Citation: Frank Chambers, Alistair Crowle, John Daniell, Dmitri Mauquoy, Julia McCarroll, Nicole Sanderson, Tim Thom, Phil Toms, Julia Webb. Ascertaining the nature and timing of mire degradation: using palaeoecology to assist future conservation management in Northern England[J]. AIMS Environmental Science, 2017, 4(1): 54-82. doi: 10.3934/environsci.2017.1.54
[1] | Tallis JR, Meade R, Hulme PD, editors (1997) Blanket mire degradation: causes, consequences and challenges. Aberdeen: Macaulay Land Use Research Institute (for BES). |
[2] | Birks HH, Birks HJB, Kaland PE, et al., editors (1988) The Cultural Landscape-Past, Present, Future, Cambridge: Cambridge University Press. |
[3] | Gimingham CH, de Smidt JT (1983) Heaths as natural and semi-natural vegetation. In: Holzner W, Werger MJ, Ikusima I, editors, Man's Impact on Vegetation, Dr W. Junk, The Hague, 185-199. |
[4] | Rodwell J (1991) British Plant Communities, Volume 2 Mires and Heaths, Cambridge: Cambridge University Press. |
[5] | Davies A, Bunting J (2010) Applications of palaeoecology in conservation. Open Ecol J 3: 54-67. doi: 10.2174/1874213001003020054 |
[6] | Seddon AW, Mackay AW, Baker AG, et al. (2014) Looking forward through the past: identification of 50 priority research questions in palaeoecology. J Ecol 102: 256-267. doi: 10.1111/1365-2745.12195 |
[7] | Chambers FM, Mauquoy D, Todd PA (1999) Recent rise to dominance of Molinia caerulea in Environmentally Sensitive Areas: new perspectives from palaeoecological data. J Appl Ecol 26: 719-733. |
[8] | Chambers FM, Mauquoy D, Gent A, et al. (2007) Palaeoecology of degraded blanket mire in South Wales: data to inform conservation management. Biol Conserv 137: 197-209. doi: 10.1016/j.biocon.2007.02.002 |
[9] | Chambers FM, Mauquoy D, Cloutman EW, et al. (2007) Recent vegetation history of Drygarn Fawr (Elenydd SSSI), Cambrian Mountains, Wales: implications for conservation management of degraded blanket mires. Biodivers Conserv 16: 2821-2846. doi: 10.1007/s10531-007-9169-3 |
[10] | Chambers FM, Cloutman EW, Daniell JR, et al. (2013) Long-term palaeoecological study (palaeoecology) to chronicle habitat degradation and inform conservation ecology: an exemplar from the Brecon Beacons, South Wales. Biodivers Conserv 22: 719-736. doi: 10.1007/s10531-013-0441-4 |
[11] | Lageard, JG, Chambers FM, Grant ME (1994) Modified versions of a traditional peat cutting tool to improve field sampling of peat monoliths. Quaternary Newsletter 74: 10-15. |
[12] | De Vleeschouwer F, Chambers FM, Swindles GT (2010) Coring and sub-sampling of peatlands for palaeoenvironmental research. Mires and Peat 7 (Article 01): 1-10. |
[13] | Mauquoy D, Hughes PD, van Geel B (2010) A protocol for plant macrofossil analysis. Mires and Peat 7 (Article 06): 1-5. |
[14] | Chambers FM, van Geel B, van der Linden M (2011) Considerations for the preparation of peat samples for palynology, and for the counting of pollen and non-pollen palynomorphs. Mires and Peat 7 (Article 11): 1-14. |
[15] | Swindles G (2010) Dating recent peat profiles using spheroidal carbonaceous particles (SCPs). Mires and Peat 7 (Article 03): 1-5. |
[16] | Rose NL, Appleby PG (2005) Regional applications of lake sediment dating by spheroidal carbonaceous particle analysis I: United Kingdom. J Paleolimnology 34: 349-361. doi: 10.1007/s10933-005-4925-4 |
[17] | Le Roux G, Marshall WA (2011) Constructing recent peat accumulation chronologies using atmospheric fall-out radionuclides. Mires and Peat 7(Article 08): 1-14. |
[18] | Appleby PG, Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5: 1-8. doi: 10.1016/S0341-8162(78)80002-2 |
[19] | Piotrowska N, Blaauw M, Mauquoy D, et al. (2011) Constructing deposition chronologies for peat deposits using radiocarbon dating. Mires and Peat 7 (Article 10): 1-14. |
[20] | Reimer PJ, Bard E, Bayliss A, et al. (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 Years cal BP. Radiocarbon 55: 1869-1887. doi: 10.2458/azu_js_rc.55.16947 |
[21] | Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6: 457-474. |
[22] | Tallis JH (1997) The pollen record of Empetrum nigrum in Southern Pennine peats: implications for erosion and climate change. J Ecol 85: 455-465. doi: 10.2307/2960569 |
[23] | Davies A (2016) Late Holocene regime shifts in moorland ecosystems: high resolution data from the Pennines, UK. Veg Hist Archaeobot 25: 207-219. doi: 10.1007/s00334-015-0544-9 |
[24] | Milligan G, Rose RJ, Marrs RH (2016) Winners and losers in a long-term study of vegetation change at Moor House NNR: effects of sheep-grazing and its removal on British upland vegetation. Ecol Indic 68: 89-101. doi: 10.1016/j.ecolind.2015.10.053 |
[25] | Brown LE, Holden J, Palmer SM (2014) Effects of moorland burning on the ecohydrology of river basins. Key findings from the EMBER project. University of Leeds. Available from: http://www.wateratleeds.org/fileadmin/documents/water_at_leeds/Ember_report.pdf |
[26] | Natural England, Forestry Commission, Department for Environment Food & Rural Affairs, Rural Payments Agency (2015) Farming and food grants and payments–collection: Countryside Stewardship. Available from: https://www.gov.uk/government/collections/countryside-stewardship-get-paid-for-environmental-land-management |
[27] | McCarroll J, Chambers FM, Webb JC, et al. (2016) Informing innovative peatland conservation in light of palaeoecological evidence for the demise of Sphagnum imbricatum: the case of Oxenhope Moor, Yorkshire, UK. Mires and Peat 18 (Article 08): 1-24. |
[28] | Chambers FM, McCarroll J (2016) Palaeoenvironmental evidence for the recent rise of Molinia caerulea: vital evidence for managers. In: Meade R, editor, Managing Molinia? Conference Proceedings. National Trust: UK, 22-27. |
[29] | Edwards KJ, Fyfe RM, Hunt CO, et al. (2015) Moving forwards? Palynology and the human dimension. J Arch Sci 56: 117-132. |
[30] | Parry LE, Charman DJ, Blake WH (2013) Comparative dating of recent peat deposits using natural and anthropogenic fallout radionuclides and Spheroidal Carbonaceous Particles (SCPs) at a local and landscape scale. Quat Geochronol 15: 11-19. doi: 10.1016/j.quageo.2013.01.002 |
[31] | Oldfield F, Richardson N, Appleby PG (1995) Radiometric dating (210Pb, 137Cs, 241Am) of recent ombrotrophic peat accumulation and evidence for changes in mass balance. Holocene 5: 141-148. doi: 10.1177/095968369500500202 |
[32] | van der Plicht J, Yeloff D, van der Linden M, et al. (2013) Dating recent peat accumulation in European ombrotrophic bogs. Radiocarbon 55: 1763-1778. doi: 10.1017/S0033822200048670 |
[33] | McCarroll J, Chambers FM, Webb JC, et al. (2016) Using palaeoecology to advise peatland conservation: an example from West Arkengarthdale, Yorkshire, UK. J Nat Conserv 30: 90-102. doi: 10.1016/j.jnc.2016.02.002 |
[34] | McCarroll J, Chambers FM, Webb JC, et al. (in press) Application of palaeoecology to peatland conservation at Mossdale Moor, UK. Quat Internat (in press). |
[35] | Ronkainen T, McClymont EL, Väliranta M, et al. (2013) The n-alkane and sterol composition of living fen plants as a potential tool for palaeoecological studies. Org Geochem 59: 1-9. doi: 10.1016/j.orggeochem.2013.03.005 |
[36] | van Leeuwen JF, Froyd CA, van der Knaap W, et al. (2008) Fossil pollen as a guide to conservation in the Galapogos. Science 322: 1206. doi: 10.1126/science.1163454 |
[37] | Gillson L (2015) Biodiversity Conservation and Environmental Change: using palaeoecology to manage dynamic landscapes in the Anthropocene. Oxford: Oxford University Press. |