Citation: Hans Mattila, Dina Kačar, Tuulia Mali, Taina Lundell. Lignocellulose bioconversion to ethanol by a fungal single-step consolidated method tested with waste substrates and co-culture experiments[J]. AIMS Energy, 2018, 6(5): 866-879. doi: 10.3934/energy.2018.5.866
[1] | Niphadkar S, Bagade P, Ahmed S (2018) Bioethanol production: Insight into past, present and future perspectives. Biofuels 9: 229–238. doi: 10.1080/17597269.2017.1334338 |
[2] | Markandya A, Dhavala K, Palma A (2018) The role of flexible biofuel policies in meeting biofuel mandates. AIMS Energy 6: 530–550. doi: 10.3934/energy.2018.3.530 |
[3] | Mattila H, Kuuskeri J, Lundell T (2017) Single-step, single-organism bioethanol production and bioconversion of lignocellulose waste materials by phlebioid fungal species. Bioresour Technol 225: 254–261. doi: 10.1016/j.biortech.2016.11.082 |
[4] | Lundell TK, Mäkelä MR, de Vries RP, et al. (2014) Genomics, lifestyles and future prospects of wood-decay and litter-decomposing Basidiomycota. Adv Bot Res 70: 329–370. doi: 10.1016/B978-0-12-397940-7.00011-2 |
[5] | Kuuskeri J, Häkkinen M, Laine P, et al. (2016) Time-scale dynamics of proteome and transcriptome of the white-rot fungus Phlebia radiata: growth on spruce wood and decay effect on lignocellulose. Biotechnol Biofuels 9: 192. doi: 10.1186/s13068-016-0608-9 |
[6] | Kamei I, Hirota Y, Mori T, et al. (2012) Direct ethanol production from cellulosic materials by the hypersaline-tolerant white-rot fungus Phlebia sp. MG-60. Bioresour Technol 112: 137–142. doi: 10.1016/j.biortech.2012.02.109 |
[7] | Mood SH, Golfeshan AH, Tabatabaei M, et al. (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27: 77–93. doi: 10.1016/j.rser.2013.06.033 |
[8] | Saha BC, Kennedy GJ, Qureshi N, et al. (2017) Biological pretreatment of corn stover with Phlebia brevispora NRRL-13108 for enhanced enzymatic hydrolysis and efficient ethanol production. Biotechnol Progr 33: 365–374. doi: 10.1002/btpr.2420 |
[9] | Zabed H, Sahu JN, Suely A, et al. (2017) Bioethanol production from renewable sources: Current perspectives and technological progress. Renew Sust Energ Rev 71: 475–501. doi: 10.1016/j.rser.2016.12.076 |
[10] | Kuuskeri J, Mäkelä MR, Isotalo J, et al. (2015) Lignocellulose-converting enzyme activity profiles correlate with molecular systematics and phylogeny grouping in the incoherent genus Phlebia (Polyporales, Basidiomycota). BMC Microbiol 15: 217. doi: 10.1186/s12866-015-0538-x |
[11] | Mali T, Kuuskeri J, Shah F, et al. (2017) Interactions affect hyphal growth and enzyme profiles in combinations of coniferous wood-decaying fungi of Agaricomycetes. PLoS One 12: 1–21. |
[12] | Shah F, Mali T, Lundell TK (2018) Polyporales brown rot species Fomitopsis pinicola: Enzyme activity profiles, oxalic acid production, and Fe3+-reducing metabolite secretion. Appl Environ Microbiol 84: e02662-17. |
[13] | Mäkinen MA, Risulainen N, Mattila H, et al. (2018) Transcription of lignocellulose-decomposition associated genes, enzyme activities and production of ethanol upon bioconversion of waste substrate by Phlebia radiata. Appl Microbiol Biotechnol 102: 5657–5672. doi: 10.1007/s00253-018-9045-y |
[14] | Pahkala K, Kontturi M, Kallioinen A, et al. (2007) Production of bio-ethanol from barley straw and reed canary grass: A raw material, In 15th European Biomass Conference Exhibition, Berlin, Germany, 7–11. |
[15] | Sáez F, Ballesteros M, Ballesteros I, et al. (2013) Enzymatic hydrolysis from carbohydrates of barley straw pretreated by ionic liquids. J Chem Technol Biot 88: 937–941. doi: 10.1002/jctb.3925 |
[16] | Dien BS (2010) Mass balances and analytical methods for biomass pretreatment experiments. Biomass to Biofuels: Strategies for Global Industries 2010: 213–231. |
[17] | Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31: 426–428. doi: 10.1021/ac60147a030 |
[18] | Kasavi C, Finore I, Lama L, et al. (2012) Evaluation of industrial Saccharomyces cerevisiae strains for ethanol production from biomass. Biomass Bioenerg 45: 230–238. doi: 10.1016/j.biombioe.2012.06.013 |
[19] | Mohd SA, Abdulla R, Jambo SA, et al. (2017) Yeasts in sustainable bioethanol production: A review. Biochem Biophys Rep 10: 52–61. |
[20] | Salvachúa D, Prieto A, López-Abelairas M, et al. (2011) Fungal pretreatment: An alternative in second-generation ethanol from wheat straw. Bioresource Technol 102: 7500–7506. doi: 10.1016/j.biortech.2011.05.027 |
[21] | Rytioja J, Hildén K, Yuzon J, et al. (2014) Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiol Mol Biol Rev 78: 614–49. doi: 10.1128/MMBR.00035-14 |
[22] | Rastogi M, Shrivastava S (2017) Recent advances in second generation bioethanol production: an insight to pretreatment, saccharification and fermentation processes. Renew Sust Energ Rev 80: 330–340. doi: 10.1016/j.rser.2017.05.225 |
[23] | Arevalo-Gallegos A, Ahmad Z, Asgher M, et al. (2017) Lignocellulose: a sustainable material to produce value-added products with a zero waste approach-A review. Int J Biol Macromol 99: 308–318. doi: 10.1016/j.ijbiomac.2017.02.097 |