
AIMS Energy, 6(1): 70–96. 

DOI: 10.3934/energy.2018.1.70 

Received: 20 November 2017 

Accepted: 02 January 2018 

Published: 08 January 2018 

http://www.aimspress.com/journal/energy 

 

Research article 

Optimal sizing and operation of energy storage systems considering 

long term assessment 

Gerardo Guerra and Juan A. Martinez-Velasco* 

Departament d’Enginyeria Electrica, Universitat Politecnica de Catalunya, Barcelona, Spain 

* Correspondence: Email: martinez@ee.upc.edu; Tel: +34934016725. 

Abstract: This paper proposes a procedure for estimating the optimal sizing of Photovoltaic 

Generators and Energy Storage units when they are operated from the utility’s perspective. The goal 

is to explore the potential improvement on the overall operating conditions of the distribution system 

to which the Generators and Storage units will be connected. Optimization is conducted by means of 

a General Parallel Genetic Algorithm that seeks to maximize the technical benefits for the 

distribution system. The paper proposes an operation strategy for Energy Storage units based on the 

daily variation of load and generation; the operation strategy is optimized for an evaluation period of 

one year using hourly power curves. The construction of the yearly Storage operation curve results in 

a high-dimension optimization problem; as a result, different day-classification methods are applied 

in order to reduce the dimension of the optimization. Results show that the proposed approach is 

capable of producing significant improvements in system operating conditions and that the best 

performance is obtained when the day-classification is based on the similarity among daily power 

curves. 
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1. Introduction  

Distributed Generation (DG) and Energy Storage (ES) are two technologies that fall under the 

concept of Distributed Energy Resources (DER) [1]. Both technologies can support voltage, reduce 

losses, provide backup power and ancillary services, improve local power quality and reliability, and 
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defer distribution system upgrade [2–5]. Furthermore, the combined operation of DG and ES can 

enhance their potential benefits to the grid; for example, ES units can be charged when there is a 

generation excess, and provide support to the grid when generation decreases [6]. 

Modelling of renewable generation raises several challenges to distribution load flow 

calculations since capabilities for representing intermittent generators, voltage-control equipment, or 

multi-phase unbalanced systems are required. In addition, the study of systems with intermittent non-

dispatchable resources will usually require a probabilistic approach and calculations performed over 

an arbitrary time period that may range from minutes to years. The evaluation of ES presents 

additional challenges: ES operation can be conducted from the perspective of a utility (i.e., aiming to 

improve network conditions) or operated by a private operator (i.e., with the objective of generating 

profits) [7]. In both cases an optimal operation strategy must be defined in order to maximize the 

benefits provided by ES; see [8–18]. 

This paper uses a General Parallel Genetic Algorithm (GPGA) to estimate the optimal ratings of 

multiple fixed-location ES units and photovoltaic (PV) generators in order to minimize distribution 

system energy losses, annual energy and peak power supplied by the substation transformer. The 

goal is to explore the potential improvement on the overall operating conditions of the distribution 

system when ES units and PV generators are operated from the perspective of a utility. The 

developed methodology should be adequate for performing a technical evaluation of DG and ES as 

an alternative within the utility’s planning scheme. 

The optimal sizing of ES units has been conducted from different perspectives; e.g., improving 

network conditions [19,20], minimizing power and operation costs [21–23], meeting a predefined 

operation schedule [24–26], and multi-objective optimization [27,28]. Furthermore, various 

optimization techniques, such as particle swarm optimization [20,23], linear, dynamic, and cone 

programming [22,24,27], stochastic optimization [21,25], and genetic algorithms [26,28] have been 

employed. 

The optimization of a combination of generation and energy storage has also been the subject of 

several recent works; see [29–33]. In [29,30], and [31] the optimization is conducted to minimize 

operation costs in a microgrid, while [32] presents a techno-economical procedure for sizing DG and 

ES in smart households. Reference [33] explores the optimization of pumped hydro storage that is 

operated in conjunction with wind generation to minimize operation costs or maximize generation 

and storage penetration. As with optimal sizing of ES, different optimization algorithms have been 

used; e.g., differential evolutionary algorithms [30,31], mix-integer linear programming [32], and 

genetic algorithms [33]. Furthermore, references [22,26,27] make use of clustering techniques in 

order to reduce the number of scenarios considered for optimization. 

A strategy for operating ES units based on the variation of load and photovoltaic generation 

over the evaluation period (i.e., one year) is proposed here. This strategy is simultaneously optimized 

along with the ES units and PV generators ratings and it assumes that the operation curve is the same 

for all ES units while the days of the evaluated period are grouped according to different 

classification methods in order to reduce the dimension of the optimization problem. ES operation 

curves are validated through the simulation of the system under study for the selected evaluation 

period; only those curves that produce grid compliant solutions are considered as valid operation 

strategies. 

The simulation tools used for this purpose are MATLAB and OpenDSS, a distribution system 

simulator whose capabilities allow users to represent the most important distribution components and 
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perform multiphase calculations. This environment takes advantage of OpenDSS capabilities, which 

can be expanded with an external link to other tools, in this case MATLAB [34,35]. The use of 

OpenDSS as a simulation tool can provide an accurate estimation of the network conditions and 

avoid the use of simplification techniques (such as DC power flow or linearization of the power flow 

equations).  

System behavior over the evaluation period is defined by node load and PV generation yearly 

curves which have been synthetically generated with different applications previously developed by 

the authors; see [36]. New applications based on clustering techniques have been implemented in this 

work for classifying and grouping the days of the evaluation period. This work was carried out using 

a modified version of the built-in OpenDSS storage model [37]. 

The paper has been organized as follows. The main characteristics of the ES model are 

summarized in Section 2. The procedure followed to obtain the operation curves of ES units using 

different day-classification methods is presented in Section 3. Section 4 details the GPGA procedure 

implemented for this work. The application to an introductory case study is presented in Section 5, 

while the optimization of multiple ES units and PV generators is analyzed in Section 6. A discussion 

regarding the procedure’s main points and future work is presented in Section 7. Finally, the main 

conclusions drawn from this study are summarized in Section 8. 

2. Modeling of energy storage units 

OpenDSS provides a technology-independent ES model that allows users to perform planning 

studies under different operation modes [37]: Peak Shaving, Follow, Support, Load Level, and Time. 

Additionally, different charge and discharge strategies can be combined in order to produce the 

desired effect. The use of this ES model allows the user to set limits for charge/discharge power and 

minimum/maximum stored energy; moreover, it automatically calculates ES losses and updates the 

stored energy value.  

The OpenDSS ES model can be used in the different solution modes available. Furthermore, the 

StorageController object allows the user to apply the same control strategy to a fleet of ES units. 

To adequate the OpenDSS storage model to the optimization process proposed in this work, 

new features have been added to its native capabilities: 

 ES efficiency is not assumed constant but defined by a function that depends on ES loading 

with respect to its rated power (in kVA). 

 A minimum charge/discharge power as a percentage of the ES rated power (in kVA) has been 

defined. Regardless of the dispatched power, the ES unit will not absorb/inject power unless this 

value is greater than the minimum charge/discharge power. 

 The model defines a maximum charge/discharge power based on the stored energy and 

simulation time-step. The objective is aimed at ensuring that the minimum/maximum stored 

energy values are not violated. For example, assume the present stored energy is 100 kWh and 

the minimum acceptable value is 80 kWh; given a 1-hour time-step and a discharge efficiency 

of 100%, the ES unit should only be able to inject a power of 20 kW for a period of 1-hour. 

Regardless of the predefined dispatched power, the model will enforce the 20 kW limit. 
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3. Operation of energy storage units 

3.1. Determination of energy storage operation curves 

The operation of multiple ES units in a power distribution system can be optimized by 

establishing coordination among all units; that is, it is advisable for all ES units to follow the same 

control strategy and dispatch in order to ensure total cooperation since individual operation strategies 

based on local measurements may not accurately reflect the global system requirements [34,37].  

An ES dispatch strategy based on the principles of the Peak Shaving and Load Level operation 

modes has been developed for this work; it is aimed at minimizing daily power peaks and flattening 

the active power profile served by the substation transformer. This work assumes that the same 

operation curve is used for all ES units and it is derived from the power curve that would be 

measured at the substation terminals with DG but without ES.  

Two limits are defined for charge and discharge operations: ES discharge can take place if the 

served power is above the discharge limit, whereas ES charge will occur if the served power is below 

the charge limit. In both cases the behavior will mirror the daily power curve pattern (see Figure 1). 

Additionally, charge and discharge curves will be modified by applying pertinent correction factors. 

The operation curve of ES units for a specific day is built as follows: 

(1) Obtain the daily power curve served by the substation transformer, including PV generation (see 

Figure 1a). 

(2) Calculate the mean value of this daily power curve. 

(3) Subtract the mean value from the daily power curve (see Figure 1b). 

(4) Set power limits for ES charge/discharge (see Figure 1b). 

(5) Find the power values below and above the charge/discharge limits. 

(6) Subtract average charge/discharge power limit from the power values found in the previous  

step (see Figure 1c). 

(7) Apply correction factors to the new power values found in step 6. 

(8) The corrected power curve is normalized using the total rated ES power connected to the system. 

Negative values will correspond to ES charge, while ES discharge will be performed following 

the positive values in the normalized curve (see Figure 1d). 

With this approach four parameters are required to determine the operation curve to be followed 

by all ES units: charge power limit, discharge power limit, charge curve correction factor, and 

discharge curve correction factor. Charge and discharge power limits are defined as a multiplier of 

the daily power’s standard deviation; for the example presented in Figure 1 charge and discharge 

limits were set as –0.5 and 0.8 times the standard deviation, respectively. 

3.2. Classification of days using hierarchical clustering techniques 

The operation of ES units is specified in this study for an evaluation period of one year. Since 

using only one set of parameters for constructing the yearly operation curve is not enough to 

guarantee an optimal operation and defining a set of parameters for every day of the year leads to a 

very high number of parameters, different methods for classifying days have been implemented. 
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(a) Substation daily power curve—With PV generation. 

 
(b) Substation power curve after subtracting mean. 

 
(c) ES charge/discharge power curve. 

 
(d) Normalized corrected ES charge/discharge power curve. 

Figure 1. Proposed ES dispatch mode. 
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A hierarchical clustering algorithm groups a collection of individuals by forming a cluster  

tree [38]. The cluster tree does not separate the individuals into clusters but rather shows the 

connections among them at several hierarchical levels.  

Hierarchical clustering is conducted using the following steps: 

(1) Define a similarity measurement (e.g., Euclidean distance). 

(2) Calculate similarity for every pair of individuals. 

(3) Build the cluster tree. 

(4) Form clusters by cutting the cluster tree. The number of clusters can be defined as a fixed 

parameter or as a height h at which the cluster tree is cut. 

 

(a) Cluster tree. 

 

(b) Cluster generation using tree height as criterion. 

 

(c) Cluster generation using fixed number of clusters as criterion. 

Figure 2. Different approaches for generating clusters. 
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The similarity for every pair of individuals is expressed as a row vector of length N × (N–1)/2, 

where N is the number of individuals (points) in the collection. In this manner, the duplication of 

similarities is avoided. The cluster tree is built using the similarity vector as input. The algorithm 

links similar individuals into binary clusters (i.e., with two elements); moreover, these new binary 

clusters are linked to other binary clusters and individuals. The result is a multilevel tree, where all 

individuals are connected among them and also to the new binary clusters, see Figure 2a. Once the 

cluster tree has been built, it must be cut in order to group individuals into clusters. Depending on 

how the tree is separated, different clusters will be generated. In Figure 2b the cluster tree is cut at a 

height of 3000 producing 5 clusters, while in Figure 2c the total number of clusters has been 

previously chosen and is equal to 3. 

Classification methods can be used in different applications. Reference [39] presented a two-

stage pattern recognition of load curves, in which the first stage requires grouping daily load curves 

into clusters, using different clustering algorithms, and determining the optimal number of typical 

days (i.e., optimal number of clusters); clusters are constructed based on the Euclidean distance 

among curves. In [40] different similarity indices (including Dynamic Time Warping, DTW) were 

used as measurements for time series clustering in order to discover building energy patterns. 

Classification methods based on field indices (e.g., ratio of average to maximum daily load) are also 

used for categorizing the behavior of distribution customers [41]. 

Three different methods aimed at classifying the days of the evaluation period have been 

implemented in MATLAB using the Statistics and Machine Learning Toolbox. 

(1) Daily served energy and PV generation: In this scenario the information related to the energy 

daily served by the substation transformer (without PV generation) and energy daily produced 

by the PV generator is gathered for every day of the year. Next, all days are assigned to a 

quartile according to the daily served and daily produced energy values. Each quantity (served 

and produced energy) produces four sub-groups; the combination of these sub-groups creates 16 

groups. Finally, each day of the year is placed in one of the 16 groups based on the sub-groups 

to which they were originally assigned. 

(2) Time-series clustering: This method is based on the similarity among daily power  

curves (including PV generation). Similarity among daily curves is calculated according to the 

Euclidean distance between two different curves. However, since a simple Euclidean distance 

may yield an incorrect evaluation of similarity; the minimum distance between two daily curves 

is calculated using the DTW algorithm [42], which grants a better assessment of similarity 

among the evaluated curves. After obtaining the distances among all daily curves, the day 

classification is conducted using MATLAB’s linkage and cluster functions; the distances 

calculated with the DTW algorithm are used as inputs for the hierarchical clustering algorithm. 

The number of groups or clusters can be defined as a fixed parameter or as a height h at which 

the cluster tree is cut. In this work the number of clusters is defined as a fixed parameter. 

Taking into account that the total number of operation parameters depends on the number of 

clusters, but a too low number of clusters may lead to a poor ES performance, the optimal 

number of clusters is determined by means of the so-called CH index as follows [43]:  

      
    

    
 
   

   
          (1) 



77 

AIMS Energy                                                               Volume 6, Issue 1, 70–96. 

             
       

   
 
           (2) 

           
         

            (3) 

where K is the total number of clusters, Nk is the number of points that belong to cluster k,   
    is 

the average of points in cluster k,    is the overall average, and     represents the square of 

the Euclidean distance between two points. In order to make use of this index, hierarchical 

clustering must be evaluated for different numbers of clusters; afterwards the CH index is 

calculated for every evaluation. The optimal number of clusters will be that with the largest CH 

index. 

(3) Daily-values clustering: For this scenario four measurements are calculated: the energy daily 

served by the substation transformer and the standard deviation of the daily power curve, with 

and without PV generation. Each day of the year is then defined by these four measurements 

and hierarchical clustering is performed based on the Euclidean distance among days. As in the 

Time-series clustering, the optimal number of clusters can be determined by means of the CH 

index. 

 

Figure 3. Flow chart-construction of ES operation curves. 
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indices. With these classifications, all days belonging to the same group will share the same 

operation parameters so the total number of required parameters for defining ES operation will 

consequently be reduced. To obtain ES operation curves during the evaluation period (i.e., one year), 

the day-classification is first conducted (according to the selected method); next, a set of operation 

parameters is specified for every classification group: each day is first defined by its day-type (i.e., 

the group/cluster number to which it belongs) and then its daily operation curve is constructed 

according to the procedure presented above. Figure 3 presents a flow chart with the complete process 

implemented to obtain the operation curve of each ES unit. 

4. General parallel genetic algorithm 

A genetic algorithm (GA) is an optimization technique that evaluates more than one area of the 

search space and can discover more than one solution to a problem [44]. The application of a GA 

starts with the evaluation of a randomly-generated initial population. After the first evaluation, the 

fittest individuals are selected to become parents for a new generation, where different methods can 

be applied for the parent-selection process (e.g., fitness proportionate selection, tournament selection, 

truncation selection). The crossover genetic operator is used to mate the selected parents in order to 

create the members of a new generation; finally, the mutation operator introduces a random variation 

to the members of the new generation. 

A complete GA procedure must include the following characteristics [45]: (i) a criterion to 

create the initial population; (ii) an evaluation function to obtain the fitness of all possible  

solutions; (iii) a genetic operator to obtain the next generation; (iv) a stopping criterion. 

GAs are prone to parallelization, depending on the approach used to evaluate the fitness 

function and how the genetic operators are applied. Several types of General Parallel Genetic 

Algorithms (GPGA) have been proposed: global single-population master-slave GAs, single-

population fine-grained, multiple-population coarse-grained GAs [46]. In global single-population 

GAs only one population is created and the evaluation of each member of a given generation is 

independent from the rest of the members; therefore, the evaluation of a generation can be seen as an 

embarrassingly parallel problem. This approach yields a reduction of the total execution times by 

distributing the evaluation of individuals in a generation among available cores in a multi-core 

installation. 

GAs have been applied to a wide range of optimization problems related power  

systems (e.g., [26,28,33,46–48]). 

A global single-population GPGA has been implemented in this work to determine the optimal 

values of the following inputs: 

 Nominal PV generator power rating (in kVA). 

 Nominal ES unit power rating (in kVA). 

 Nominal ES unit energy rating (in kWh). 

 Security factor for interconnection transformer (in pu). 

 ES unit operation strategy parameters. 

The number of inputs in the GPGA will be equal to: 

                                                                            (4) 
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where NIN is the number of inputs to be optimized by the GPGA, K is the number of day groups (or 

clusters), and NU is the number of PV generators and ES units under consideration. 

The parameters used in the optimization procedure are shown in Table 1.  

The GPGA seeks to minimize the following operational variables: 

 distribution system energy losses, without including losses in substation transformer; 

 annual energy supplied from the MV side of the substation transformer; 

 peak power supplied by the substation transformer and measured at MV-side terminals; 

 standard deviation of the power values measured at the MV-side of the substation. 

Table 1. GPGA parameters. 

Maximum number of generations 200 

Population size 10 × NIN 

Epsilon (ε)-Tolerance 0.0001 

Delta (δ)-Number of generations for best fitness checking 20 

Crossover probability (pc) 0.80 

Mutation probability (pm) 0.02 

Elitism Yes 

Maximum rating PV generation1 1.00 

Minimum rating PV generation1 0.01 

Maximum power rating ES unit1 1.00 

Minimum power rating ES unit1 0.01 

Maximum energy to power ratio2 10.0 

Minimum energy to power ratio2 1.00 

Maximum security factor interconnection transformer3 2.00 

Minimum security factor interconnection transformer3 1.01 

Maximum correction factor 2.00 

Minimum correction factor 0.01 

Maximum power limit factor4,5 2.00 

Minimum power limit factor4,5 –1.00 

Note: 1 It is a factor of the maximum generation power that can be connected to the node where the device is located; 2 ES 

unit rated energy is equal to the energy to power ratio multiplied by the ES unit rated power; 3 It is a factor of the 

maximum value when comparing the PV generator and ES unit rated power; 4 It is a factor of the daily power curve’s 

standard deviation, including PV generation; 5 A negative sign is assumed for the set power limit during ES charge. 

Two stopping criteria have been established: 

(1) The generation count (i.e., the number of executed generations) is equal to the established 

maximum number of generations. 

(2) The best fitness changes less than ε over δ generations. 

The GPGA has been implemented in MATLAB and the evaluation of each member in a 

population is conducted by simulating the test system during one year using a 1-hour time-step. 

Individual executions are distributed among 60 cores using the library developed by M. Buehren [49]. 

For more details about the multi-core installation, see [50]. The GPGA complete general procedure is 

depicted in Figure 4. 
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Figure 4. Flow chart of the implemented GPGA procedure. 
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iterative algorithm converges for all solution steps. If one or more of these conditions are not fulfilled, 

the procedure will assign a fitness value close to zero, which will difficult its participation in the 

crossover stage of the GPGA. 

The following aspects must be taken into account when executing the optimization procedure: 

 The resulting ratings for PV generators and ES units will be rounded in steps of 5 kVA, while 

the rating of the interconnection transformers will be rounded in steps of 10 kVA. 

 PV generators and ES units only inject active power, and ES units only absorb active power. 

 PV generators are allowed to produce as much energy as possible. Moreover, the PV generator 

model implemented in OpenDSS assumes that the generator is capable of reaching the 

Maximum Power Point (MPP) for every simulation step. 

 ES units absorb/inject power only when the dispatched power is above 10% of the rated power; 

in the same manner, the PV generators only inject power if the generated power is above 10% 

of the rated power. 

 The minimum stored energy for ES units is equal to 20% of the ES rated energy. 

 Although the procedure relies on a technology-independent ES model, the present application 

and characteristics of the ES unit (i.e., rated power, rated energy, and energy to power ratio) 

indicate that Battery Systems are the technology that would best fit a real-life implementation. 

 The ES operation curve (see Section 3) is constructed from the active power profile served by 

the substation transformer when PV generation is present. This curve depends on the actual PV 

generation and cannot be estimated before the optimization procedure is executed. Therefore, in 

order to construct the operation curve, for every member of a generation the test system must be 

first evaluated taking only into account the presence of PV generation; the resulting active 

power profile will be used by the procedure to construct the yearly ES operation curve. 

 The day-classification methods also rely on the active power curve served by the substation 

transformer, including PV generation. Although a similar approach to that presented in the 

previous bullet could be used, this could lead to discrepancies in the procedure. The system 

quantities used as criterion for day-classification depend on the actual value of PV generation 

and different ratings for PV generators could generate different classifications. If each 

generation member was to produce different day-classifications, the optimization of the 

operation parameters would be incorrect because the set of parameters assigned to a specific 

cluster would not be applied to the same groups of days. Furthermore, the CH index could not 

be used to predefine the optimal number of clusters to be used in the optimization procedure, 

since each day-classification method could have a different optimal number of clusters. In order 

to circumvent this inconvenient, a preliminary study will be conducted; in this study, only the 

sizing of PV generators will be optimized, while the fitness function is defined by the following 

equation: 

                  
           

                
    (7) 

The GPGA will use the parameters presented in Table 1; however, the security factor of the 

interconnection transformer will be constant and equal to 1.01. The day-classification will be 

conducted using the optimized PV generator ratings found by this study. 

 The maximum rated power for a connection node and the initial values for PV generator and ES 

unit power ratings are generated according to rules presented in [51]. 
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 The term “with/without PV generation” makes reference to the PV generation to be defined by 

the procedure. Should the system under study have previously installed DG, it would be 

considered as part of the original design and not included in the optimization. Moreover, the 

active power profile “with and without PV generation” is obtained through a yearly simulation 

using the synthetically generated system curves. 

 The locations of the PV generators and ES units have been arbitrarily chosen. Although the 

locations could have been derived from a procedure aimed at optimizing the impact on the grid, 

there are several non-technical factors that can have a greater impact on selecting the DER 

locations than the results obtained from such procedure. Land price, environmental permits, 

availability of space, and the so-called “not-in-my-backyard” stance are some of the aspects that 

can limit the options for the location of PV generators and ES units. 

5. Case study 1: optimization of a single energy storage unit 

5.1. Test system configuration 

The test system is a three-phase 60-Hz overhead system serving two spot loads from a High-

Voltage/Medium-Voltage (HV/MV) substation transformer; see Figure 5. The PV generator and ES 

unit are connected to the MV network through a distribution Medium-Voltage/Low-Voltage (MV/LV) 

transformer.  

The main characteristics and operating conditions are as follows: 

 HV rated voltage: 230 kV 

 HV actual voltage: 1.05 pu 

 MV rated voltage: 4.16 kV 

 LV rated voltage: 0.4 kV 

 Substation transformer rated power: 1000 kVA 

 Total rated active load: 550 kW. 

System loads have been modelled as voltage-independent and characterized by curve shapes 

derived with the procedure presented in [36]. The efficiency curve used for the ES unit is shown in 

Figure 6. The same curve has been assumed for both charge and discharge cycles. 

 

Figure 5. Test system 1—Configuration. 
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Figure 6. Test system 1—ES unit efficiency curve. 

5.2. Simulation results 

The GPGA procedure was executed for three different scenarios based on the day-classification 

methods proposed in Section 3 and using the values shown in Table 1. Operational variables without 

ES and PV generators are as follows: 

 Annual energy: 1877440.1 kWh 

 Yearly energy losses: 40209.7 kWh 

 Maximum yearly power: 427.0 kW 

 Yearly power standard deviation: 51.2 kW. 

Day-classification was conducted using a 60-kW PV generator (obtained during the initial 

study). A sample day-classification is shown in Figure 7, where a bar graph is used to show the 

cluster/group number to which each day of the year is assigned; that is, all days whose bars present 

the same height have been placed in the same cluster/group and thus, share the same parameters used 

in the construction of the ES operation curve. As expected, the three classification methods produce 

different graphs. For the Time-series and Daily-values classification methods the optimization 

procedure was carried out considering different numbers of clusters. In all scenarios the GPGA seeks 

to optimize all 4 operational variables (see Section 4). 

The results are presented in Table 2. It can be observed that all scenarios converge due to the δ/ε 

criterion and that best fitness values are consistent throughout the executions. Although operational 

variables exhibit some variations (based on the scenario under evaluation), they are sufficiently small 

to consider them negligible and regard the results as acceptable. Except for yearly energy losses (on 

which the optimization procedure seems to have a very limited effect), there are significant 

reductions of all operational variables with respect to the case without generation and storage. 

The optimal values for ratings show larger variations than those exhibited by the operational 

variables; however, in general these values appear to be bound to a specific range, so they can be 

used as a reference for choosing PV generator and ES unit ratings in real-life applications. The 

executions based on the Time-series and Daily-values classification methods show a dependency on 

the number of clusters used for the day-classification; better results are obtained with a smaller 

number of clusters for both methods. Under these circumstances the CH index could be used to 

calculate the optimal number of clusters; this approach could prevent the repeated execution of the 

optimization procedure with different number of clusters for the day-classification. 
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(a) Daily served energy and PV generation. 

 

(b) Time-series (12 clusters). 

 

(c) Daily-values (12 clusters). 

Figure 7. Test system 1—Sample day-classification. 

The calculation of the CH index has determined that the optimal number of clusters for the 

Time-series and Daily-values Clustering methods are 5 and 16 clusters, respectively (the CH index 

was calculated for a number of clusters ranging from 2 to 24). The results obtained when executing 

the optimization procedure with the optimal number of clusters for the Time-series and Daily-values 

classification methods are shown in Table 3. It can be observed that the Time-series method 

produced a higher value for best fitness with respect to those presented in Table 2 (although energy 

losses exhibit a slight increment), whereas the results obtained with the Daily-values method show 

no improvement; in fact, the day-classification with 6 clusters produced better results.  
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Table 2. Test system 1—Simulation results. 

Daily served energy 

Best fitness 2.3803 

Generation count 144 

Simulation time (sec) 23667.8 

PV generator rated power (kW) 70 

ES unit rated power (kW) 55 

ES unit rated energy (kWh) 550 

Interconnection transformer rated power (kVA) 110 

Annual energy (kWh) 1790390.2 

Yearly energy losses (kWh) 40110.5 

Maximum yearly power (kW) 367.9 

Yearly power standard deviation (kW) 44.7 

Time-series classification 

Number of clusters 6 12 18 24 

Best fitness 2.4061 2.3854 2.3705 2.3649 

Generation count 196 135 91 115 

Simulation time (sec) 17146.0 17481.2 15628.0 25119.1 

PV generator rated power (kW) 105 70 70 70 

ES unit rated power (kW) 65 50 45 40 

ES unit rated energy (kWh) 650 500 450 400 

Interconnection transformer rated power (kVA) 130 110 100 100 

Annual energy (kWh) 1733400.6 1790456.2 1782484.6 1786660.9 

Yearly energy losses (kWh) 38820.2 39913.3 39479.6 39739.9 

Maximum yearly power (kW) 357.3 373.1 378.5 383.8 

Yearly power standard deviation (kW) 46.1 43.7 45.4 44.9 

Daily-values classification 

Number of clusters 6 12 18 24 

Best fitness 2.4188 2.3698 2.3624 2.3426 

Generation count 199 92 92 39 

Simulation time (sec) 17829.2 12125.1 16133.6 8502.4 

PV generator rated power (kW) 85 45 70 60 

ES unit rated power (kW) 70 45 45 50 

ES unit rated energy (kWh) 700 450 450 310 

Interconnection transformer rated power (kVA) 170 80 110 110 

Annual energy (kWh) 1775292.8 1830643.7 1786249.8 1795458.1 

Yearly energy losses (kWh) 40515.5 40785.2 39913.0 40125.9 

Maximum yearly power (kW) 352.0 378.5 378.5 373.1 

Yearly power standard deviation (kW) 42.4 42.8 45.7 48.0 

Overall, the highest fitness value was obtained using the Daily-values method with 6 clusters; 

however, the difference with respect to the highest valued found with the Time-series method is 

negligible; moreover, the Time-series method required only half of the execution time.  
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This behavior shows that the Time-series classification method can be used in combination with 

an optimal number of clusters derived from the calculation of the CH index in order to obtain 

adequate results from the GPGA. This approach requires the lowest number of clusters, which 

implies a minimization of the dimension of the optimization problem and a reduction in total 

execution times. 

Table 3. Test system 1—Optimal number of clusters. 

 Time-series Daily-values 

Number of clusters 5 16 

Best fitness 2.4138 2.3682 

Generation count 127 197 

Simulation time (sec) 9687.6 32236.5 

PV generator rated power (kW) 85 75 

ES unit rated power (kW) 75 50 

ES unit rated energy (kWh) 750 500 

Interconnection transformer rated power (kVA) 170 110 

Annual energy (kWh) 1771884.2 1778403.4 

Yearly energy losses (kWh) 40454.3 39791.2 

Maximum yearly power (kW) 346.7 373.2 

Yearly power standard deviation (kW) 43.7 46.0 

The optimal operation parameters for the Time-series classification method using 5 clusters are 

shown in Table 4. Figure 8 depicts the behavior of the yearly active power curve obtained following 

these parameters. It can be observed that PV generation alone is not capable of reducing the yearly 

maximum power but due to its effect the power curve presents lower minimum values and also 

exhibits larger variations, see Figure 8b. The introduction of ES manages to reduce the yearly power 

peak and produce a flatter profile than the curves depicted in Figure 8a and 8b; however, the yearly 

curve still presents power spikes, see Figure 8c. 

Table 4. Test system 1—Optimal operation parameters (Time-series classification-5 Clusters). 

Cluster 

Number 

Charge Limit 

Factor 

Discharge Limit 

Factor 

Charge Correction 

Factor 

Discharge Correction 

Factor 

1 0.68 0.24 2.00 0.46 

2 0.20 –0.30 1.19 0.79 

3 1.04 0.06 2.00 0.42 

4 0.30 1.30 0.55 2.00 

5 0.01 0.45 0.94 2.00 
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(a) Without PV generation. 

 

(b) With PV generation. 

 

(c) With PV generation and ES. 

Figure 8. Test system 1—Yearly active power curve (Time-series classification-5 clusters). 

5.3. Discussion 

One important aspect that should not be ignored is the effect that the fitness function can have 

on the GPGA performance and how the devices affect the operational variables. PV generation can 

help to reduce both the annual energy provided by the substation transformer and the yearly energy 

losses; the peak power occurs at a time when PV generation is zero and the yearly power standard 

deviation is actually increased due to the presence of PV generation.  

As for ES, operation parameters will determine how the operational variables will be affected 

by ES operation. The operation band defined by the charge and discharge limits will delimit the 
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expected standard deviation by constraining the active power profile to this band; this action will also 

help to reduce the maximum peak power delivered by the substation transformer. On the other hand, 

total energy losses will be a result of the interaction between the ES charge (loss increment) and 

discharge (loss reduction) states. The ES operation curve mirrors the behavior of the active power 

profile; through this mirrored behavior the ES unit will adjust its power injection/absorption to the 

system’s loading. However, the actual power value that needs to be generated/absorbed in order to 

produce an overall improvement in system conditions cannot be pre-assumed. Therefore, the initial 

operation curve defined by the charge and discharge limits must corrected in order to produce the 

greatest impact on the system: the charge correction factor will ensure that the ES unit has enough 

energy to meet the pre-dispatched discharge without producing an unacceptable increment in energy 

losses, whereas the discharge correction factor will help to improve the overall system  

conditions (standard deviation, peak power, and energy losses) while balancing the use of energy so 

it is not depleted too quickly. In general, the interactions among the different operation parameters 

will produce much larger reductions for the yearly maximum power and yearly power standard 

deviation than for energy losses; therefore, the procedure will drive the optimal operation towards 

benefiting these operational variables. 

Defining a fitness function that accurately reflects the objectives behind the optimization 

procedure is a critical task. Furthermore, the interconnection transformers represent a new source of 

losses (i.e., no-load and load losses), which in some cases cannot be compensated by the reduction in 

conduction losses (i.e., losses in distribution lines) and can limit the connection of larger PV 

generators and ES units. 

The resulting ES operation curves correspond to a system behavior under known load and 

generator curves; therefore, they cannot be used for actual day-to-day operation. However, the 

optimal operation parameters found by the GPGA can be used to define a preliminary operation 

curve based on day-ahead load and generation forecast. For this purpose, the distribution system 

must be simulated using the forecasted load and generation curves; then the resulting active power 

profile will be used to construct a preliminary ES operation curve by applying the corresponding 

operation parameters. The preliminary operation curve can be used as a base to create a set of 

operation curves (by introducing random variations) that can serve as the initial population of a 

GPGA aimed at determining the optimal daily operation curve by optimizing every single ES 

operation point. Using a set of curves based on the preliminary operation curve should speed-up 

algorithm convergence when compared to a randomly generated initial population. 

6. Case study 2: optimization of multiple energy storage units 

6.1. Test system configuration 

A new test system has been studied in order to test the optimization of multiple ES units; the 

optimization procedure presented in the previous sections was implemented to be independent of test 

system size as well as of the number of PV generators and ES units under evaluation. 

The new test system is a three-phase 60-Hz overhead system with a simplified representation of 

the HV transmission system (see Figure 9). ES units and PV generators have the same configuration 

and characteristics that in the previous test system; see Figures 5 and 6. By default, all distribution 

loads are connected to the system through MV/LV transformers. 
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Figure 9. Test system 2—Configuration. 

Some important information related to the new test system follows: 

 HV rated voltage: 230 kV 

 HV actual voltage: 1.03 pu 

 MV rated voltage: 4.16 kV 

 LV rated voltage: 0.4 kV 

 Substation transformer rated power: 2500 kVA 

 Total rated active load: 1700 kW. 
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Operational variables for the new test system (without ES and PV generators) are as follows:  

 Annual energy: 7459245.8 kWh 

 Yearly energy losses: 199519.6 kWh 

 Maximum yearly power: 1473.8 kW 

 Yearly standard deviation: 183.9 kW. 

As in Test System 1, loads have been modelled as voltage-independent and curve shapes have 

been derived with the procedure presented in [36]. Day-classification was conducted with the 

following rated powers for PV generators 1–4: 115, 40, 115, and 270 kW. 

6.2. Simulation results 

Simulation results for all three scenarios are presented in Table 5; for the Time-series and Daily-

values methods, the optimal number of clusters derived from the CH index (2 and 3 clusters, 

respectively) were used for the ES operation, see Figure 10.  

Table 5. Test system 2—Operating conditions with energy storage. 

 Day-classification method 

Daily served energy 

and PV generation 
Time-series Daily-values 

Number of clusters - 2 3 

Best fitness 2.3064 2.4478 2.4201 

Generation count 110 128 131 

Simulation time (sec) 48688.6 17891.6 22258.4 

PV generator rated power (kW) 40-80-15-15 80-220-15-15 105 -105-25-90 

ES unit rated power (kW) 80-15-15-40 105-220-15-15 50-40-50-170 

ES unit rated energy (kWh) 800-105-150-400 895-2200-150-150 450-400-500-1700 

Interconnection transformer rated power (kVA) 160-160-30-50 210-440-30-20 110-210-60-340 

Annual energy (kWh) 7294475.4 7149353.3 7136362.4 

Yearly energy losses (kWh) 207009.7 211395.4 212202.3 

Maximum yearly power (kW) 1403.5 1127.6 1164.5 

Yearly power standard deviation (kW) 162.1 142.8 148.1 

Note that optimal numbers of clusters are much lower than those obtained with the previous test 

system. This behavior is due to the smoothening effect produced by the aggregation of loads: Test 

System 1 only served two loads, which caused a more varying power profile, whereas the larger 

number of loads in the new test system generates a smoother profile. It can be observed that the 

Time-series classification produces the highest best fitness value and requires the shortest simulation 

times; these results are in line with those presented in the previous section. With the exception of 

energy losses, all classification methods were able to produce reductions in the operational variables 

when compared to the values without ES and PV generation; moreover, the Time-series and Daily-

values methods produced better results than the Daily served energy and PV generation method. 

Consequently, the optimization procedure can be regarded as satisfactory, since the increment in 

energy losses is clearly outweighed by the improvement in the rest of the operational variables. 
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(a) Daily served energy and PV generation. 

 
(b) Time-series (2 clusters). 

 

(c) Daily-values (3 clusters). 

Figure 10. Test system 2 day—Classification. 

The optimal values for PV generators and ES units present large variations for the ratings of 

individual units; however, the Time-series and Daily-values classification methods present similar 

penetration factors (i.e., total installed power) for both generation and storage. 

The results presented in [51] show that different combinations of rated powers and locations of 

PV generators can produce similar values of energy losses; therefore, it can also be expected that 

similar values for the operational variables can be obtained with different ratings of PV generators 

and ES units. 

All GPGA executions converged due to the δ/ε criterion; however, since GA is a stochastic 

optimization procedure, it is possible for it to converge before reaching the optimal solution. If the 

test system size and number of clusters used in the ES operation mode result in affordable simulation 
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times, the GPGA can be executed without the δ/ε criterion, that is, the procedure will stop when it 

has reached the maximum number of generations. 

The optimization procedure was executed for 200, 250, and 300 generations using the Time-

series classification method with 2 clusters. Results in Table 6 show an improvement with respect to 

the values without ES and PV generation; moreover, the best fitness value seems to indicate that 200 

generations are enough for obtaining optimal results. Note that operational variables present 

consistent values among executions. The optimal ratings of PV generators and ES units show clear 

variations among executions, whereas penetration factors exhibit a more constant trend, a behavior 

that has remained constant throughout all conducted studies. Consecutive executions of the 

procedure can be used to produce several combinations of rating values that can be selected in a real-

life application or to explore the optimal penetration factor for PV generation and energy storage. 

Table 6. Test system 2—Simulation results-time-series classification. 

Number of clusters 2 2 2 

Best fitness 2.4703 2.4631 2.4675 

Generation count 200 250 300 

Simulation time (sec) 28645.6 35565.5 43038.9 

PV generator rated power (kW) 25-15-145-220 15-50-105-335 15-270-115-15 

ES unit rated power (kW) 15-15-115-210 15-50-50-300 15-220-105-15 

ES unit rated energy (kWh) 150-150-1150-2100 150-500-500-3000 45-2200-1050-150 

Interconnection transformer rated power (kVA) 30-20-160-270 20-60-110-360 20-280-120-30 

Annual energy (kWh) 7012252.4 6880414.1 7013129.7 

Yearly energy losses (kWh) 204681.5 205104.7 206536.3 

Maximum yearly power (kW) 1131.2 1133.8 1123.0 

Yearly power standard deviation (kW) 141.7 146.6 142.4 

7. Discussion and future work 

The main focus of most previous works on the main topics covered in this paper is the optimum 

sizing and operation of ES units within microgrids or small-size power systems, being the typical 

optimization period for ES operation 24 hours; larger evaluation periods are generally divided into a 

reduced number of representative days (usually through clustering techniques) and ES operation is 

optimized for each representative day. For this work, an evaluation period of one year with a time 

step of one hour has been considered. Since only through the optimization of every single operation 

point (i.e., every hour of the year) the global optimum can be reached, the problem dimension 

becomes very large, and even with the aid of a multi-core installation simulation times are 

prohibitive. Furthermore, a stochastic optimization method, such as GA, cannot guarantee the 

optimal solution for an optimization problem with such a large number of input parameters. 

Therefore, there must exist a tradeoff between optimality and the achievement of a feasible solution. 

A comparison between the results derived from the developed methodology and other previous 

works has not been possible due to the difficulty (or impossibility) to adequate other procedures to 

the conditions established in the present work. The long term evaluation (i.e., one year) and system 

solution by means of a power flow simulator appear to be incompatible with the formulation used in 



93 

AIMS Energy                                                               Volume 6, Issue 1, 70–96. 

other methodologies. On the other hand, assuming the restrictions imposed in other works (such as 

the evaluation period represented as a group of representative days or the introduction of 

simplifications into the solution of the electrical system) would defeat the purpose of a procedure that 

seeks to solve the problem through a detailed representation of the system under study and its 

behavior during the entire evaluation period. 

Future work could be aimed at improving the criteria used in the classification of the evaluation 

period days, expanding the evaluation period (i.e., several years) and taking into account yearly load 

variation, refining the proposed operation mode, and defining a fitness function that best balances the 

improvements in each of the operational variables. Further work could also be based on an 

optimization procedure that does not rely on dimension reduction techniques and could cope with 

time steps shorter than one hour (e.g., 15 minutes). 

8. Conclusions 

This paper has presented the application of a General Parallel Genetic Algorithm to determine 

the optimal ratings of multiple fixed-location PV generators and ES units when they are operated 

from the utility’s perspective. The evaluation is performed with OpenDSS, which allows for a 

detailed modeling of the distribution system and an accurate estimation of network conditions; that is, 

no simplifications are introduced into the solution of the electrical system, the evaluated system can 

be of any size, and detailed models and advanced control strategies algorithms for system 

components can be included. 

The optimization of ES ratings cannot be done without considering an optimal dispatch strategy; 

the operation mode proposed in this work attempts to simplify the arduous task of optimizing the 

complete yearly ES dispatch. The implemented strategy reduces the number of variables to be 

optimized by using clustering techniques that group the days of the year into different clusters. 

However, unlike other works, each group of days is not independently optimized. Each possible 

solution is evaluated by simulating the test system during the entire evaluation period. This approach 

ensures that the evaluation period is assessed as a whole (not as a decoupled group of representative 

days) and the ES current state is the result of the complete ES operation history. 

The introduction of parallel computing into the optimization procedure has allowed for 

affordable execution times. Although each individual simulation does not require large simulation 

times, the repeated evaluation of the system in a sequential manner would result in prohibitive 

execution times. Therefore, only optimization techniques that are prone to parallelization could be 

used in conjunction with a power flow simulator and a long term evaluation, since sequential 

techniques would be unfeasible due to the resulting execution times. 

It is important to emphasize that the locations of PV generators and ES units were arbitrarily 

chosen in this work; however, one must keep in mind that the location of a power source (generation 

or consumption) can have a non-negligible impact on energy losses and system voltages. 

The main features of the implemented methodology may be listed as follows: (i) system 

conditions are estimated by means of a power flow simulator, (ii) the methodology is independent of 

system size and the number of units to be optimized, (iii) ES operation is optimized for an evaluation 

period of one year, (iv) the operation strategy of ES units is based on the daily variation of load and 

generation curves, (v) hierarchical clustering is used to group daily power curves in order to reduce 

the dimension of the optimization problem, (vi) time-driven simulation ensures that the evaluation 
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period is assessed as a whole and the ES current state is the result of the ES operation history,  

and (vii) the parallel approach used in the GA implementation allows for affordable execution times. 
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