Review

Recent Advances in αβ T Cell Biology: Wnt Signaling, Notch Signaling, Hedgehog Signaling and Their Translational Perspective

  • Received: 30 August 2016 Accepted: 08 November 2016 Published: 17 November 2016
  • Engagement of bioactive ligands with cell surface receptors plays critical roles in the initiation and regulation of αβ T cell development, homeostasis and functions. In the past two decades, new subpopulations of αβ T cells have been discovered. In addition, the characterization of new ligand/receptor axes has led to a better understanding of αβ T cell biology. In the current review, the phenotypic and functional properties of αβ T cell subpopulations are described, as well as the effects of three novel and well-documented signal pathways—Wnt, Notch and Hedgehog signaling—on αβ T cell development and functions are summarized. These signal pathways are initiated by the ligation of corresponding ligands with respective receptors, and this subsequently exerts a positive or negative influence on αβ T cell ontogenesis and behavior. Thorough understanding of the components of these signal pathways might shed new light on the manipulation of αβ T cell biology so as to favor the advance of diagnosis and therapy of immune disorders such as infection, tumors and autoimmune diseases.

    Citation: Wenping Lin, Kai Dai, Luokun Xie. Recent Advances in αβ T Cell Biology: Wnt Signaling, Notch Signaling, Hedgehog Signaling and Their Translational Perspective[J]. AIMS Medical Science, 2016, 3(4): 312-328. doi: 10.3934/medsci.2016.4.312

    Related Papers:

  • Engagement of bioactive ligands with cell surface receptors plays critical roles in the initiation and regulation of αβ T cell development, homeostasis and functions. In the past two decades, new subpopulations of αβ T cells have been discovered. In addition, the characterization of new ligand/receptor axes has led to a better understanding of αβ T cell biology. In the current review, the phenotypic and functional properties of αβ T cell subpopulations are described, as well as the effects of three novel and well-documented signal pathways—Wnt, Notch and Hedgehog signaling—on αβ T cell development and functions are summarized. These signal pathways are initiated by the ligation of corresponding ligands with respective receptors, and this subsequently exerts a positive or negative influence on αβ T cell ontogenesis and behavior. Thorough understanding of the components of these signal pathways might shed new light on the manipulation of αβ T cell biology so as to favor the advance of diagnosis and therapy of immune disorders such as infection, tumors and autoimmune diseases.


    加载中
    [1] Reiner SL (2009) Decision making during the conception and career of CD4+ T cells. Nat Rev Immunol 9: 81-82. doi: 10.1038/nri2490
    [2] Clambey ET, Davenport B, Kappler JW, et al. (2014) Molecules in medicine mini review: the alphabeta T cell receptor. J Mol Med (Berl) 92: 735-741. doi: 10.1007/s00109-014-1145-2
    [3] Thompson EC (2012) Focus issue: Structure and function of lymphoid tissues. Trends Immunol 33: 255. doi: 10.1016/j.it.2012.05.001
    [4] Luckheeram RV, Zhou R, Verma AD, et al. (2012) CD4+ T cells: differentiation and functions. Clin Dev Immunol 2012: 925135.
    [5] Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol 28: 445-489. doi: 10.1146/annurev-immunol-030409-101212
    [6] Zhang N, Bevan MJ (2011) CD8+ T cells: foot soldiers of the immune system. Immunity 35: 161-168. doi: 10.1016/j.immuni.2011.07.010
    [7] Grabie N, Delfs MW, Westrich JR, et al. (2003) IL-12 is required for differentiation of pathogenic CD8+ T cell effectors that cause myocarditis. J Clin Invest 111: 671-680. doi: 10.1172/JCI200316867
    [8] Starbeck-Miller GR, Xue HH, Harty JT (2014) IL-12 and type I interferon prolong the division of activated CD8 T cells by maintaining high-affinity IL-2 signaling in vivo. J Exp Med 211: 105-120. doi: 10.1084/jem.20130901
    [9] Anastas JN, Moon RT (2013) WNT signaling pathways as therapeutic targets in cancer. Nat Rev Cancer 13: 11-26.
    [10] Moon RT, Gough NR (2016) Beyond canonical: The Wnt and beta-catenin story. Sci Signal 9: eg5. doi: 10.1126/scisignal.aaf6192
    [11] Moon RT, Kohn AD, De Ferrari GV, et al. (2004) WNT and beta-catenin signaling: diseases and therapies. Nat Rev Genet 5: 691-701. doi: 10.1038/nrg1427
    [12] Klaus A, Birchmeier W (2008) Wnt signaling and its impact on development and cancer. Nat Rev Cancer 8: 387-398. doi: 10.1038/nrc2389
    [13] Clevers H, Loh KM, Nusse R (2014) Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346: 1248012.
    [14] van de Wetering M, de Lau W, Clevers H (2002) WNT signaling and lymphocyte development. Cell 109 Suppl: S13-19.
    [15] Pongracz J, Hare K, Harman B, et al. (2003) Thymic epithelial cells provide WNT signals to developing thymocytes. Eur J Immunol 33: 1949-1956. doi: 10.1002/eji.200323564
    [16] Brunk F, Augustin I, Meister M, et al. (2015) Thymic Epithelial Cells Are a Nonredundant Source of Wnt Ligands for Thymus Development. J Immunol 195: 5261-5271. doi: 10.4049/jimmunol.1501265
    [17] Staal FJ, Meeldijk J, Moerer P, et al. (2001) Wnt signaling is required for thymocyte development and activates Tcf-1 mediated transcription. Eur J Immunol 31: 285-293.
    [18] Gounari F, Aifantis I, Khazaie K, et al. (2001) Somatic activation of beta-catenin bypasses pre-TCR signaling and TCR selection in thymocyte development. Nat Immunol 2: 863-869. doi: 10.1038/ni0901-863
    [19] Weerkamp F, Baert MR, Naber BA, et al. (2006) Wnt signaling in the thymus is regulated by differential expression of intracellular signaling molecules. Proc Natl Acad Sci U S A 103: 3322-3326. doi: 10.1073/pnas.0511299103
    [20] Xu Y, Banerjee D, Huelsken J, et al. (2003) Deletion of beta-catenin impairs T cell development. Nat Immunol 4: 1177-1182. doi: 10.1038/ni1008
    [21] Mulroy T, Xu Y, Sen JM (2003) beta-Catenin expression enhances generation of mature thymocytes. Int Immunol 15: 1485-1494. doi: 10.1093/intimm/dxg146
    [22] Wu B, Crampton SP, Hughes CC (2007) Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration. Immunity 26: 227-239. doi: 10.1016/j.immuni.2006.12.007
    [23] Willinger T, Freeman T, Herbert M, et al. (2006) Human naive CD8 T cells down-regulate expression of the WNT pathway transcription factors lymphoid enhancer binding factor 1 and transcription factor 7 (T cell factor-1) following antigen encounter in vitro and in vivo. J Immunol 176: 1439-1446. doi: 10.4049/jimmunol.176.3.1439
    [24] Alvarez-zavala M, Aguilar-lemarroy A, Jave-suarez LF (2015) WNT7a as a new feature of the T mature cells; expression of the WNT7a diminish in a highly activated and proliferative T cells after TCR activation and IL2 stimulus while canonical targets of WNT signaling pathway are overexpress. Front Immunol 6.
    [25] Driessens G, Zheng Y, Locke F, et al. (2011) Beta-catenin inhibits T cell activation by selective interference with linker for activation of T cells-phospholipase C-gamma1 phosphorylation. J Immunol 186: 784-790. doi: 10.4049/jimmunol.1001562
    [26] van Loosdregt J, Fleskens V, Tiemessen MM, et al. (2013) Canonical Wnt signaling negatively modulates regulatory T cell function. Immunity 39: 298-310. doi: 10.1016/j.immuni.2013.07.019
    [27] Keerthivasan S, Aghajani K, Dose M, et al. (2014) beta-Catenin promotes colitis and colon cancer through imprinting of proinflammatory properties in T cells. Sci Transl Med 6: 225ra228.
    [28] Yu Q, Sharma A, Oh SY, et al. (2009) T cell factor 1 initiates the T helper type 2 fate by inducing the transcription factor GATA-3 and repressing interferon-gamma. Nat Immunol 10: 992-999. doi: 10.1038/ni.1762
    [29] Notani D, Gottimukkala KP, Jayani RS, et al. (2010) Global regulator SATB1 recruits beta-catenin and regulates T(H)2 differentiation in Wnt-dependent manner. PLoS Biol 8: e1000296. doi: 10.1371/journal.pbio.1000296
    [30] Prlic M, Bevan MJ (2011) Cutting edge: beta-catenin is dispensable for T cell effector differentiation, memory formation, and recall responses. J Immunol 187: 1542-1546. doi: 10.4049/jimmunol.1100907
    [31] Ding Y, Shen S, Lino AC, et al. (2008) Beta-catenin stabilization extends regulatory T cell survival and induces anergy in nonregulatory T cells. Nat Med 14: 162-169. doi: 10.1038/nm1707
    [32] Muranski P, Borman ZA, Kerkar SP, et al. (2011) Th17 cells are long lived and retain a stem cell-like molecular signature. Immunity 35: 972-985. doi: 10.1016/j.immuni.2011.09.019
    [33] Dai W, Liu F, Li C, et al. (2016) Blockade of Wnt/beta-Catenin Pathway Aggravated Silica-Induced Lung Inflammation through Tregs Regulation on Th Immune Responses. Mediators Inflamm 2016: 6235614.
    [34] Lee YS, Lee KA, Yoon HB, et al. (2012) The Wnt inhibitor secreted Frizzled-Related Protein 1 (sFRP1) promotes human Th17 differentiation. Eur J Immunol 42: 2564-2573. doi: 10.1002/eji.201242445
    [35] Gattinoni L, Zhong XS, Palmer DC, et al. (2009) Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med 15: 808-813. doi: 10.1038/nm.1982
    [36] Jeannet G, Boudousquie C, Gardiol N, et al. (2010) Essential role of the Wnt pathway effector Tcf-1 for the establishment of functional CD8 T cell memory. Proc Natl Acad Sci U S A 107: 9777-9782. doi: 10.1073/pnas.0914127107
    [37] Zhao DM, Yu S, Zhou X, et al. (2010) Constitutive activation of Wnt signaling favors generation of memory CD8 T cells. J Immunol 184: 1191-1199. doi: 10.4049/jimmunol.0901199
    [38] Driessens G, Zheng Y, Gajewski TF (2010) Beta-catenin does not regulate memory T cell phenotype. Nat Med 16: 513-514; author reply 514-515. doi: 10.1038/nm0510-513
    [39] Boudousquie C, Danilo M, Pousse L, et al. (2014) Differences in the transduction of canonical Wnt signals demarcate effector and memory CD8 T cells with distinct recall proliferation capacity. J Immunol 193: 2784-2791. doi: 10.4049/jimmunol.1400465
    [40] Richards MH, Narasipura SD, Seaton MS, et al. (2016) Migration of CD8+ T Cells into the Central Nervous System Gives Rise to Highly Potent Anti-HIV CD4dimCD8bright T Cells in a Wnt Signaling-Dependent Manner. J Immunol 196: 317-327. doi: 10.4049/jimmunol.1501394
    [41] Taghon T, Yui MA, Pant R, et al. (2006) Developmental and molecular characterization of emerging beta- and gammadelta-selected pre-T cells in the adult mouse thymus. Immunity 24: 53-64. doi: 10.1016/j.immuni.2005.11.012
    [42] Wendorff AA, Koch U, Wunderlich FT, et al. (2010) Hes1 is a critical but context-dependent mediator of canonical Notch signaling in lymphocyte development and transformation. Immunity 33: 671-684. doi: 10.1016/j.immuni.2010.11.014
    [43] Koch U, Fiorini E, Benedito R, et al. (2008) Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. J Exp Med 205: 2515-2523. doi: 10.1084/jem.20080829
    [44] Anderson G, Pongracz J, Parnell S, et al. (2001) Notch ligand-bearing thymic epithelial cells initiate and sustain Notch signaling in thymocytes independently of T cell receptor signaling. Eur J Immunol 31: 3349-3354.
    [45] Van de Walle I, De Smet G, Gartner M, et al. (2011) Jagged2 acts as a Delta-like Notch ligand during early hematopoietic cell fate decisions. Blood 117: 4449-4459. doi: 10.1182/blood-2010-06-290049
    [46] Jaleco AC, Neves H, Hooijberg E, et al. (2001) Differential effects of Notch ligands Delta-1 and Jagged-1 in human lymphoid differentiation. J Exp Med 194: 991-1002. doi: 10.1084/jem.194.7.991
    [47] Minter LM, Turley DM, Das P, et al. (2005) Inhibitors of gamma-secretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21. Nat Immunol 6: 680-688. doi: 10.1038/ni1209
    [48] Jurynczyk M, Jurewicz A, Raine CS, et al. (2008) Notch3 inhibition in myelin-reactive T cells down-regulates protein kinase C theta and attenuates experimental autoimmune encephalomyelitis. J Immunol 180: 2634-2640. doi: 10.4049/jimmunol.180.4.2634
    [49] Auderset F, Schuster S, Coutaz M, et al. (2012) Redundant Notch1 and Notch2 signaling is necessary for IFNgamma secretion by T helper 1 cells during infection with Leishmania major. PLoS Pathog 8: e1002560. doi: 10.1371/journal.ppat.1002560
    [50] Zheng W, Flavell RA (1997) The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89: 587-596. doi: 10.1016/S0092-8674(00)80240-8
    [51] Elyaman W, Bassil R, Bradshaw EM, et al. (2012) Notch receptors and Smad3 signaling cooperate in the induction of interleukin-9-producing T cells. Immunity 36: 623-634. doi: 10.1016/j.immuni.2012.01.020
    [52] Bailis W, Yashiro-Ohtani Y, Fang TC, et al. (2013) Notch simultaneously orchestrates multiple helper T cell programs independently of cytokine signals. Immunity 39: 148-159. doi: 10.1016/j.immuni.2013.07.006
    [53] Anastasi E, Campese AF, Bellavia D, et al. (2003) Expression of activated Notch3 in transgenic mice enhances generation of T regulatory cells and protects against experimental autoimmune diabetes. J Immunol 171: 4504-4511. doi: 10.4049/jimmunol.171.9.4504
    [54] Campese AF, Grazioli P, Colantoni S, et al. (2009) Notch3 and pTalpha/pre-TCR sustain the in vivo function of naturally occurring regulatory T cells. Int Immunol 21: 727-743. doi: 10.1093/intimm/dxp042
    [55] Barbarulo A, Grazioli P, Campese AF, et al. (2011) Notch3 and canonical NF-kappaB signaling pathways cooperatively regulate Foxp3 transcription. J Immunol 186: 6199-6206. doi: 10.4049/jimmunol.1002136
    [56] Charbonnier LM, Wang S, Georgiev P, et al. (2015) Control of peripheral tolerance by regulatory T cell-intrinsic Notch signaling. Nat Immunol 16: 1162-1173. doi: 10.1038/ni.3288
    [57] Hue S, Kared H, Mehwish Y, et al. (2012) Notch activation on effector T cells increases their sensitivity to Treg cell-mediated suppression through upregulation of TGF-betaRII expression. Eur J Immunol 42: 1796-1803. doi: 10.1002/eji.201142330
    [58] Wong KK, Carpenter MJ, Young LL, et al. (2003) Notch ligation by Delta1 inhibits peripheral immune responses to transplantation antigens by a CD8+ cell-dependent mechanism. J Clin Invest 112: 1741-1750. doi: 10.1172/JCI200318020
    [59] Riella LV, Ueno T, Batal I, et al. (2011) Blockade of Notch ligand delta1 promotes allograft survival by inhibiting alloreactive Th1 cells and cytotoxic T cell generation. J Immunol 187: 4629-4638. doi: 10.4049/jimmunol.1004076
    [60] Maekawa Y, Minato Y, Ishifune C, et al. (2008) Notch2 integrates signaling by the transcription factors RBP-J and CREB1 to promote T cell cytotoxicity. Nat Immunol 9: 1140-1147. doi: 10.1038/ni.1649
    [61] Sugimoto K, Maekawa Y, Kitamura A, et al. (2010) Notch2 signaling is required for potent antitumor immunity in vivo. J Immunol 184: 4673-4678. doi: 10.4049/jimmunol.0903661
    [62] Sierra RA, Thevenot P, Raber PL, et al. (2014) Rescue of notch-1 signaling in antigen-specific CD8+ T cells overcomes tumor-induced T-cell suppression and enhances immunotherapy in cancer. Cancer Immunol Res 2: 800-811. doi: 10.1158/2326-6066.CIR-14-0021
    [63] Backer RA, Helbig C, Gentek R, et al. (2014) A central role for Notch in effector CD8(+) T cell differentiation. Nat Immunol 15: 1143-1151. doi: 10.1038/ni.3027
    [64] Mathieu M, Duval F, Daudelin JF, et al. (2015) The Notch signaling pathway controls short-lived effector CD8+ T cell differentiation but is dispensable for memory generation. J Immunol 194: 5654-5662. doi: 10.4049/jimmunol.1402837
    [65] Briscoe J, Therond PP (2013) The mechanisms of Hedgehog signaling and its roles in development and disease. Nat Rev Mol Cell Biol 14: 416-429.
    [66] Ingham PW, Nakano Y, Seger C (2011) Mechanisms and functions of Hedgehog signaling across the metazoa. Nat Rev Genet 12: 393-406. doi: 10.1038/nrg2984
    [67] Varjosalo M, Taipale J (2008) Hedgehog: functions and mechanisms. Genes Dev 22: 2454-2472. doi: 10.1101/gad.1693608
    [68] Outram SV, Varas A, Pepicelli CV, et al. (2000) Hedgehog signaling regulates differentiation from double-negative to double-positive thymocyte. Immunity 13: 187-197. doi: 10.1016/S1074-7613(00)00019-4
    [69] Shah DK, Hager-Theodorides AL, Outram SV, et al. (2004) Reduced thymocyte development in sonic hedgehog knockout embryos. J Immunol 172: 2296-2306. doi: 10.4049/jimmunol.172.4.2296
    [70] El Andaloussi A, Graves S, Meng F, et al. (2006) Hedgehog signaling controls thymocyte progenitor homeostasis and differentiation in the thymus. Nat Immunol 7: 418-426. doi: 10.1038/ni1313
    [71] Sacedon R, Varas A, Hernandez-Lopez C, et al. (2003) Expression of hedgehog proteins in the human thymus. J Histochem Cytochem 51: 1557-1566. doi: 10.1177/002215540305101115
    [72] Hager-Theodorides AL, Dessens JT, Outram SV, et al. (2005) The transcription factor Gli3 regulates differentiation of fetal CD4- CD8- double-negative thymocytes. Blood 106: 1296-1304. doi: 10.1182/blood-2005-03-0998
    [73] Stewart GA, Lowrey JA, Wakelin SJ, et al. (2002) Sonic hedgehog signaling modulates activation of and cytokine production by human peripheral CD4+ T cells. J Immunol 169: 5451-5457. doi: 10.4049/jimmunol.169.10.5451
    [74] Lowrey JA, Stewart GA, Lindey S, et al. (2002) Sonic hedgehog promotes cell cycle progression in activated peripheral CD4(+) T lymphocytes. J Immunol 169: 1869-1875. doi: 10.4049/jimmunol.169.4.1869
    [75] Rowbotham NJ, Hager-Theodorides AL, Cebecauer M, et al. (2007) Activation of the Hedgehog signaling pathway in T-lineage cells inhibits TCR repertoire selection in the thymus and peripheral T-cell activation. Blood 109: 3757-3766. doi: 10.1182/blood-2006-07-037655
    [76] Furmanski AL, Barbarulo A, Solanki A, et al. (2015) The transcriptional activator Gli2 modulates T-cell receptor signaling through attenuation of AP-1 and NFkappaB activity. J Cell Sci 128: 2085-2095. doi: 10.1242/jcs.165803
    [77] Michel KD, Uhmann A, Dressel R, et al. (2013) The hedgehog receptor patched1 in T cells is dispensable for adaptive immunity in mice. PLoS One 8: e61034. doi: 10.1371/journal.pone.0061034
    [78] de la Roche M, Ritter AT, Angus KL, et al. (2013) Hedgehog signaling controls T cell killing at the immunological synapse. Science 342: 1247-1250. doi: 10.1126/science.1244689
    [79] Ye H, Zhang J, Wang J, et al. (2015) CD4 T-cell transcriptome analysis reveals aberrant regulation of STAT3 and Wnt signaling pathways in rheumatoid arthritis: evidence from a case-control study. Arthritis Res Ther 17: 76. doi: 10.1186/s13075-015-0590-9
    [80] Weng AP, Ferrando AA, Lee W, et al. (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306: 269-271. doi: 10.1126/science.1102160
    [81] Tosello V, Ferrando AA (2013) The NOTCH signaling pathway: role in the pathogenesis of T-cell acute lymphoblastic leukemia and implication for therapy. Ther Adv Hematol 4: 199-210. doi: 10.1177/2040620712471368
    [82] Jiao Z, Wang W, Hua S, et al. (2014) Blockade of Notch signaling ameliorates murine collagen-induced arthritis via suppressing Th1 and Th17 cell responses. Am J Pathol 184: 1085-1093. doi: 10.1016/j.ajpath.2013.12.010
    [83] Kijima M, Iwata A, Maekawa Y, et al. (2009) Jagged1 suppresses collagen-induced arthritis by indirectly providing a negative signal in CD8+ T cells. J Immunol 182: 3566-3572. doi: 10.4049/jimmunol.0803765
    [84] Sodsai P, Hirankarn N, Avihingsanon Y, et al. (2008) Defects in Notch1 upregulation upon activation of T Cells from patients with systemic lupus erythematosus are related to lupus disease activity. Lupus 17: 645-653. doi: 10.1177/0961203308089406
    [85] Rauen T, Grammatikos AP, Hedrich CM, et al. (2012) cAMP-responsive element modulator alpha (CREMalpha) contributes to decreased Notch-1 expression in T cells from patients with active systemic lupus erythematosus (SLE). J Biol Chem 287: 42525-42532. doi: 10.1074/jbc.M112.425371
    [86] Bassil R, Zhu B, Lahoud Y, et al. (2011) Notch ligand delta-like 4 blockade alleviates experimental autoimmune encephalomyelitis by promoting regulatory T cell development. J Immunol 187: 2322-2328. doi: 10.4049/jimmunol.1100725
    [87] Dagklis A, Pauwels D, Lahortiga I, et al. (2015) Hedgehog pathway mutations in T-cell acute lymphoblastic leukemia. Haematologica 100: e102-105. doi: 10.3324/haematol.2014.119248
    [88] Gonzalez-Gugel E, Villa-Morales M, Santos J, et al. (2013) Down-regulation of specific miRNAs enhances the expression of the gene Smoothened and contributes to T-cell lymphoblastic lymphoma development. Carcinogenesis 34: 902-908. doi: 10.1093/carcin/bgs404
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3863) PDF downloads(846) Cited by(0)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog