0 $ in Eq (29), then we get CPF weighted geometric operator. We got the theory of CIF weighted geometric operator by changing the value of "2" in Eq (29) into "1". If $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $ in Eq (29), then we get PF weighted geometric operator. We got the theory of IF weighted geometric operator by changing the value of "2" with $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $, in Eq (29) into "1".

    Theorem 3. Under Eq (29), we acquired

    $ CCPFWG\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) $
    $ = \left(ntj=1TΔ:jωwcjCfRTjei2π(ntj=1TΔ:jωwcjCfITj),(1ntj=1(1F2CfRTj)Δ:jωwcj)12ei2π(1ntj=1(1F2CfITj)Δ:jωwcj)12\right) $ (30)

    If $ {\Delta :}_{\mathfrak{j}} = 0 $ in Eq (30), then we get CPF weighted geometric operator. We got the theory of CIF weighted geometric operator by changing the value of "2" in Eq (30) into "1". If $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $ in Eq (30), then we get PF weighted geometric operator. We got the theory of IF weighted geometric operator by changing the value of "2" with $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $, in Eq (30) into "1". Idempotency, boundedness, and monotonicity stated some properties for Eq (30).

    Property 7. If $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}} = {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}, {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}} = {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}} = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}} = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}} $, and $ \Delta : = {\Delta :}_{\mathfrak{j}} $, then

    $ CCPFWG\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) = \Delta :{\mathcal{C}\mathfrak{f}}_{cp} $ (31)

    Property 8. If $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{-} = \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, \underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right) $ and $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{+} = \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, \underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right) $, then

    $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{-}\le CCPFWG\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right)\le {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{+} $ (32)

    Property 9. If $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{\mathfrak{*}}, {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{\mathfrak{*}}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\ge {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{\mathfrak{*}}, $ and $ {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\ge {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{\mathfrak{*}} $ then

    $ CCPFWG\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right)\le $
    $ CCPFWG\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}^{*}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}^{*}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}^{\mathfrak{*}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) $ (33)

    Definition 12. The CCPFOWG operator is confirmed by:

    $ CCPFOWG\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) = \prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\omega }^{wc-\mathfrak{j}}\left({\Delta :}_{\mathfrak{j}}{\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}\right) = \\ {\omega }^{wc-1}\left({\Delta :}_{\sigma \left(1\right)}{\mathcal{C}\mathfrak{f}}_{Cp-\sigma \left(1\right)}\right)\otimes {\omega }^{wc-2}\left({\Delta :}_{\sigma \left(2\right)}{\mathcal{C}\mathfrak{f}}_{Cp-\sigma \left(2\right)}\right)\otimes , \dots , \otimes {\omega }^{wc-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\left({\Delta :}_{\sigma \left(\stackrel{⏞}{\mathcal{n}\mathfrak{t}}\right)}{\mathcal{C}\mathfrak{f}}_{Cp-\sigma \left(\stackrel{⏞}{\mathcal{n}\mathfrak{t}}\right)}\right) $ (34)

    Several specific cases are gotten after the implementation of distinct techniques, for instance, if $ {\Delta :}_{\mathfrak{j}} = 0 $ in Eq (34), then we get CPF ordered weighted geometric operator. We got the theory of CIF ordered weighted geometric operator by changing the value of "2" in Eq (34) into "1". If $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $ in Eq (34), then we get PF ordered weighted geometric operator. We got the theory of IF ordered weighted geometric operator by changing the value of "2" with $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $, in Eq (34) into "1".

    Theorem 4. Under Eq (34), we achieved

    $ CCPFOWG\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) $
    $ = \left(ntj=1TΔ:σ(j)ωwcjCfRTσ(j)ei2π(ntj=1TΔ:σ(j)ωwcjCfITσ(j)),(1ntj=1(1F2CfRTσ(j))Δ:σ(j)ωwcj)12ei2π(1ntj=1(1F2CfITσ(j))Δ:σ(j)ωwcj)12\right) $ (35)

    If $ {\Delta :}_{\mathfrak{j}} = 0 $ in Eq (35), then we get CPF ordered weighted geometric operator. We got the theory of CIF ordered weighted geometric operator by changing the value of "2" in Eq (35) into "1". If $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $ in Eq (35), then we get PF ordered weighted geometric operator. We got the theory of IF ordered weighted geometric operator by changing the value of "2" with $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $, in Eq (35) into "1". Idempotency, boundedness, and monotonicity stated some properties for Eq (35).

    Property 10. If $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}} = {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}, {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}} = {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}} = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}} = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}} $, and $ \Delta : = {\Delta :}_{\mathfrak{j}} $, then

    $ CCPFOWG\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) = \Delta :{\mathcal{C}\mathfrak{f}}_{cp} $ (36)

    Property 11.

    If $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{-} = \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, \underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right) $ and $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{+} = \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, \underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right) $, then

    $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{-}\le CCPFOWG\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right)\le {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{+} $ (37)

    Property 12. If $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{\mathfrak{*}}, {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{\mathfrak{*}}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\ge {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{\mathfrak{*}}, $ and $ {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\ge {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{\mathfrak{*}} $ then

    $ CCPFOWG\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right)\le $
    $ CCPFOWG\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}^{*}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}^{*}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}^{\mathfrak{*}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) $ (38)

    Ambiguity and intricacy are involved in every region of life like economics, engineering sciences, computer sciences, and medical sciences. A lot of people have investigated the beneficial ways how to evaluate their solutions. But, in the scenario of fuzzy circumstances, a lot of ambiguity has occurred if someone employed MADM techniques in the scenario of IFSs, PFSs, and CIFSs. The major theme of this theory is to demonstrate the beneficial ways for the selection of the most important and convenient optimal. For this, $ \stackrel{⏞}{m} $ alternatives and $ \stackrel{⏞}{\mathcal{n}\mathfrak{t}} $ attributes are stated in the shape: $ \left\{{\mathcal{C}\mathfrak{f}}_{al-1}, {\mathcal{C}\mathfrak{f}}_{al-2}, \dots , {\mathcal{C}\mathfrak{f}}_{al-\stackrel{⏞}{m}}\right\} $ and $ \left\{{\mathcal{C}\mathfrak{f}}_{at-1}, {\mathcal{C}\mathfrak{f}}_{at-2}, \dots , {\mathcal{C}\mathfrak{f}}_{at-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right\} $ with weight vectors $ {\omega }^{wc} = \left\{{\omega }^{wc-1}, {\omega }^{wc-2}, \dots , {\omega }^{wc-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right\} $ working under the technique $ \sum _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\omega }^{wc-\mathfrak{j}} = 1, {\omega }^{wc-\mathfrak{j}}\in \left[\mathrm{0, 1}\right] $. For this, someone implemented the matrix $ D = {\left[{\mathcal{C}\mathfrak{f}}_{al-ij}\right]}_{\stackrel{⏞}{m}\times \stackrel{⏞}{\mathcal{n}\mathfrak{t}}} $, includes the CPFNs with $ 0\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}^{2}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}}^{2}\left(\mathcal{b}\right)\le \mathrm{1, 0}\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}^{2}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}}^{2}\left(\mathcal{b}\right)\le 1 $. A Mathematical structure $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}} = \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right) $, stated the CPFNs.

    Several beneficial stages are diagnosed for demonstrating the qualitative optimal from the family of alternatives.

    Stage 1: In this, we consider the decision matrix which includes some rows and columns in the shape of CPFNs.

    Stage 2: Under the consideration of Eqs (20) and (30), we try to demonstrate the CPFN from the group of CPFNS given in Stage 1.

    Stage 3: Under the consideration of Eq (17), we try to demonstrate the single value from the CPFNS given in Stage 2.

    Stage 4: Explore some order in the shape of ranking values based on score values.

    Stage 5: Elaborate the beneficial optimal.

    COVID-19 is a novel and typical form of coronavirus that is not been before investigated in persons. The COVID-19 is one of the most intellectual and dangerous parts of the disease which was first diagnosed in December 2019. Up to date a lot of people have been affected by it, and many have passed away. When COVID-19 has discovered a lot of scholars have worked to make the best vaccination for it. Nowadays, a lot of vaccines have been found by different countries, but the Chines vaccine has gotten a lot of attention and several people have used it. Several important symptoms are diagnosed here, for instance, coughing, headache, loss of taste, sore throat, and muscle pain. For this, we suggested several alternatives, and their attributes are diagnosed in the shape of symptoms of the COVID-19, have specified below:

    $ {\mathcal{C}\mathfrak{f}}_{al-1} $: Fever or chills.

    $ {\mathcal{C}\mathfrak{f}}_{al-2} $: A dry hack and windedness.

    $ {\mathcal{C}\mathfrak{f}}_{al-3} $: Feeling extremely drained.

    $ {\mathcal{C}\mathfrak{f}}_{al-4} $: Muscle or body throbs.

    With four criteria in the shape of dangerous symptoms such as:

    $ {\mathcal{C}\mathfrak{f}}_{at-1} $: Inconvenience relaxing.

    $ {\mathcal{C}\mathfrak{f}}_{at-2} $: Steady agony or tension in your chest.

    $ {\mathcal{C}\mathfrak{f}}_{at-3} $: Pale blue lips or face.

    $ {\mathcal{C}\mathfrak{f}}_{at-4} $: Abrupt disarray.

    Several experts are given their opinions in the shape of $ \left(\mathrm{0.4, 0.3, 0.2, 0.1}\right) $, stated the weight vectors for four alternative and their four attributes. Several beneficial stages are diagnosed for demonstrating the qualitative optimal from the family of alternatives.

    Stage 1: In this, we consider the decision matrix which includes some rows and columns in the shape of CPFNs, stated in Table 3.

    Table 3.  Expressions of the arrangement of the CPFNs.
    $ {\bf\bf\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{t}-1} $ $ {\bf\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{t}-2} $ $ {\bf\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{t}-3} $ $ {\bf\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{t}-4} $
    $ {\bf\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-1} $ $ \left(\left(0.7ei2π(0.5),0.5ei2π(0.6)\right), 0.8\right) $ $ \left(\left(0.71ei2π(0.51),0.51ei2π(0.61)\right), 0.81\right) $ $ \left(\left(0.72ei2π(0.52),0.52ei2π(0.62)\right), 0.82\right) $ $ \left(\left(0.73ei2π(0.53),0.53ei2π(0.63)\right), 0.83\right) $
    $ {\bf\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-2} $ $ \left(\left(0.7ei2π(0.8),0.3ei2π(0.3)\right), 0.7\right) $ $ \left(\left(0.71ei2π(0.81),0.31ei2π(0.31)\right), 0.71\right) $ $ \left(\left(0.72ei2π(0.82),0.32ei2π(0.32)\right), 0.72\right) $ $ \left(\left(0.73ei2π(0.83),0.33ei2π(0.33)\right), 0.73\right) $
    $ {\bf\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-3} $ $ \left(\left(0.6ei2π(0.5),0.5ei2π(0.6)\right), 0.8\right) $ $ \left(\left(0.61ei2π(0.51),0.51ei2π(0.61)\right), 0.81\right) $ $ \left(\left(0.61ei2π(0.51),0.51ei2π(0.61)\right), 0.81\right) $ $ \left(\left(0.62ei2π(0.52),0.52ei2π(0.62)\right), 0.82\right) $
    $ {\bf\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-4} $ $ \left(\left(0.5ei2π(0.4),0.2ei2π(0.4)\right), 0.8\right) $ $ \left(\left(0.51ei2π(0.41),0.21ei2π(0.41)\right), 0.81\right) $ $ \left(\left(0.52ei2π(0.42),0.22ei2π(0.42)\right), 0.82\right) $ $ \left(\left(0.53ei2π(0.43),0.23ei2π(0.43)\right), 0.83\right) $

     | Show Table
    DownLoad: CSV

    Stage 2: Under the consideration of Eqs (20) and (30), we try to demonstrate the CPFN from the group of CPFNS given in Stage 1, stated in Table 4.

    Table 4.  Aggregated values of the information are in Table 3.
    Method CCPFWA CCPFWG
    $ {\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-1} $ $ \left(0.6587{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.4656\right)}, 0.5796{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.6701\right)}\right) $ $ \left(0.7578{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.5796\right)}, 0.4656{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.5607\right)}\right) $
    $ {\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-2} $ $ \left(0.6266{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.7294\right)}, 0.4354{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.4354\right)}\right) $ $ \left(0.7842{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.8611\right)}, 0.2634{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.2634\right)}\right) $
    $ {\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-3} $ $ \left(0.5568{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.4618\right)}, 0.578{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.6684\right)}\right) $ $ \left(0.6684{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.578\right)}, 0.4618{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.5568\right)}\right) $
    $ {\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-4} $ $ \left(0.4656{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.3724\right)}, 0.2824{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.4857\right)}\right) $ $ \left(0.5796{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.4857\right)}, 0.1898{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.3724\right)}\right) $

     | Show Table
    DownLoad: CSV

    Stage 3: Under the consideration of Eq (17), we try to demonstrate the single value from the CPFNS given in Stage 2, conferred in Table 5.

    Table 5.  Expressions of the score values.
    Method CCPFWA CCPFWG
    $ {\mathcal{C}\mathfrak{f}}_{\mathit{a}\mathit{l}-1} $ $ -0.0672 $ $ 0.1895 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathit{a}\mathit{l}-2} $ $ 0.2728 $ $ 0.6089 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathit{a}\mathit{l}-3} $ $ -0.1288 $ $ 0.1288 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathit{a}\mathit{l}-4} $ $ 0.0199 $ $ 0.1986 $

     | Show Table
    DownLoad: CSV

    Stage 4: Explore some order in the shape of ranking values based on score values, conferred in Table 6.

    Table 6.  Expressions of ranking values.
    Method Ranking values
    CCPFWA $ {\mathcal{C}\mathfrak{f}}_{al-2}\ge {\mathcal{C}\mathfrak{f}}_{al-4}\ge {\mathcal{C}\mathfrak{f}}_{al-1}\ge {\mathcal{C}\mathfrak{f}}_{al-3} $
    CCPFWG $ {\mathcal{C}\mathfrak{f}}_{al-2}\ge {\mathcal{C}\mathfrak{f}}_{al-4}\ge {\mathcal{C}\mathfrak{f}}_{al-1}\ge {\mathcal{C}\mathfrak{f}}_{al-3} $

     | Show Table
    DownLoad: CSV

    Stage 5: Elaborate the beneficial optimal, which is $ {\mathcal{C}\mathfrak{f}}_{\mathit{a}\mathit{l}-2} $. Moreover, Figure 3 states the practicality of the data in Table 5.

    Figure 3.  The practicality of the data is in Table 5.

    To evaluate the practicality of the invented works, we suggested several data from [17]. A lot of details are available in the prevailing works [17], for evaluating the feasibility and dominancy of the invented works, we suggested the data in Table 2 from [17], which includes the CIFNs. Then the final accumulated values are available in Table 7, under the weight vector $ \left(\mathrm{0.4, 0.3, 0.2, 0.1}\right) $, with the value of $ {\Delta :}_{i}, i = \mathrm{1, 2}, \mathrm{3, 4}, 5 $, stated in the shape $ \left\{\mathrm{0.8, 0.81, 0.82, 0.83}\right\} $. Under the consideration of Eqs (20) and (30), we try to demonstrate the CIFN from the group of CIFNS given in Table 2, stated in Table 7.

    Table 7.  Aggregated values of the information in Table 2 in [17].
    Method CCPFWA CCPFWG
    $ {\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-1} $ $ \left(0.65{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.6962\right)}, 0.1735{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.2574\right)}\right) $ $ \left(0.7262{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.4933\right)}, 0.1145{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.2327\right)}\right) $
    $ {\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-2} $ $ \left(0.5639{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.7074\right)}, 0.3197{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.2636\right)}\right) $ $ \left(0.6242{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.7483\right)}, 0.2306{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.2185\right)}\right) $
    $ {\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-3} $ $ \left(0.5462{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.6148\right)}, 0.3024{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.2048\right)}\right) $ $ \left(0.6499{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.702\right)}, 0.2257{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.1426\right)}\right) $
    $ {\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-4} $ $ \left(0.4994{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.5861\right)}, 0.3709{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.2269\right)}\right) $ $ \left(0.4829{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.5856\right)}, 0.3421{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.2034\right)}\right) $
    $ {\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-5} $ $ \left(0.4804{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.2332\right)}, 0.4086{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.5341\right)}\right) $ $ \left(0.5405{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.2888\right)}, 0.3993{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.4592\right)}\right) $

     | Show Table
    DownLoad: CSV

    Under the consideration of Eq (17), we try to demonstrate the single value from the CIFNS, conferred in Table 8.

    Table 8.  Expressions of the score values.
    Method CCPFWA CCPFWG
    $ {\mathcal{C}\mathfrak{f}}_{\mathit{a}\mathit{l}-1} $ $ 0.4054 $ $ 0.3517 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathit{a}\mathit{l}-2} $ $ 0.3233 $ $ 0.4243 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathit{a}\mathit{l}-3} $ $ 0.2715 $ $ 0.422 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathit{a}\mathit{l}-4} $ $ 0.202 $ $ 0.2089 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathit{a}\mathit{l}-5} $ $ -0.0835 $ $ 0.0026 $

     | Show Table
    DownLoad: CSV

    Moreover, Figure 4 states the practicality of the data in Table 8.

    Figure 4.  The practicality of the data in Table 8.

    Explore some order in the shape of ranking values based on score values, conferred in Table 9.

    Table 9.  Expressions of ranking values.
    Method Ranking values
    CCPFWA $ {\mathcal{C}\mathfrak{f}}_{al-1}\ge {\mathcal{C}\mathfrak{f}}_{al-2}\ge {\mathcal{C}\mathfrak{f}}_{al-3}\ge {\mathcal{C}\mathfrak{f}}_{al-4}\ge {\mathcal{C}\mathfrak{f}}_{al-5} $
    CCPFWG $ {\mathcal{C}\mathfrak{f}}_{al-1}\ge {\mathcal{C}\mathfrak{f}}_{al-2}\ge {\mathcal{C}\mathfrak{f}}_{al-3}\ge {\mathcal{C}\mathfrak{f}}_{al-4}\ge {\mathcal{C}\mathfrak{f}}_{al-5} $

     | Show Table
    DownLoad: CSV

    Elaborate the beneficial optimal, which is $ {\mathcal{C}\mathfrak{f}}_{\mathit{a}\mathit{l}-1} $.

    To evaluate the practicality of the invented works, we suggested several data from [27]. A lot of details are available in the prevailing works [27], for evaluating the feasibility and dominancy of the invented works, we suggested the data in Table 5 from [27], which includes the PFNs. Then the final accumulated values are available in Table 10, under the weight vector $ \left(\mathrm{0.4, 0.3, 0.2, 0.1}\right) $. Under the consideration of Eqs (20) and (30), we try to demonstrate the PFN from the group of PFNS given in Table 5, stated in Table 10.

    Table 10.  Expressions of the score values.
    Method CCPFWA CCPFWG
    $ {\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-1} $ $ 0.2267 $ $ 0.2741 $
    $ {\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-2} $ $ 0.2028 $ $ 0.2496 $
    $ {\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-3} $ $ 0.3844 $ $ 0.4194 $
    $ {\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-4} $ $ 0.1766 $ $ 0.2029 $
    $ {\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-5} $ $ 0.2605 $ $ 0.2814 $

     | Show Table
    DownLoad: CSV

    Explore some order in the shape of ranking values based on score values, conferred in Table 11. Moreover, Figure 5 stated the practicality of the data in Table 10.

    Table 11.  Expressions of ranking values.
    Method Ranking values
    CCPFWA $ {\mathcal{C}\mathfrak{f}}_{al-3}\ge {\mathcal{C}\mathfrak{f}}_{al-5}\ge {\mathcal{C}\mathfrak{f}}_{al-1}\ge {\mathcal{C}\mathfrak{f}}_{al-2}\ge {\mathcal{C}\mathfrak{f}}_{al-4} $
    CCPFWG $ {\mathcal{C}\mathfrak{f}}_{al-3}\ge {\mathcal{C}\mathfrak{f}}_{al-5}\ge {\mathcal{C}\mathfrak{f}}_{al-1}\ge {\mathcal{C}\mathfrak{f}}_{al-2}\ge {\mathcal{C}\mathfrak{f}}_{al-4} $

     | Show Table
    DownLoad: CSV
    Figure 5.  The practicality of the data in Table 10.

    Elaborate the beneficial optimal, which is $ {\mathcal{C}\mathfrak{f}}_{\mathit{a}\mathit{l}-3} $.

    Achievement without complication is very difficult due to ambiguity and rationality which is involved in genuine life dilemmas. MADM technique is one of the beneficial ways to determine our goal. The key technique of our works is to demonstrate the supremacy and effectiveness of the invented works. For this, several suggested works are discussed here: CLs for IFSs [50], CLs for PFSs [31], AOs for CIFSs [21], AOs for CPFSs [28], geometric AOs for IFSs [32], Hamacher AOs for IFSs [33], AOs for PFSs [41], Heronian AOs for IFSs [45], Bonferroni AOs for PFSs [46], and with several invented works are diagnosed in Table 12, under the consideration of data in Example 1. For more convenience, we illustrated Figure 6, which stated the invented works in Table 12.

    Table 12.  Stated the sensitivity analysis.
    Method Score values Ranking values
    Rahman et al. [50] Cannot be calculated Cannot be calculated
    Garg [31] Cannot be calculated Cannot be calculated
    Garg and Rani [21] Cannot be calculated Cannot be calculated
    Akram et al. [28] $ {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-1}\right)=-0.0450, {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-2}\right)=0.0506, $
    $ {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-3}\right)=-0.0044, {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-4}\right)=0.0144 $
    $ {\mathcal{C}\mathfrak{f}}_{al-2}\ge {\mathcal{C}\mathfrak{f}}_{al-4}\ge {\mathcal{C}\mathfrak{f}}_{al-1}\ge {\mathcal{C}\mathfrak{f}}_{al-3} $
    Wang and Liu [32] Cannot be calculated Cannot be calculated
    Huang [33] Cannot be calculated Cannot be calculated
    Peng and Yuan [41] Cannot be calculated Cannot be calculated
    Li and Wei [45] Cannot be calculated Cannot be calculated
    Liang et al. [46] Cannot be calculated Cannot be calculated
    CCPFWA $ {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-1}\right)=-0.0672, {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-2}\right)=0.2728, $
    $ {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-3}\right)=-0.1288, {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-4}\right)=0.0199 $
    $ {\mathcal{C}\mathfrak{f}}_{al-2}\ge {\mathcal{C}\mathfrak{f}}_{al-4}\ge {\mathcal{C}\mathfrak{f}}_{al-1}\ge {\mathcal{C}\mathfrak{f}}_{al-3} $
    CCPFWG $ {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-1}\right)=0.1895, {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-2}\right)=0.6089, $
    $ {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-3}\right)=0.1288, {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-4}\right)=0.1986 $
    $ {\mathcal{C}\mathfrak{f}}_{al-2}\ge {\mathcal{C}\mathfrak{f}}_{al-4}\ge {\mathcal{C}\mathfrak{f}}_{al-1}\ge {\mathcal{C}\mathfrak{f}}_{al-3} $

     | Show Table
    DownLoad: CSV
    Figure 6.  The practicality of the data is in Table 12.

    For more convenience, we illustrated Figure 7, which stated the invented works in Table 13.

    Figure 7.  The practicality of the data is in Table 13.
    Table 13.  Stated the sensitivity analysis.
    Method Score Values Ranking Values
    Rahman et al. [50] Cannot be calculated Cannot be calculated
    Garg [31] Cannot be calculated Cannot be calculated
    Garg and Rani [21] $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-1}\right)=0.3043, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-2}\right)=0.2122, $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-3}\right)=0.1604, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-4}\right)=0.101 $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-5}\right)=-0.0724 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-1}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-2}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-3}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-4}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-5} $
    Akram et al. [28] $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-1}\right)=0.5165, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-2}\right)=0.4344, $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-3}\right)=0.3826, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-4}\right)=0.313 $ 1
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-5}\right)=-0.1946 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-1}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-2}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-3}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-4}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-5} $
    Wang and Liu [32] Cannot be calculated Cannot be calculated
    Huang [33] Cannot be calculated Cannot be calculated
    Peng and Yuan [41] Cannot be calculated Cannot be calculated
    Li and Wei [45] Cannot be calculated Cannot be calculated
    Liang et al. [46] Cannot be calculated Cannot be calculated
    CCPFWA $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-1}\right)=0.4054, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-2}\right)=0.3233, $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-3}\right)=0.2715, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-4}\right)=0.202 $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-5}\right)=-0.0835 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-1}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-2}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-3}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-4}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-5} $
    CCPFWG $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-1}\right)=0.3517, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-2}\right)=0.4243, $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-3}\right)=0.422, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-4}\right)=0.2089 $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-5}\right)=0.0026 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-1}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-2}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-3}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-4}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-5} $

     | Show Table
    DownLoad: CSV

    Under the data in Table 2 from [17], several analyses are diagnosed in Table 13.

    Under the data in Table 5 from [27], several analyses are diagnosed in Table 14.

    Table 14.  Stated the sensitivity analysis.
    Method Score values Ranking values
    Rahman et al. [50] cannot be calculated cannot be calculated
    Garg [31] $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-1}\right)=0.1156, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-2}\right)=0.1017, $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-3}\right)=0.2733, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-4}\right)=0.0655 $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-5}\right)=0.1504 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-3}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-5}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-1}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-2}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-4} $
    Garg and Rani [21] $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-1}\right)=0.3367, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-2}\right)=0.3128, $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-3}\right)=0.4944, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-4}\right)=0.2866 $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-5}\right)=0.3705 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-3}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-5}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-1}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-2}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-4} $
    Akram et al. [28] $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-1}\right)=0.4467, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-2}\right)=0.4228, $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-3}\right)=0.5944, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-4}\right)=0.3966 $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-5}\right)=0.4805 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-3}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-5}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-1}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-2}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-4} $
    Wang and Liu [32] cannot be calculated cannot be calculated
    Huang [33] cannot be calculated cannot be calculated
    Peng and Yuan [41] $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-1}\right)=0.6452, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-2}\right)=0.5817, $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-3}\right)=0.7562, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-4}\right)=0.4127 $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-5}\right)=0.6677 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-3}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-5}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-1}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-2}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-4} $
    Li and Wei [45] $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-1}\right)=0.5561, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-2}\right)=0.4926, $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-3}\right)=0.6671, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-4}\right)=0.3236 $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-5}\right)=0.5786 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-3}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-5}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-1}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-2}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-4} $
    Liang et al. [46] $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-1}\right)=0.7361, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-2}\right)=0.6726, $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-3}\right)=0.8471, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-4}\right)=0.5036 $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-5}\right)=0.7586 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-3}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-5}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-1}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-2}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-4} $
    CCPFWA $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-1}\right)=0.2267, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-2}\right)=0.2028, $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-3}\right)=0.3844, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-4}\right)=0.1766 $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-5}\right)=0.2605 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-3}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-5}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-1}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-2}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-4} $
    CCPFWG $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-1}\right)=0.2741, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-2}\right)=0.2496, $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-3}\right)=0.4194, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-4}\right)=0.2029 $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-5}\right)=0.2814 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-3}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-5}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-1}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-2}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-4} $

     | Show Table
    DownLoad: CSV

    For more convenience, we illustrated Figure 8, which stated the invented works in Table 14.

    Figure 8.  The practicality of the data is in Table 14.

    After a long discussion, we have gotten the result that the invented works are massive feasible, and accurate to demonstrate the value of objects appropriately. Therefore, the invented works under the CPFSs are extensively reliable, and more consistent is compared to existing operators [21,28,31,32,33,41,45,46,50] and in future we will extend to compare with some new works which are discussed in [42,43,44,47,48,49].

    Ambiguity and uncertainty have been involved in several genuine life dilemmas, MADM technique is the most influential part of the decision-making technique to handle inconsistent data which occurred in many scenarios. The major construction of this works is exemplified in the succeeding ways:

    1) We analyzed some new operational laws based on CLs for the CPF setting.

    2) We demonstrated the closeness between a finite number of alternatives, the conception of CCPFWA, CCPFOWA, CCPFWG, and CCPFOWG operators are invented.

    3) Several significant features of the invented works are also diagnosed.

    4) We investigated the beneficial optimal from a large number of alternatives, a MADM analysis is analyzed based on CPF data.

    5) A lot of examples are demonstrated based on invented works to evaluate the supremacy and ability of the initiated works.

    6) For massive convenience, the sensitivity analysis and merits of the identified works are also explored with the help of comparative analysis and they're graphical shown.

    In the upcoming times, we will outspread the idea of complex q-rung orthopair FSs [51,52], complex spherical FSs [53,54], and Spherical fuzzy sets [55,56], etc. to advance the quality of the research works.

    The authors declare that they have no conflicts of interest about the publication of the research article.

    This research was supported by the Researchers Supporting Project number (RSP-2021/244), King Saud University, Riyadh, Saudi Arabia.

    [1] Hadziyannis S, Gerber MA, Vissoulis C, et al. (1973) Cytoplasmic hepatitis B antigen in "ground-glass" hepatocytes of carriers. Arch Pathol 96: 327–330.
    [2] Pópper H (1975) The ground glass hepatocyte as a diagnostic hint. Hum Pathol 6: 517–520. doi: 10.1016/S0046-8177(75)80069-4
    [3] Shikata T (1973) Australia antigen in liver tissue-an immunofluorescent and immunoelectron microscopic study. Jpn J Exp Med 43: 231–245.
    [4] Shikata T, Uzawa T, Yoshiwara N, et al. (1974) Staining methods of Australia antigen in paraffin section-detection of cytoplasmic inclusion bodies. Jpn J Exp Med 44: 25–36.
    [5] Gudat F, Bianchi L, Sonnabend W, et al. (1975) Pattern of core and surface expression in liver tissue reflects state of specific immune response in hepatitis B. Lab Invest 32: 1–9.
    [6] Hsu H, Lai M, Su I, et al. (1988) Correlation of hepatocyte HBsAg expression with virus replication and liver pathology. Hepatology 8: 749–754. doi: 10.1002/hep.1840080408
    [7] Wang HC, Wu HC, Chen CF, et al. (2003) Different types of ground glass hepatocytes in chronic hepatitis B virus infection contain specific pre-S mutants that may induce endoplasmic reticulum stress. Am J Pathol 163: 2441–2449. doi: 10.1016/S0002-9440(10)63599-7
    [8] Su IJ, Kuo TT, Liaw YF (1985) Hepatocyte hepatitis B surface antigen. Diagnostic evaluation of patients with clinically acute hepatitis B surface antigen-positive hepatitis. Arch Pathol Lab Med 109: 400–402.
    [9] Hsu HC, Lin YH, Chang MH, et al. (1988) Pathology of chronic hepatitis B virus infection in children: with special reference to the intrahepatic expression of hepatitis B virus antigens. Hepatology 8: 378–382. doi: 10.1002/hep.1840080232
    [10] Fan YF, Lu CC, Chang YC, et al. (2000) Identification of a pre-S2 mutant in hepatocytes expressing a novel marginal pattern of surface antigen in advanced diseases of chronic hepatitis B virus infection. J Gastroenterol Hepatol 15: 519–528. doi: 10.1046/j.1440-1746.2000.02187.x
    [11] Su IJ, Lai MY, Hsu HC, et al. (1986) Diverse virological, histopathological and prognostic implications of seroconversion from hepatitis B e antigen to anti-HBe in chronic hepatitis B virus infection. J Hepatol 3: 182–189. doi: 10.1016/S0168-8278(86)80024-1
    [12] Tai PC, Banik D, Lin GI, et al. (1997) Novel and frequent mutations of hepatitis B virus coincide with a major histocompatibility complex class I-restricted T-cell epitope of the surface antigen. J Virol 71: 4852–4856.
    [13] Hsu HC, Wu TT, Wu MZ, et al. (1988) Evolution of expression of hepatitis B surface and core antigens (HBsAg, HBcAg) in resected primary and recurrent hepatocellular carcinoma in HBsAg carriers in Taiwan. Correlation with local host immune response. Cancer 62: 915–921.
    [14] Mimms L (1995) Hepatitis B virus escape mutants: "Pushing the envelope" of chronic hepatitis B virus infection. Hepatology 21: 884–887.
    [15] Hsieh YH, Su IJ, Wang HC, et al. (2007) Hepatitis B virus pre-S2 mutant surface antigen induces degradation of cyclin-dependent kinase inhibitor p27Kip1 through c-Jun activation domain-binding protein 1. Mol Cancer Res 5: 1063–1072. doi: 10.1158/1541-7786.MCR-07-0098
    [16] Liu S, Zhang H, Gu C, et al. (2009) Associations between hepatitis B virus mutations and the risk of hepatocellular carcinoma: A meta-analysis. J Natl Cancer Inst 101: 1066–1082. doi: 10.1093/jnci/djp180
    [17] Santantonio T, Jung MC, Schneider R, et al. (1992) Hepatitis B virus genomes that cannot synthesize pre-S2 proteins occur frequently and as dominant virus populations in chronic carriers in Italy. Virology 188: 948–952. doi: 10.1016/0042-6822(92)90559-8
    [18] Fan YF, Lu CC, Chen WC, et al. (2001) Prevalence and significance of hepatitis B virus (HBV) pre-S mutants in serum and liver at different replicative stages of chronic HBV infection. Hepatology 33: 277–286. doi: 10.1053/jhep.2001.21163
    [19] Huy TT, Ushijima H, Win KM, et al. (2003) High prevalence of hepatitis B virus pre-S mutant in countries where it is endemic and its relationship with genotype and chronicity. J Clin Microbiol 41: 5449–5455. doi: 10.1128/JCM.41.12.5449-5455.2003
    [20] Fernholz D, Galle PR, Stemler M, et al. (1993) Infectious hepatitis B virus variant defective in pre-S2 protein expression in a chronic carrier. Virology 194: 137–148. doi: 10.1006/viro.1993.1243
    [21] Le SJ, Chouteau P, Cannie I, et al. (1998) Role of the pre-S2 domain of the large envelope protein in hepatitis B virus assembly and infectivity. J Virol 72: 5573–5578.
    [22] Su IJ, Wang HC, Wu HC, et al. (2008) Ground glass hepatocytes contain pre-S mutants and represent preneoplastic lesions in chronic hepatitis B virus infection. J Gastroenterol Hepatol 23: 1169–1174. doi: 10.1111/j.1440-1746.2008.05348.x
    [23] Wang M, Kaufman RJ (2014) The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer 14: 581–597. doi: 10.1038/nrc3800
    [24] Hsieh YH, Su IH, Chang WW, et al. (2004) Pre-S mutant surface antigens in chronic hepatitis B virus infection induce oxidative stress and DNA damage. Carcinogenesis 25: 2023–2032. doi: 10.1093/carcin/bgh207
    [25] Hung JH, Su IJ, Lei HY, et al. (2004) Endoplasmic reticulum stress stimulates the expression of cyclooxygenase-2 through activation of NF-kappaB and pp38 mitogen-activated protein kinase. J Biol Chem 279: 46384–46392. doi: 10.1074/jbc.M403568200
    [26] Yen TT, Yang A, Chiu WT, et al. (2016) Hepatitis B virus PreS2-mutant large surface antigen activates store-operated calcium entry and promotes chromosome instability. Oncotarget 7: 23346–23360.
    [27] Smyth JT, Hwang SY, Tomita T, et al. (2010) Activation and regulation of store-operated calcium entry. J Cell Mol Med 14: 2337–2349. doi: 10.1111/j.1582-4934.2010.01168.x
    [28] Wang LH, Huang W, Lai MD, et al. (2012) Aberrant cyclin A expression and centrosome overduplication induced by hepatitis B virus pre-S2 mutants and its implication in hepatocarcinogenesis. Carcinogenesis 33: 466–472. doi: 10.1093/carcin/bgr296
    [29] Wang HC, Chang WT, Chang WW, et al. (2005) Hepatitis B virus pre-S2 mutant upregulates cyclin A expression and induces nodular proliferation of hepatocytes. Hepatology 41: 761–770. doi: 10.1002/hep.20615
    [30] Sunami Y, Ringelhan M, Kokai E, et al. (2016) Canonical NF-kappaB signaling in hepatocytes acts as a tumor-suppressor in hepatitis B virus surface antigen-driven hepatocellular carcinoma by controlling the unfolded protein response. Hepatology 63: 1592–1607. doi: 10.1002/hep.28435
    [31] Hsieh YH, Chang YY, Su IJ, et al. (2015) Hepatitis B virus pre-S2 mutant large surface protein inhibits DNA double-strand break repair and leads to genome instability in hepatocarcinogenesis. J Pathol 236: 337–347. doi: 10.1002/path.4531
    [32] Hsieh YH, Hsu JL, Su IJ, et al. (2011) Genomic instability caused by hepatitis B virus: Into the hepatoma inferno. Front Biosci 16: 2586–2597. doi: 10.2741/3874
    [33] Akbar SK, Onji M (1998) Hepatitis B virus (HBV)-transgenic mice as an investigative tool to study immunopathology during HBV infection. Int J Exp Pathol 79: 279–291.
    [34] Huang SN, Chisari FV (1995) Strong, sustained hepatocellular proliferation precedes hepatocarcinogenesis in hepatitis B surface antigen transgenic mice. Hepatology 21: 620–626.
    [35] Hagen TM, Huang S, Curnutte J, et al. (1994) Extensive oxidative DNA damage in hepatocytes of transgenic mice with chronic active hepatitis destined to develop hepatocellular carcinoma. Proc Natl Acad Sci U S A 91: 12808–12812. doi: 10.1073/pnas.91.26.12808
    [36] Wang HC, Huang W, Lai MD, et al. (2006) Hepatitis B virus pre-S mutants, endoplasmic reticulum stress and hepatocarcinogenesis. Cancer Sci 97: 683–688. doi: 10.1111/j.1349-7006.2006.00235.x
    [37] Zheng Y, Chen WL, Louie SG, et al. (2007) Hepatitis B virus promotes hepatocarcinogenesis in transgenic mice. Hepatology 45: 16–21. doi: 10.1002/hep.21445
    [38] Teng YC, Neo JC, Wu JC, et al. (2017) Expression of a hepatitis B virus pre-S2 deletion mutant in the liver results in hepatomegaly and hepatocellular carcinoma in mice. J Pathol 241: 463–474. doi: 10.1002/path.4850
    [39] Shen FC, Su IJ, Wu HC, et al. (2009) A pre-S gene chip to detect pre-S deletions in hepatitis B virus large surface antigen as a predictive marker for hepatoma risk in chronic hepatitis B virus carriers. J Biomed Sci 16: 84. doi: 10.1186/1423-0127-16-84
    [40] Tsai HW, Lin YJ, Wu HC, et al. (2016) Resistance of ground glass hepatocytes to oral antivirals in chronic hepatitis B patients and implication for the development of hepatocellular carcinoma. Oncotarget 7: 27724–27734.
    [41] Chang TT, Liaw YF, Wu SS, et al. (2010) Long-term entecavir therapy results in the reversal of fibrosis/cirrhosis and continued histological improvement in patients with chronic hepatitis B. Hepatology 52: 886–893. doi: 10.1002/hep.23785
    [42] Singal AK, Salameh H, Kuo YF, et al. (2013) Meta-analysis: The impact of oral anti-viral agents on the incidence of hepatocellular carcinoma in chronic hepatitis B. Aliment Pharmacol Ther 38: 98–106. doi: 10.1111/apt.12344
    [43] Wu CY, Chen YJ, Ho HJ, et al. (2012) Association between nucleoside analogues and risk of hepatitis B virus-related hepatocellular carcinoma recurrence following liver resection. JAMA 308: 1906–1914. doi: 10.1001/2012.jama.11975
    [44] Tsai HW, Lin YJ, Lin PW, et al. (2011) A clustered ground-glass hepatocyte pattern represents a new prognostic marker for the recurrence of hepatocellular carcinoma after surgery. Cancer 117: 2951–2960. doi: 10.1002/cncr.25837
    [45] Manesis EK, Hadziyannis ES, Angelopoulou OP, et al. (2007) Prediction of treatment-related HBsAg loss in HBeAG-negative chronic hepatitis B: A clue from serum HBsAg levels. Antiviral Ther 12: 73–82.
    [46] Wong DK, Cheung AM, O'Rourke K, et al. (1993) Effect of alpha-interferon treatment in patients with hepatitis B e antigen-positive chronic hepatitis B. A meta-analysis. Ann Intern Med 119: 312–323. doi: 10.7326/0003-4819-119-4-199308150-00011
    [47] Teng CF, Wu HC, Hsieh WC, et al. (2015) Activation of ATP citrate lyase by mTOR signal induces disturbed lipid metabolism in hepatitis B virus pre-S2 mutant tumorigenesis. J Virol 89: 605–614. doi: 10.1128/JVI.02363-14
    [48] Loguercio C, Andreone P, Brisc C, et al. (2012) Silybin combined with phosphatidylcholine and vitamin E in patients with nonalcoholic fatty liver disease: A randomized controlled trial. Free Radical Biol Med 52: 1658–1665. doi: 10.1016/j.freeradbiomed.2012.02.008
    [49] Polyak SJ, Morishima C, Lohmann V, et al. (2010) Identification of hepatoprotective flavonolignans from silymarin. Proc Natl Acad Sci U S A 107: 5995–5999. doi: 10.1073/pnas.0914009107
    [50] Jang M, Cai L, Udeani GO, et al. (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275: 218–220. doi: 10.1126/science.275.5297.218
    [51] Gusman J, Malonne H, Atassi G (2001) A reappraisal of the potential chemopreventive and chemotherapeutic properties of resveratrol. Carcinogenesis 22: 1111–1117. doi: 10.1093/carcin/22.8.1111
    [52] Fulda S (2010) Resveratrol and derivatives for the prevention and treatment of cancer. Drug Discovery Today 15: 757–765. doi: 10.1016/j.drudis.2010.07.005
    [53] Guarente L (2006) Sirtuins as potential targets for metabolic syndrome. Nature 444: 868–874. doi: 10.1038/nature05486
    [54] Lekli I, Ray D, Das DK (2010) Longevity nutrients resveratrol, wines and grapes. Genes Nutr 5: 55–60. doi: 10.1007/s12263-009-0145-2
    [55] Teng CF, Hsieh WC, Wu HC, et al. (2015) Hepatitis B Virus Pre-S2 Mutant Induces Aerobic Glycolysis through Mammalian Target of Rapamycin Signal Cascade. PLoS One 10: e0122373. doi: 10.1371/journal.pone.0122373
  • This article has been cited by:

    1. Janani Selvam, Ashok Vajravelu, Sasitharan Nagapan, Bala Kumaran Arumugham, Analyzing the Flexural Performance of Cold-Formed Steel Sigma Section Using ABAQUS Software, 2023, 15, 2071-1050, 4085, 10.3390/su15054085
    2. Aleksandra M. Pawlak, Piotr Paczos, Michał Grenda, Tomasz A. Górny, Marcin Rodak, Mathematical and numerical analysis of local buckling thin-walled beams with non-standard cross-sections, 2025, 313, 00457949, 107752, 10.1016/j.compstruc.2025.107752
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8392) PDF downloads(1076) Cited by(5)

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog