Citation: Noelia M. Elía, Sue E Nokes, Michael D. Flythe. Switchgrass (Panicum virgatum) fermentation by Clostridium thermocellum and Clostridium saccharoperbutylacetonicum sequential culture in a continuous flow reactor[J]. AIMS Energy, 2016, 4(1): 95-103. doi: 10.3934/energy.2016.1.95
[1] | Perlack R, Lynn L, Wright A, et al. (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion ton annual supply. Available from: http://www.osti.gov/brigde. |
[2] | Parrish D, Fike J (2005). The biology and agronomy of switchgrass for biofuels. Crit rev plant sci 24: 423-459. doi: 10.1080/07352680500316433 |
[3] | Demain A, Newcomb M, Wu J (2005) Cellulase, clostridia, and ethanol. Microbiolmolbiol rev 69: 124-54. |
[4] | Qureshi N, Ezeji T (2008) Butanol, ‘a superior biofuel’ production from agricultural residues (renewable biomass): recent progress in technology. Biofuel bioprodbiores2: 319-330. |
[5] | Hongo M (1960) Process for producing butanol by fermentation.US Patent 2945786. |
[6] | Jones D, Keis S (1995) Origins and relationships of industrial solvent-producing clostridial strains. FEMS microbiol rev 17: 223-232. doi: 10.1111/j.1574-6976.1995.tb00206.x |
[7] | Thang V, Kanda K, KobayanshI G (2010) Production of Acetone-Butanol-Ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1-4. Applbiochembiotechnol 161: 157-170. |
[8] | Al-Shorgani NK, Kalil MS, Yusoff W (2011) The effect of different carbon sources on butanol production using Clostridium saccharoperbutylacetonicum N1-4. Biotechnol 10: 280-285. doi: 10.3923/biotech.2011.280.285 |
[9] | Al-Shorgani N, Kalil M, Yusoff W (2012) Biobutanol production from rice bran and de-oiled rice bran by Clostridium saccharoperbutylacetonicum N1-4. Bioprocess biosysteng35: 817-826. |
[10] | McBee R (1954) The characteristics of Clostridium thermocellum. J Bacteriol 67: 505-506. |
[11] | Lynd L, Weimer P, van Zyl W, et al. (2002) Microbial cellulose utilization fundamentals and biotechnology. Microbiolmolbiol rev 66: 506-577. |
[12] | Lynd L, Van Zyl W, McBride J, et al. (2005) Consolidated bioprocessing of cellulosic biomass: An update. Curr opin biotechnol 16: 577-583. doi: 10.1016/j.copbio.2005.08.009 |
[13] | Flythe M, Elía N, Schmal M, et al. (2015) Switchgrass (Panicumvirgatum) fermentation by Clostridium thermocellum and Clostridium beijerinckii sequential culture: effect of feedstock particle size on gas production. Advmicrob 5: 311-316. |
[14] | Chinn M, Nokes S, Strobel H (2006) Screening of thermophilic anaerobic bacteria for solid substrate cultivation on lignocellulosic substrates. Biotechnolprog 22: 53-59. |
[15] | Dharmagadda V, Nokes S, Strobel H, et al. (2010) Investigation of the metabolic inhibition observed in solid substrate cultivation of Clostridium thermocellum on cellulose. Bioresourcetechnol101: 6039‐6044. |
[16] | Chinn M, Nokes S, Strobel H (2007) Influence of process conditions on end product formation from Clostridium thermocellum 27405 in solid substrate cultivation on paper pulp sludge. Bioresourcetechnol98: 2184‐2193. |
[17] | Selig M, Hsieh C, Thygesen I, et al. (2012) Considering water availability and the effect of solute concentration on high solids saccharification of lignocellulosic biomass. Biotechnolprog 28: 1478-1490. |
[18] | Yao W, Nokes S (2014) First proof of concept of sustainable metabolite production from high solids fermentation of lignocellulosic biomass using a bacterial co-culture and cycling flush system. Bioresourcetechnol 173: 216-223. doi: 10.1016/j.biortech.2014.08.113 |
[19] | Cotta M, Russell J (1982) Effects of peptides and amino acids on efficiency of rumen bacterial protein synthesis in continuous culture. J dairy sci65: 226-234. |
[20] | Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresourcetechnol 83: 1-11 doi: 10.1016/S0960-8524(01)00212-7 |
[21] | Ng T, Weimer P, Zeikus J (1977) Cellulolytic and physiological properties of Clostridium thermocellum. Arch microbiol 114:1-7. doi: 10.1007/BF00429622 |
[22] | Bayer E, Belaich J, Shoham Y, et al. (2004) The cellulosomes: multienzymatic machines for degradation of plant cell wall polysaccharides. Annu rev microbiol 58: 521-554. doi: 10.1146/annurev.micro.57.030502.091022 |
[23] | Yu E, Chan M, Saddler J (1985) Butanol production from cellulosic substrates by sequential co-culture of Clostridium thermocellum and C. acetobutylicum. Biotech letters 7: 509-514. doi: 10.1007/BF01199870 |
[24] | Ni Y, Sun ZH (2009) Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Appl microbiol biotechnol 83: 415-423. doi: 10.1007/s00253-009-2003-y |
[25] | Ezeji T, Qureschi N, Blaschek H (2004) Butanol fermentation research: upstream and downstream manipulations. Chemrec 4: 305-314. |
[26] | Kosaka T, Nakayama S, Nakayama K, et al. (2007) Characterization of the sol operon in butanol-hyperproducingClostridium saccharoperbutylacetonicum strain N1-4 and its degeneration mechanism. Biosciniotechnolbiochem 71: 58-68. |
[27] | Yao W, Nokes S (2014) Phanerochaetechrysosporium pretreatment of biomass to enhance solvent production in subsequent bacterial solid-substrate cultivation. Biomass bioenergy 62: 100-107. |
[28] | Kristensen J, Felby C, Jorgensen H (2009) Yield-determining factors in high solids enzymatic hydrolysis of lignocelluloses. Biotechnol biofuels 2: 11. doi: 10.1186/1754-6834-2-11 |
[29] | Li H, Knutson B, Nokes S, et al. (2012) Metabolic control of Clostridium thermocellum via inhibition of hydrogenase activity and the glucose transport rate. Appl microbiol biotechnol 93: 1777-1784. doi: 10.1007/s00253-011-3812-3 |