Citation: Angelo Minotti. A new NANOSATs propulsion system: swirling-combustion chamber and water electrolysis[J]. AIMS Energy, 2018, 6(3): 402-413. doi: 10.3934/energy.2018.3.402
[1] | Puig-Suari J (2014) CubeSat Design Specification. California Polytechnic State University, San Luis Obispo, rev. 13. |
[2] | Yetter RA, Yang V, Aksay IA, et al. (2004) Meso and micro scale propulsion concepts for small spacecraft. Meso & Micro Scale Propulsion Concepts for Small Spacecraft. Available from: https://www.researchgate.net/publication/235181218_Meso_and_Micro_Scale_Propulsion_Concepts_for_Small_Spacecraft. |
[3] | Verhoeven CJM, Bentum MJ, Monna GLE, et al. (2011) On the origin of satellite swarms. Acta Astronaut 68: 1392–1395. doi: 10.1016/j.actaastro.2010.10.002 |
[4] | Grieg AD (2015) Pocket Rocket: an electrothermal plasma microthruster. Ph.D. Thesis, Australian National Univesity. |
[5] | Bouwmeester J, Guo J (2010) Survey of worldwide pico- and nanosatellite missions, distributions and subsystem technology. Acta Astronaut 67: 854–862. |
[6] | London AP, Epstein AH, Kerrebrock JL (2001) High-pressure bipropellant microrocket engine. J Propul Power 17: 780–787. doi: 10.2514/2.5833 |
[7] | Groot DW, Oleson S (1996) Chemical microthruster options. NASA Contractor Report 198531. |
[8] | Marshall WM, Stegeman JD, Zemba M, et al. (2013) Using Additive manufacturing to print a CubeSat propulsion system. 51st AIAA/SAE/ASEE Joint Propulsion Conference, Orlando, AIAA Propulsion and Energy Forum, (AIAA 2015-4184). Available from: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150022181.pdf. |
[9] | Space Works (2017) Nano/Micro Satellite Market Forecast. Available from: http://spaceworksforecast.com/docs/SpaceWorks_Nano_Microsatellite_Market_Forecast_2017.pdf. |
[10] | Minotti A (2017) Space propulsion system. Patent No: 102017000087235, filed. |
[11] | Zeledon R (2015) Electrolysis propulsion for small-scale spacecraft. Ph.D Thesis, Cornell University. |
[12] | Thethers Unlimited, Hydros. Available from: http://www.tethers.com/HYDROS.html. |
[13] | Pothamsetti R, Thangavelautham J (2016) Photovoltaic electrolysis propulsion system for interplanetary CubeSats. Aerospace Conference. IEEE, 1–10. |
[14] | Schneider S (2003) Catalyzed ignition of bipropellants in microtubes. NASA/TM-2003-21226, AIAA-2003-0674. Available from: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20030022776.pdf. |
[15] | Bruno C (2001) Chemical Microthrusters: Effects of Scaling on Combustion. AIAA 2001-3711, 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT. Available from: https://www.researchgate.net/publication/236270204_Chemical_Microthrusters_Effects_of_Scaling_on_Combustion. |
[16] | Minotti A, Teofilatto P (2015) Swirling combustor energy converter: H2/Air simulations of separated chambers. Energies 8: 9930–9945. doi: 10.3390/en8099930 |
[17] | Minotti A (2017) Hybrid energy converter based on swirling combustion chambers: The hydrocarbon feeding analysis. AIMS Energy 5: 506–516. doi: 10.3934/energy.2017.3.506 |
[18] | Appel C, Mantzaras J, Schaeren R, et al. (2004) Catalytic combustion of hydrogen–air mixtures over platinum: validation of hetero/homogeneous chemical reaction schemes. Clean Air 5: 21–44. |
[19] | Cuthill EH, McKee J (1969) Reducing bandwidth of sparse symmetric matrices. In: Proceedings of the Association for Computing Machinery 24th National Conference, New York, NY, USA, 157–172. |
[20] | Shih TH, Liou WW, Shabbir A, et al. (1995) A new k-ε eddy-viscosity model for high reynolds number turbulent flows. Comput Fluids 24: 227–238. doi: 10.1016/0045-7930(94)00032-T |
[21] | GRIMech 3.0 Thermodynamic Database. Available from: http://www.me.berkley.edu/gri_ mech/version30/files30/thermo30.dat. |
[22] | Anderson JD (1989) Hypersonic and high temperature gas dynamics. McGraw Hill: New York, NY, USA. 12: 468–481. |
[23] | Mathur C, Saxena SC (1966) Viscosity of polar gas mixture: Wilke's method. Flow Turbul Combust 15: 404–410. |
[24] | Magnussen BF (1981) On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow. In: Proceedings of the 19th American Institute of Aeronautics and Astronautics Aerospace Science Meeting, St. Louis, MO, USA, 12–15. |
[25] | Gran IR, Magnussen BF (1996) A numerical study of a bluff-body stabilized diffusion flame. Part 2. Influence of combustion modelling and finite-rate chemistry. Combust Sci Technol 119: 191–217. |
[26] | Li J, Zhao Z, Kazakov A, et al. (2004) An updated comprehensive kinetic model of hydrogen combustion. Int J Chem Kinet 36: 566–575. doi: 10.1002/kin.20026 |
[27] | Ferziger JH, Perić M (1997) Computational methods for fluid dynamics. Phys Today 50: 80–84. |
[28] | Vanleer B (1979) Toward the ultimate conservative difference scheme V. A second order sequel to godunov's method. J Comput Phys 32: 101–136. |
[29] | CRESCO: Centro computazionale di RicErca sui Sistemi Complessi. Available from: http://www.cresco.enea.it/english. |