Citation: Gerardo Guerra, Juan A. Martinez-Velasco. Optimal sizing and operation of energy storage systems considering long term assessment[J]. AIMS Energy, 2018, 6(1): 70-96. doi: 10.3934/energy.2018.1.70
[1] | New York Independent System Operator (2014) A Review of Distributed Energy Resources. |
[2] | Farret FA, Godoy SM (2006) Integration of Alternative Sources of Energy. John Wiley Press, 301–332. |
[3] | Ackerman T, Andersson G, Söder L (2001) Distributed generation: a definition. Electr Power Syst Res 57: 195–204. doi: 10.1016/S0378-7796(01)00101-8 |
[4] | Willis HL, Scott WG (2000) Distributed power generation: planning and evaluation. Crc Press. |
[5] | Sandia National Laboratories and NRECA (2015) DOE/EPRI Electricity Storage Handbook. |
[6] | Luo F, Meng K, Dong ZY, et al. (2015) Coordinated operational planning for wind farm with battery energy storage system. IEEE T Sustain Energ 6: 253–262. doi: 10.1109/TSTE.2014.2367550 |
[7] | International Electrotechnical Commission (2011) Electrical Energy Storage. |
[8] | Farzin H, Fotuhi-Firuzabad M, Moeini-Aghtaie M (2017) A stochastic multi-objective framework for optimal scheduling of energy storage systems in microgrids. IEEE T Smart Grid 8: 117–127. doi: 10.1109/TSG.2016.2598678 |
[9] | Lazaroiu GC, Dumbrava V, Balaban G, et al. (2016) Stochastic optimization of microgrids with renewable and storage energy systems. International Conference on Environment and Electrical Engineering. IEEE. |
[10] | Silvestre MLD, Graditi G, Ippolito MG, et al. (2011) Robust multi-objective optimal dispatch of distributed energy resources in micro-grids. PowerTech, 2011 IEEE Trondheim. IEEE, 1–5. |
[11] | Agamah SU, Ekonomou L (2016) Peak demand shaving and load-levelling using a combination of bin packing and subset sum algorithms for electrical energy storage system scheduling. Iet Sci Meas Technol 10: 477–484. doi: 10.1049/iet-smt.2015.0218 |
[12] | Levron Y, Shmilovitz D (2012) Power systems' optimal peak-shaving applying secondary storage. Electr Pow Syst Res 89: 80–84. doi: 10.1016/j.epsr.2012.02.007 |
[13] | Jayasekara N, Wolfs P, Masoum MAS (2014) An optimal management strategy for distributed storages in distribution networks with high penetrations of PV. Electr Pow Syst Res 116: 147–157. doi: 10.1016/j.epsr.2014.05.010 |
[14] | Ippolito MG, Silvestre MLD, Sanseverino ER, et al. (2014) Multi-objective optimized management of electrical energy storage systems in an islanded network with renewable energy sources under different design scenarios. Energy 64: 648–662. doi: 10.1016/j.energy.2013.11.065 |
[15] | Rahmani-Andebili M (2017) Stochastic, adaptive, and dynamic control of energy storage systems integrated with renewable energy sources for power loss minimization. Renew Energ 113: 1462–1471. doi: 10.1016/j.renene.2017.07.005 |
[16] | Meirinhos JL, Rua DE, Carvalho LM, et al. (2017) Multi-temporal Optimal Power Flow for voltage control in MV networks using Distributed Energy Resources. Electr Pow Syst Res 146: 25–32. doi: 10.1016/j.epsr.2017.01.016 |
[17] | Hejazi H, Mohsenian-Rad H (2016) Energy storage planning in active distribution grids: a chance-constrained optimization with non-parametric probability functions. IEEE T Smart Grid, 1–13. |
[18] | Rahmani-Andebili M, Shen H (2017) Cooperative distributed energy scheduling for smart homes applying stochastic model predictive control. IEEE International Conference on Communications. IEEE, 1–6. |
[19] | Kargarian A, Hug G (2016) Optimal sizing of energy storage systems: a combination of hourly and intra-hour time perspectives. Iet Gener Transm Dis 10: 594–600. doi: 10.1049/iet-gtd.2015.0031 |
[20] | Kerdphol T, Qudaih Y, Mitani Y (2016) Optimum battery energy storage system using PSO considering dynamic demand response for microgrids. Int J Elec Power 83: 58–66. doi: 10.1016/j.ijepes.2016.03.064 |
[21] | Carpinelli G, Mottola F, Proto D (2016) Probabilistic sizing of battery energy storage when time-of-use pricing is applied. Electr Pow Syst Res 141: 73–83. doi: 10.1016/j.epsr.2016.07.013 |
[22] | Brown PD, Peas Lopes JA, Matos MA (2008) Optimization of pumped storage capacity in an isolated power system with large renewable penetration. IEEE T Power Syst 3: 523–531. |
[23] | Wen S, Lan H, Fu Q, et al. (2015) Economic allocation for energy storage system considering wind power distribution. IEEE T Power Syst 30: 644–652. |
[24] | Korpaas M, Holen AT, Hildrum R (2003) Operation and sizing of energy storage for wind power plants in a market system. Int J Elec Power 25: 599–606. doi: 10.1016/S0142-0615(03)00016-4 |
[25] | Correia PF, Jesus JMFD, Lemos JM (2014) Sizing of a pumped storage power plant in S. Miguel, Azores, using stochastic optimization. Electr Pow Syst Res 112: 20–26. |
[26] | Arabali A, Ghofrani M, Etezadi-Amoli M, et al. (2013) Genetic-algorithm-based optimization approach for energy management. IEEE T Power Deliver 28: 162–170. doi: 10.1109/TPWRD.2012.2219598 |
[27] | Nick M, Cherkaoui R, Paolone M (2014) Optimal allocation of dispersed energy storage systems in active distribution networks for energy balance and grid support. IEEE T Power Syst 29: 2300–2310. doi: 10.1109/TPWRS.2014.2302020 |
[28] | Silvestre MLD, Graditi G, Sanseverino ER (2014) A generalized framework for optimal sizing of distributed energy resources in micro-grids using an indicator-based swarm approach. IEEE T Ind Inform 10: 152–162. doi: 10.1109/TII.2013.2272945 |
[29] | Yang P, Nehorai A (2014) Joint optimization of hybrid energy storage and generation capacity with renewable energy. IEEE T Smart Grid 5: 1566–1574. doi: 10.1109/TSG.2014.2313724 |
[30] | Abedi S, Alimardani A, Gharehpetian GB, et al. (2012) A comprehensive method for optimal power management and design of hybrid RES-based autonomous energy systems. Renew Sust Energ Rev 16: 1577–1587. doi: 10.1016/j.rser.2011.11.030 |
[31] | Meng N, Wang P, Wu H, et al. (2015) Optimal sizing of distributed generations in a connected DC micro-grid with hybrid energy storage system. Energy Conversion Congress and Exposition. IEEE, 3179–3183. |
[32] | Erdinc O, Paterakis NG, Pappi IN, et al. (2015) A new perspective for sizing of distributed generation and energy storage for smart households under demand response. Appl Energ 143: 26–37. doi: 10.1016/j.apenergy.2015.01.025 |
[33] | Papaefthymiou SV, Papathanassiou SA (2014) Optimum sizing of wind-pumped-storage hybrid power stations in island systems. Renew Energ 64: 187–196. doi: 10.1016/j.renene.2013.10.047 |
[34] | Dugan RC (2016) Reference Guide. The Open Distribution System Simulator (OpenDSS). EPRI. |
[35] | Dugan RC, McDermott TE (2011) An open source platform for collaborating on smart grid research. Power and Energy Society General Meeting. IEEE, 1–7. |
[36] | Martinez-Velasco JA, Guerra G (2015) Analysis of large distribution networks with distributed energy resources. Ingeniare 23: 594–608. |
[37] | Dugan RC, Taylor JA, Montenegro D (2017) Energy storage modeling for distribution planning. IEEE T Ind Appl 53: 954–962. doi: 10.1109/TIA.2016.2639455 |
[38] | Eisen MB, Spellman PT, Brown PO, et al. (1998) Cluster analysis and display of genome-wide expression patterns. P Natl Acad Sci USA 95: 14863–14868. doi: 10.1073/pnas.95.25.14863 |
[39] | Tsekouras GJ, Hatziargyriou ND, Dialynas EN (2007) Two-stage pattern recognition of load curves for classification of electricity customers. IEEE T Power Syst 22: 1120–1128. doi: 10.1109/TPWRS.2007.901287 |
[40] | Iglesias F, Kastner W (2013) Analysis of similarity measures in times series clustering for the discovery of building energy patterns. Energies 6: 579–597. doi: 10.3390/en6020579 |
[41] | Chicco G, Napoli R, Postolache P, et al. (2003) Customer characterization for improving the tariff offer. IEEE T Power Syst 18: 381–387. |
[42] | Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for spoken word recognition. IEEE T Acoustics Speech Signal Process 26: 43–49. doi: 10.1109/TASSP.1978.1163055 |
[43] | Calinski T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat-Theor M 3: 1–27. doi: 10.1080/03610927408827109 |
[44] | Passino KM (2006) Biomimicry for optimization, control, and automation. IEEE T Automat Contr 51: 1406. doi: 10.1109/TAC.2006.878700 |
[45] | Michalewicz Z (1996) Genetic Algorithms + Data Structures = Evolution Programs. Springer, 347–348. |
[46] | Yeh EC, Venkata SS, Sumic Z (1995) Improved distribution system planning using computational evolution. IEEE T Power Syst 11: 668–674. |
[47] | Mendoza F, Bernal-Agustin JL, Domínguez-Navarro JA (2006) NSGA and SPEA applied to multiobjective design of power distribution systems. IEEE T Power Syst 21: 1938–1945. doi: 10.1109/TPWRS.2006.882469 |
[48] | Abido MA (2006) Multiobjective evolutionary algorithms for electric power dispatch problem. IEEE T Evolut Comput 10: 315–329. doi: 10.1109/TEVC.2005.857073 |
[49] | Buehren M (2007) MATLAB Library for Parallel Processing on Multiple Cores. Available from: http://www.mathworks.com. |
[50] | Martinez JA, Guerra G (2014) Parallel Monte Carlo approach for distribution reliability assessment. Iet Gener Transm Dis 8: 1810–1819. doi: 10.1049/iet-gtd.2014.0075 |
[51] | Guerra G, Martinez JA (2016) Optimum allocation of distributed generation in multi-feeder systems using long term evaluation and assuming voltage-dependent loads. Sust Energ Grid Network 5: 13–26. doi: 10.1016/j.segan.2015.10.005 |