Research article Topical Sections

Extraction of radish seed oil (Raphanus sativus L.) and evaluation of its potential in biodiesel production

  • Received: 05 May 2018 Accepted: 10 July 2018 Published: 18 July 2018
  • Growing concern about replacing fossil fuels with renewable energy sources, coupled with society’s concerns about environmental preservation, are the main reasons why governments have sought strategies for increased production and consumption of renewable and sustainable fuels. Radish (Raphanus sativus L.) belongs to the group of oilseeds of the Brassicaceae family, being widely cultivated in the south and central-west regions of Brazil, with physical and chemical characteristics propitious to the production of biofuels. In this context, the objective of the present work was to evaluate three different methods of oil extraction: solvent extraction, cold pressing and swelling technique, to evaluate the potential of radish oil in biodiesel production using methanol, ethanol and a mixture of both containing 60% and 40% respectively, and to evaluate the composition of fatty acids. The methodology consists firstly in the extraction of the oil, followed by transesterification reaction using 10 mL of pretreated oil and sodium hydroxide in the proportion of 1% in mass, relative to the oil. The oil samples were used in the transesterification reactions with methanol, ethanol and a mixture of methanol (60%) and ethanol (40%) in different proportions and temperatures. The results indicated that, for the oil extraction processes, the seed swelling technique presented a high extraction yield (34%). The composition of fatty acids showed presence of approximately 30% of saturated compounds and around 50% of compounds with chain up to 18 carbons, also had presence of erucic acid (up to 41%), and a high percentage of oleic acid (up to 30%). Regarding the transesterification reactions, the highest yield occurred with the use of methanol, about 86%. Thus, in the light of the results, it can be concluded that radish oil has great potential for biodiesel production, but, other analyzes, such as acidity and flash point, should be performed to more specifically evaluate the physicochemical characteristics of biodiesel.

    Citation: Douglas Faria, Fernando Santos, Grazielle Machado, Rogério Lourega, Paulo Eichler, Guilherme de Souza, Jeane Lima. Extraction of radish seed oil (Raphanus sativus L.) and evaluation of its potential in biodiesel production[J]. AIMS Energy, 2018, 6(4): 551-565. doi: 10.3934/energy.2018.4.551

    Related Papers:

  • Growing concern about replacing fossil fuels with renewable energy sources, coupled with society’s concerns about environmental preservation, are the main reasons why governments have sought strategies for increased production and consumption of renewable and sustainable fuels. Radish (Raphanus sativus L.) belongs to the group of oilseeds of the Brassicaceae family, being widely cultivated in the south and central-west regions of Brazil, with physical and chemical characteristics propitious to the production of biofuels. In this context, the objective of the present work was to evaluate three different methods of oil extraction: solvent extraction, cold pressing and swelling technique, to evaluate the potential of radish oil in biodiesel production using methanol, ethanol and a mixture of both containing 60% and 40% respectively, and to evaluate the composition of fatty acids. The methodology consists firstly in the extraction of the oil, followed by transesterification reaction using 10 mL of pretreated oil and sodium hydroxide in the proportion of 1% in mass, relative to the oil. The oil samples were used in the transesterification reactions with methanol, ethanol and a mixture of methanol (60%) and ethanol (40%) in different proportions and temperatures. The results indicated that, for the oil extraction processes, the seed swelling technique presented a high extraction yield (34%). The composition of fatty acids showed presence of approximately 30% of saturated compounds and around 50% of compounds with chain up to 18 carbons, also had presence of erucic acid (up to 41%), and a high percentage of oleic acid (up to 30%). Regarding the transesterification reactions, the highest yield occurred with the use of methanol, about 86%. Thus, in the light of the results, it can be concluded that radish oil has great potential for biodiesel production, but, other analyzes, such as acidity and flash point, should be performed to more specifically evaluate the physicochemical characteristics of biodiesel.


    加载中
    [1] Santos F, Queiroz JH, Colodette J, et al. (2013) Produção de etanol celulósico a partir da cana-de-açúcar, In: Santos F, Colodette J, Queiroz JH (Eds) Bioenergia e Biorrefinaria: Cana-de-Açúcar e Espécies Florestais. Viçosa, 129–164.
    [2] Vaz JS (2011) Biorrefinarias: cenários e perspectivas. Brasília: Athalaia. Available from: http://www.bibliotecaflorestal.ufv.br/bitstream/handle/123456789/10778/EMBRAPA_Biorrefinarias-Cen%E1rios-e-Perspectivas.pdf?sequence=1.
    [3] Ferrari RA, Oliveira VDS, Scabio A (2005) Biodiesel de soja: taxa de conversão em ésteres etílicos, caracterização físico-químicas e consumo em geradores de energia. Química Nova 28: 19–23.
    [4] Lotero E, Liu Y, Lopez DE, et al. (2005) Synthesis of biodiesel via acid catalysis. Ind Eng Chem Res 44: 5353–5363. doi: 10.1021/ie049157g
    [5] Eryi̇Lmaz T, Yesi̇Lyurt MK, Cesur C, et al. (2016) Biodiesel production potential from oil seeds in Turkey. Renew Sust Energ Rev 58: 842–851. doi: 10.1016/j.rser.2015.12.172
    [6] BRASIL (2009) Ministério de minas e energia. Boletim Mensal dos Combustíveis Renováveis. Available from: http://www.mme.gov.br.
    [7] Wang YP, Tang JS, Chu CQ, et al. (2000) A preliminary study on the introduction and cultivation of Crambe abyssinica in China, an oil plant for industrial uses. Ind Crop Prod 12: 47–52. doi: 10.1016/S0926-6690(99)00066-7
    [8] Embrapa. Nabo forrageiro. 2018. Availble from: http://www.agencia.cnptia.embrapa. br/gestor/agroenergia/arvore/CONT000fbl23vn002wx5eo0sawqe38tspejq.html.
    [9] Kaymak HC (2015) Profile of (n-9) and (n-7) Isomers of Monounsaturated Fatty Acids of Radish (Raphanus sativus L.) seeds. J Am Oil Chem Soc 92: 345–351. doi: 10.1007/s11746-015-2600-0
    [10] Silvestre WP, Pauletti GF, Godinho M, et al. (2017) Fodder radish seed cake pyrolysis for bio-oil production in a rotary kiln reactor. Chem Eng Processing: Process Intensification. Available from: https://doi.org/10.1016/j.cep.2017.12.020.
    [11] Ávila RNA, Sodré JR (2012) Physical–chemical properties and thermal behavior of fodder radish crude oil and biodiesel. Ind Crop Prod 38: 54–57. doi: 10.1016/j.indcrop.2012.01.007
    [12] Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg 38: 68–94. doi: 10.1016/j.biombioe.2011.01.048
    [13] Chammoun N, Geller DP, Das KC (2013) Fuel properties, performance testing and economic feasibility of Raphanus sativus (oil seed radish) biodiesel. Ind Crop Prod 45: 155–159. doi: 10.1016/j.indcrop.2012.11.029
    [14] Santos F, Brasil LMM, Faria DJ, et al. (2018) Aproveitamento integral do nabo forrageiro (Raphanus Sativus L.) em processos de biorrefinaria. Engevista 20.
    [15] Souza ADV, Fávaro SP, Ítavo LCV, et al. (2010) Caracterização química de sementes e tortas de pinhão‑manso, nabo‑forrageiro e crambe. Pesqui Agropecu Bras 44: 1328–1335.
    [16] Reddy PP (2016) Cover/Green Manure Crops. In: Sustainable Intensification of Crop Production, Springer, Singapore, 55–67. Available from: https://doi.org/10.1007/978-981-10-4325_7.
    [17] Silva LFL (2013) Viabilidade econômica das culturas de canola, nabo forrageiro e batata doce para a produção de biocombustíveis no sul de Minas Gerais. Masters Dissertation, Postgraduate Program in Agronomy, Lavras-MG, Brazil.
    [18] Nicolosi G, Drago C, Liotta LF, et al. (2018) U.S. Patent No. 9873843. Washington, DC: U.S. Patent and Trademark Office.
    [19] Indrawan N, Thapa S, Rahman SF, et al. (2017) Palm biodiesel prospect in the Indonesian power sector. Environ Technol Innov 7: 110–127. doi: 10.1016/j.eti.2017.01.001
    [20] Soares CM, Itavo LCV, Dias AM, et al. (2010) Forage turnip, sunflower, and soybean biodiesel obtained by ethanol synthesis: Production protocols and thermal behavior. Fuel 89: 3725–3729. doi: 10.1016/j.fuel.2010.07.024
    [21] Machado L, Nascimento R, Rosa G (2015) Estudo da extração de óleo essencial e de compostos bioativos das folhas de eucalipto (Eucalyptus citriodora). Blucher Chem Eng Proc 1: 5609–5616.
    [22] Mendonça AP (2015) Secagem e extração do óleo das sementes de andiroba (Carapa surinamensismiq. e Carapa guianensisaubl.) National Institute of Amazonian Research.
    [23] Berni JV, Dolfini N, Medeiros JF, et al. (2015) Análise comparativa de métodos de purificação de ésteres etílicos da blenda de sebo bovino e óleo de fritura. Blucher Chem Eng Proc 2: 930–937.
    [24] Medeiros JF, Pasa TLB, de Almeida FNC, et al. (2014) Revista brasileira de energias renováveis. Revista Brasileira de Energias Renováveis 3: 235–242.
    [25] Abreu FR, Lima DG, Hamú EH, et al. (2004) Utilization of metal complexes as catalysts in the transesterification of Brazilian vegetable oils with different alcohols. J Mol Catal A-Chem 209: 29–33. doi: 10.1016/j.molcata.2003.08.003
    [26] Pagnoncelli M, Toss D, Godinho M, et al. (2014) Perfil dos ésteres obtidos pela transesterificação etanólica e metanólica do óleo de nabo forrageiro. XX Congresso Brasileiro de Engenharia Química. Florianópolis.
    [27] Atadashi IM, Aroua MK, Abdul AAR, et al. (2011) Refining technologies for the purification of crude biodiesel. Appl Energ 88: 4239–4251. doi: 10.1016/j.apenergy.2011.05.029
    [28] Faccini, Schmittcunha C, Damoraes ME, et al. (2011) Dry washing in biodiesel purification: a comparative study of adsorbents. J Braz Chem Soc 22: 558–563. doi: 10.1590/S0103-50532011000300021
    [29] Kumar D, Singh B, Banerjee A, et al. (2018) Cement wastes as transesterification catalysts for the production of biodiesel from Karanja oil. J Clean Prod 183: 26–34. doi: 10.1016/j.jclepro.2018.02.122
    [30] Rezaie M, Farhoosh R, Iranshahi M, et al. (2015) Ultrasonic-assisted extraction of antioxidative compounds from Bene (Pistacia atlantica subsp. mutica) hullusing various solvents of different physicochemical properties. Food Chem 173: 577–583.
    [31] Almeida PP, Mezzomo N, Ferreira SRS (2012) Extraction of Menthaspicata L. volatile compounds: evaluation of process parameters and extract composition. Food Bioprocess Tech 5: 548–559.
    [32] Bressan RT (2018) Análises físico-químicas e otimização da prensagem de crambe em extrusora mecânica sob variações de temperatura e umidade relativa dos grãos. State University of Western Parana.
    [33] Tomishima K, Teixeira L, Carvalho T, et al. (2015) Avaliação do desempenho da extração líquido-líquido na desacidificação do óleo de coco para produção de biodiesel. Blucher Chem Eng Proc 1: 8843–8850.
    [34] Valle PW, Rezende TF, Souza RA, et al. (2009) Combination of fractional factorial and Doehlert experimental designs in biodiesel production: Ethanolysis of Raphanus sativus L. var. oleiferus stokes oil catalyzed by sodium ethoxide. Energ Fuel 23: 5219–5227.
    [35] Shah SN, Iha OK, Alves FCSC, et al. (2013) Potential application of turnip oil (Raphanus sativus L.) for biodiesel production: Physical chemical properties of neat oil, biofuels and their blends with ultra-low sulphur diesel (ULSD). Bioenerg Res 6: 841–850.
    [36] Wendlinger C, Hammann S, Vetter W (2014) Various concentrations of erucic acid in mustard oil and mustard. Food Chem 153: 393–397. doi: 10.1016/j.foodchem.2013.12.073
    [37] Rezende RKS, Marques RF, Masetto TE (2015) Características morfológicas e produtividade do crambe em função da adubação nitrogenada. Agrarian 8: 279–286.
    [38] Kiihl TAM, Tomm GO (2017) Banco de Germoplasma de Canola da Embrapa: conservação e multiplicação de acessos. In: Embrapa Trigo-Artigo em anais de congresso (ALICE). In: SIMPÓSIO BRASILEIRO DE CANOLA, Passo Fundo. Anais... Brasília, DF: Embrapa, 2017. Available from: https://www.alice.cnptia.embrapa.br/bitstream/doc/1084148/1/CNPTID 44265.pdf.
    [39] Constantino AF, Lacerda JV, Santos RBD, et al. (2014) Analysis of oil content and oil quality in oil seeds by low-field nmr. Química Nova 37: 10–17.
    [40] Liu T, Jiaqiang E, Yang WM, et al. (2018) Investigation on the applicability for reaction rates adjustment of the optimized biodiesel skeletal mechanism. Energy 150: 1031–1038. doi: 10.1016/j.energy.2018.03.026
    [41] Gouveia L, Oliveira AC, Congestri R, et al. (2018) Biodiesel from microalgae. Microalgae-Based Biofuel Bioprod, 235–258.
    [42] Ashraful AM, Masjuki HH, Kalam MA, et al. (2014) Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oils: A review. Energ Convers Manage 80: 202–228. doi: 10.1016/j.enconman.2014.01.037
    [43] Pinzi S, Garcia IL, Lopez-Gimenez FJ, et al. (2009) The ideal vegetable oil-based biodiesel composition: a review of social, economical and technical implications. Energ Fuel 23: 2325–2341. doi: 10.1021/ef801098a
    [44] Ramos MJ, Fernández CM, Casas A, et al. (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technol 100: 261–268. doi: 10.1016/j.biortech.2008.06.039
    [45] Lace VO, Fraga IM, Fernandez JRC, et al. (2018) Obtenção do biodiesel metílico através da transesterificação via catálise básica do óleo de coco-da-baía (Cocos nucifera L). Eclética Química J 39: 192–199.
    [46] Heiden RW, Schober S, Mittelbach M (2017) Bias and imprecision in the determination of free glycerin in biodiesel: The unexpected role of limitations in solubility. J Am Oil Chem Soc 94: 285–299. doi: 10.1007/s11746-016-2930-6
    [47] Bordignon G, Lima HJD, Martins RA, et al. (2017) Níveis de glicerina bruta na ração de suínos nas fases de crescimento e terminação. Archivos de zootecnia 66: 429. doi: 10.21071/az.v66i255.2520
    [48] Alves MJ, Cavalcanti IV, Resende MMD, et al. (2016) Biodiesel dry purification with sugarcane bagasse. Ind Crop Prod 89: 119–127. doi: 10.1016/j.indcrop.2016.05.005
    [49] Khalid A, Tamaldin N, Jaat M, et al. (2013) Impacts of biodiesel storage duration on fuel properties and emissions. Procedia Eng 68: 225–230. doi: 10.1016/j.proeng.2013.12.172
    [50] Lôbo IP, Ferreira SLC, Cruz RSD (2009) Biodiesel: quality parameters and analytical methods. Química Nova 32: 1596–1608.
    [51] Joshi G, Pandey JK, Rana S, et al. (2017) Challenges and opportunities for the application of biofuel. Renew Sust Energ Rev 79: 850–866. doi: 10.1016/j.rser.2017.05.185
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6507) PDF downloads(1358) Cited by(16)

Article outline

Figures and Tables

Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog