Citation: Michael L. Akenhead, Hainsworth Y. Shin. The Contribution of Cell Surface Components to the Neutrophil Mechanosensitivity to Shear Stresses[J]. AIMS Biophysics, 2015, 2(3): 318-335. doi: 10.3934/biophy.2015.3.318
[1] | Schmid-Schonbein GW (2006) Analysis of inflammation. Annu Rev Biomed Eng 8: 93-131. doi: 10.1146/annurev.bioeng.8.061505.095708 |
[2] | Segel GB, Halterman MW, Lichtman MA (2011) The paradox of the neutrophil's role in tissue injury. J Leukoc Biol 89: 359-372. doi: 10.1189/jlb.0910538 |
[3] | Mazzoni MC, Schmid-Schonbein GW (1996) Mechanisms and consequences of cell activation in the microcirculation. Cardiovascular Research 32: 709-719. doi: 10.1016/0008-6363(96)00146-0 |
[4] | Harris AG, Skalak TC (1993) Effects of leukocyte activation on capillary hemodynamics in skeletal muscle. Am J Physiol 264: H909-916. |
[5] | Helmke BP, Sugihara-Seki M, Skalak R, et al. (1998) A mechanism for erythrocyte-mediated elevation of apparent viscosity by leukocytes in vivo without adhesion to the endothelium. Biorheology 35: 437-448. doi: 10.1016/S0006-355X(99)80021-3 |
[6] | Aggarwal BB, Shishodia S, Sandur SK, et al. (2006) Inflammation and cancer: how hot is the link? Biochem Pharmacol 72: 1605-1621. doi: 10.1016/j.bcp.2006.06.029 |
[7] | Akter K, Lanza EA, Martin SA, et al. (2011) Diabetes mellitus and Alzheimer's disease: shared pathology and treatment? Br J Clin Pharmacol 71: 365-376. doi: 10.1111/j.1365-2125.2010.03830.x |
[8] | Kim YM, Yamazaki I, Piette LH (1994) The effect of hemoglobin, hematin, and iron on neutrophil inactivation in superoxide generating systems. Arch Biochem Biophys 309: 308-314. doi: 10.1006/abbi.1994.1118 |
[9] | Miles K, Clarke DJ, Lu W, et al. (2009) Dying and necrotic neutrophils are anti-inflammatory secondary to the release of alpha-defensins. J Immunol 183: 2122-2132. doi: 10.4049/jimmunol.0804187 |
[10] | Noris M, Morigi M, Donadelli R, et al. (1995) Nitric oxide synthesis by cultured endothelial cells is modulated by flow conditions. Circ Res 76: 536-543 doi: 10.1161/01.RES.76.4.536 |
[11] | Tedgui A, Mallat Z (2001) Anti-inflammatory mechanisms in the vascular wall. Circ Res 88: 877-887. doi: 10.1161/hh0901.090440 |
[12] | Watanabe J, Lin JA, Narasimha AJ, et al. (2010) Novel anti-inflammatory functions for endothelial and myeloid cyclooxygenase-2 in a new mouse model of Crohn's disease. Am J Physiol Gastrointest Liver Physiol 298: G842-850. doi: 10.1152/ajpgi.00468.2009 |
[13] | Berk BC, Abe JI, Min W, et al. (2001) Endothelial atheroprotective and anti-inflammatory mechanisms. Ann N Y Acad Sci 947: 93-109. |
[14] | Hsieh HJ, Liu CA, Huang B, et al. (2014) Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. J Biomed Sci 21: 3. doi: 10.1186/1423-0127-21-3 |
[15] | Makino A, Glogauer M, Bokoch GM, et al. (2005) Control of neutrophil pseudopods by fluid shear: role of Rho family GTPases. Am J Physiol Cell Physiol 288: C863-871. |
[16] | Shin HY, Zhang X, Makino A, et al. (2011) Mechanobiological Evidence for the Control of Neutrophil Activity by Fluid Shear Stress. In: Mechanobiology Handbook. CRC Press, 139-175. |
[17] | Shin HY, Simon SI, Schmid-Schonbein GW (2008) Fluid shear-induced activation and cleavage of CD18 during pseudopod retraction by human neutrophils. J Cell Physiol 214: 528-536. doi: 10.1002/jcp.21235 |
[18] | Zhang X, Zhan D, Shin HY (2013) Integrin subtype-dependent CD18 cleavage under shear and its influence on leukocyte-platelet binding. J Leukoc Biol 93: 251-258. doi: 10.1189/jlb.0612302 |
[19] | Makino A, Prossnitz ER, Bunemann M, et al. (2006) G protein-coupled receptors serve as mechanosensors for fluid shear stress in neutrophils. Am J Physiol Cell Physiol 290: C1633-1639. doi: 10.1152/ajpcell.00576.2005 |
[20] | Mitchell MJ, King MR (2012) Shear-induced resistance to neutrophil activation via the formyl peptide receptor. Biophys J 102: 1804-1814. doi: 10.1016/j.bpj.2012.03.053 |
[21] | Papaioannou TG, Stefanadis C (2005) Vascular wall shear stress: basic principles and methods. Hellenic J Cardiol 46: 9-15. |
[22] | Sheikh S, Rainger GE, Gale Z, et al. (2003) Exposure to fluid shear stress modulates the ability of endothelial cells to recruit neutrophils in response to tumor necrosis factor-alpha: a basis for local variations in vascular sensitivity to inflammation. Blood 102: 2828-2834. doi: 10.1182/blood-2003-01-0080 |
[23] | Stepp DW, Nishikawa Y, Chilian WM (1999) Regulation of shear stress in the canine coronary microcirculation. Circulation 100: 1555-1561 doi: 10.1161/01.CIR.100.14.1555 |
[24] | Koutsiaris AG, Tachmitzi SV, Batis N, et al. (2007) Volume flow and wall shear stress quantification in the human conjunctival capillaries and post-capillary venules in vivo. Biorheology 44: 375-386 |
[25] | Marki A, Esko JD, Pries AR, et al. (2015) Role of the endothelial surface layer in neutrophil recruitment. J Leukoc Biol. |
[26] | Dewitz TS, McIntire LV, Martin RR, et al. (1979) Enzyme release and morphological changes in leukocytes induced by mechanical trauma. Blood Cells 5: 499-512 |
[27] | Zhelev DV, Alteraifi AM, Chodniewicz D (2004) Controlled pseudopod extension of human neutrophils stimulated with different chemoattractants. Biophys J 87: 688-695. doi: 10.1529/biophysj.103.036699 |
[28] | Coughlin MF, Schmid-Schonbein GW (2004) Pseudopod projection and cell spreading of passive leukocytes in response to fluid shear stress. Biophys J 87: 2035-2042. doi: 10.1529/biophysj.104.042192 |
[29] | Komai Y, Schmid-Schonbein GW (2005) De-activation of neutrophils in suspension by fluid shear stress: a requirement for erythrocytes. Ann Biomed Eng 33: 1375-1386. doi: 10.1007/s10439-005-6768-6 |
[30] | Fukuda S, Yasu T, Predescu DN, et al. (2000) Mechanisms for regulation of fluid shear stress response in circulating leukocytes. Circ Res 86: E13-18. doi: 10.1161/01.RES.86.1.e13 |
[31] | Moazzam F, DeLano FA, Zweifach BW, et al. (1997) The leukocyte response to fluid stress. Proc Natl Acad Sci U S A 94: 5338-5343. doi: 10.1073/pnas.94.10.5338 |
[32] | Shive MS, Salloum ML, Anderson JM (2000) Shear stress-induced apoptosis of adherent neutrophils: a mechanism for persistence of cardiovascular device infections. Proc Natl Acad Sci U S 97: 6710-6715. doi: 10.1073/pnas.110463197 |
[33] | Lee D, Schultz JB, Knauf PA, et al. (2007) Mechanical shedding of L-selectin from the neutrophil surface during rolling on sialyl Lewis x under flow. J Biol Chem 282: 4812-4820. doi: 10.1074/jbc.M609994200 |
[34] | Shive MS, Brodbeck WG, Anderson JM (2002) Activation of caspase 3 during shear stress-induced neutrophil apoptosis on biomaterials. J Biomed Mater Res 62: 163-168. doi: 10.1002/jbm.10225 |
[35] | Makino A, Shin HY, Komai Y, et al. (2007) Mechanotransduction in leukocyte activation: a review. Biorheology 44: 221-249. |
[36] | Zhang X, Hurng J, Rateri DL, et al. (2011) Membrane cholesterol modulates the fluid shear stress response of polymorphonuclear leukocytes via its effects on membrane fluidity. Am J Physiol Cell Physiol 301: C451-460. doi: 10.1152/ajpcell.00458.2010 |
[37] | Akenhead ML, Zhang X, Shin HY (2014) Characterization of the shear stress regulation of CD18 surface expression by HL60-derived neutrophil-like cells. Biomech Model Mechanobiol 13: 861-870. |
[38] | Sugihara-Seki M, Schmid-Schonbein GW (2003) The fluid shear stress distribution on the membrane of leukocytes in the microcirculation. J Biomech Eng 125: 628-638 doi: 10.1115/1.1611515 |
[39] | Conway DE, Breckenridge MT, Hinde E, et al. (2013) Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr Biol 23: 1024-1030. doi: 10.1016/j.cub.2013.04.049 |
[40] | Goldmann WH (2012) Mechanotransduction and focal adhesions. Cell Biol Int 36: 649-652. doi: 10.1042/CBI20120184 |
[41] | Kamm RD, Kaazempur-Mofrad MR (2004) On the molecular basis for mechanotransduction. Mech Chem Biosyst 1: 201-209 |
[42] | Lee SE, Kamm RD, Mofrad MR (2007) Force-induced activation of talin and its possible role in focal adhesion mechanotransduction. J Biomech 40: 2096-2106. doi: 10.1016/j.jbiomech.2007.04.006 |
[43] | Jannat RA, Robbins GP, Ricart BG, et al. (2010) Neutrophil adhesion and chemotaxis depend on substrate mechanics. J Phys Condens Matter 22: 194117. doi: 10.1088/0953-8984/22/19/194117 |
[44] | Fukuda S, Schmid-Schonbein GW (2003) Regulation of CD18 expression on neutrophils in response to fluid shear stress. Proc Natl Acad Sci U S A 100: 13152-13157. doi: 10.1073/pnas.2336130100 |
[45] | Su SS, Schmid-Schonbein GW (2008) Fluid stresses on the membrane of migrating leukocytes. Ann Biomed Eng 36: 298-307. doi: 10.1007/s10439-007-9406-7 |
[46] | Seely AJ, Pascual JL, Christou NV (2003) Science review: Cell membrane expression (connectivity) regulates neutrophil delivery, function and clearance. Crit Care 7: 291-307. doi: 10.1186/cc1853 |
[47] | Tarbell JM, Pahakis MY (2006) Mechanotransduction and the glycocalyx. J Intern Med 259: 339-350. doi: 10.1111/j.1365-2796.2006.01620.x |
[48] | White CR, Frangos JA (2007) The shear stress of it all: the cell membrane and mechanochemical transduction. Philos Trans R Soc Lond B Biol Sci 362: 1459-1467. doi: 10.1098/rstb.2007.2128 |
[49] | Bodin S, Welch MD (2005) Plasma membrane organization is essential for balancing competing pseudopod- and uropod-promoting signals during neutrophil polarization and migration. Mol Biol Cell 16: 5773-5783. doi: 10.1091/mbc.E05-04-0358 |
[50] | Butler PJ, Norwich G, Weinbaum S, et al. (2001) Shear stress induces a time- and position-dependent increase in endothelial cell membrane fluidity. Am J Physiolp Cell Physiolp 280: C962-969. |
[51] | Berlin RD, Fera JP (1977) Changes in membrane microviscosity associated with phagocytosis: effects of colchicine. Proc Natl Acad Sci U S A 74: 1072-1076. doi: 10.1073/pnas.74.3.1072 |
[52] | Wiles ME, Dykens JA, Wright CD (1994) Regulation of polymorphonuclear leukocyte membrane fluidity: effect of cytoskeletal modification. Journal of leukocyte biology 56: 192-199. |
[53] | Tomonaga A, Hirota M, Snyderman R (1983) Effect of membrane fluidizers on the number and affinity of chemotactic factor receptors on human polymorphonuclear leukocytes. Microbiol Immunol 27: 961-972. doi: 10.1111/j.1348-0421.1983.tb00662.x |
[54] | Yuli I, Tomonaga A, Synderman R (1982) Chemoattractant receptor functions in human polymorphonuclear leukocytes are divergently altered by membrane fluidizers. Proc Natl Acad Sci U S A 79: 5906-5910. doi: 10.1073/pnas.79.19.5906 |
[55] | Ferraro JT, Daneshmand M, Bizios R, et al. (2004) Depletion of plasma membrane cholesterol dampens hydrostatic pressure and shear stress-induced mechanotransduction pathways in osteoblast cultures. Am J Physiol Cell Physiol 286: C831-839. doi: 10.1152/ajpcell.00224.2003 |
[56] | Rizzo V, McIntosh DP, Oh P, et al. (1998) In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association. J Biol Chem 273: 34724-34729. doi: 10.1074/jbc.273.52.34724 |
[57] | Rizzo V, Sung A, Oh P, et al. (1998) Rapid mechanotransduction in situ at the luminal cell surface of vascular endothelium and its caveolae. J Biol Chem 273: 26323-26329. doi: 10.1074/jbc.273.41.26323 |
[58] | Niggli V, Meszaros AV, Oppliger C, et al. (2004) Impact of cholesterol depletion on shape changes, actin reorganization, and signal transduction in neutrophil-like HL-60 cells. Exp Cell Res 296: 358-368. doi: 10.1016/j.yexcr.2004.02.015 |
[59] | Tuluc F, Meshki J, Kunapuli SP (2003) Membrane lipid microdomains differentially regulate intracellular signaling events in human neutrophils. Int Immunopharmacol 3: 1775-1790. doi: 10.1016/j.intimp.2003.08.002 |
[60] | Marwali MR, Rey-Ladino J, Dreolini L, et al. (2003) Membrane cholesterol regulates LFA-1 function and lipid raft heterogeneity. Blood 102: 215-222. doi: 10.1182/blood-2002-10-3195 |
[61] | Solomkin JS, Robinson CT, Cave CM, et al. (2007) Alterations in membrane cholesterol cause mobilization of lipid rafts from specific granules and prime human neutrophils for enhanced adherence-dependent oxidant production. Shock 28: 334-338. doi: 10.1097/shk.0b013e318047b893 |
[62] | Cattaruzza M, Dimigen C, Ehrenreich H, et al. (2000) Stretch-induced endothelin B receptor-mediated apoptosis in vascular smooth muscle cells. FASEB J 14: 991-998. |
[63] | Chachisvilis M, Zhang YL, Frangos JA (2006) G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci U S A 103: 15463-15468. doi: 10.1073/pnas.0607224103 |
[64] | Yasuda N, Miura S, Akazawa H, et al. (2008) Conformational switch of angiotensin II type 1 receptor underlying mechanical stress-induced activation. EMBO Rep 9: 179-186. doi: 10.1038/sj.embor.7401157 |
[65] | Zhang YL, Frangos JA, Chachisvilis M (2009) Mechanical stimulus alters conformation of type 1 parathyroid hormone receptor in bone cells. Am J Physiol Cell Physiol 296: C1391-1399. doi: 10.1152/ajpcell.00549.2008 |
[66] | Zou Y, Akazawa H, Qin Y, et al. (2004) Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 6: 499-506. doi: 10.1038/ncb1137 |
[67] | Chen KD, Li YS, Kim M, et al. (1999) Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J Biol Chem 274: 18393-18400. |
[68] | Iwasaki H, Eguchi S, Ueno H, et al. (2000) Mechanical stretch stimulates growth of vascular smooth muscle cells via epidermal growth factor receptor. Am J Physiol Heart Circ Physiol 278: H521-529. |
[69] | Jin ZG, Ueba H, Tanimoto T, et al. (2003) Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase. Circ Res 93: 354-363. doi: 10.1161/01.RES.0000089257.94002.96 |
[70] | Lee HJ, Koh GY (2003) Shear stress activates Tie2 receptor tyrosine kinase in human endothelial cells. Biochem Biophys Res Commun 304: 399-404. doi: 10.1016/S0006-291X(03)00592-8 |
[71] | Milkiewicz M, Doyle JL, Fudalewski T, et al. (2007) HIF-1alpha and HIF-2alpha play a central role in stretch-induced but not shear-stress-induced angiogenesis in rat skeletal muscle. J Physiol 583: 753-766. doi: 10.1113/jphysiol.2007.136325 |
[72] | Palumbo R, Gaetano C, Melillo G, et al. (2000) Shear stress downregulation of platelet-derived growth factor receptor-beta and matrix metalloprotease-2 is associated with inhibition of smooth muscle cell invasion and migration. Circulation 102: 225-230. doi: 10.1161/01.CIR.102.2.225 |
[73] | Shay-Salit A, Shushy M, Wolfovitz E, et al. (2002) VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proc Natl Acad Sci U S A 99: 9462-9467. doi: 10.1073/pnas.142224299 |
[74] | Gu CX, Juranka PF, Morris CE (2001) Stretch-activation and stretch-inactivation of Shaker-IR, a voltage-gated K+ channel. Biophys J 80: 2678-2693. doi: 10.1016/S0006-3495(01)76237-6 |
[75] | Maingret F, Patel AJ, Lesage F, et al. (1999) Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem 274: 26691-26696 doi: 10.1074/jbc.274.38.26691 |
[76] | Tarbell JM, Weinbaum S, Kamm RD (2005) Cellular fluid mechanics and mechanotransduction. Ann Biomed Eng 33: 1719-1723. doi: 10.1007/s10439-005-8775-z |
[77] | Haugh MG, Vaughan TJ, McNamara LM (2015) The role of integrin alpha(V)beta(3) in osteocyte mechanotransduction. J Mech Behav Biomed Mater 42: 67-75. doi: 10.1016/j.jmbbm.2014.11.001 |
[78] | Teravainen TP, Myllymaki SM, Friedrichs J, et al. (2013) alphaV-integrins are required for mechanotransduction in MDCK epithelial cells. PloS one 8: e71485. doi: 10.1371/journal.pone.0071485 |
[79] | Watabe H, Furuhama T, Tani-Ishii N, et al. (2011) Mechanotransduction activates alpha(5)beta(1) integrin and PI3K/Akt signaling pathways in mandibular osteoblasts. Exp Cell Res 317: 2642-2649. doi: 10.1016/j.yexcr.2011.07.015 |
[80] | Gudi S, Nolan JP, Frangos JA (1998) Modulation of GTPase activity of G proteins by fluid shear stress and phospholipid composition. Proc Natl Acad Sci U S A 95: 2515-2519. doi: 10.1073/pnas.95.5.2515 |
[81] | Gudi SR, Clark CB, Frangos JA (1996) Fluid flow rapidly activates G proteins in human endothelial cells. Involvement of G proteins in mechanochemical signal transduction. Circ Res 79: 834-839. |
[82] | Migeotte I, Communi D, Parmentier M (2006) Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses. Cytokine Growth Factor Rev 17: 501-519. doi: 10.1016/j.cytogfr.2006.09.009 |
[83] | Gerisch G, Keller HU (1981) Chemotactic reorientation of granulocytes stimulated with micropipettes containing fMet-Leu-Phe. J Cell Sci 52: 1-10. |
[84] | Welch MD, Mallavarapu A, Rosenblatt J, et al. (1997) Actin dynamics in vivo. Curr Opin Cell Biol 9: 54-61. doi: 10.1016/S0955-0674(97)80152-4 |
[85] | Hall A (1994) Small GTP-binding proteins and the regulation of the actin cytoskeleton. Ann Rev Cell Biol 10: 31-54. doi: 10.1146/annurev.cb.10.110194.000335 |
[86] | Ridley AJ (2001) Rho family proteins: coordinating cell responses. Trends Cell Biol 11: 471-477. doi: 10.1016/S0962-8924(01)02153-5 |
[87] | Chen AY, DeLano FA, Valdez SR, et al. (2010) Receptor cleavage reduces the fluid shear response in neutrophils of the spontaneously hypertensive rat. Am J Physiol Cell Physiol 299: C1441-1449. doi: 10.1152/ajpcell.00157.2010 |
[88] | Su SS, Schmid-Schonbein GW (2010) Internalization of Formyl Peptide Receptor in Leukocytes Subject to Fluid Stresses. Cell Mol Bioeng 3: 20-29. doi: 10.1007/s12195-010-0111-5 |
[89] | Mazzone A, Ricevuti G (1995) Leukocyte CD11/CD18 integrins: biological and clinical relevance. Haematologica 80: 161-175. |
[90] | Root RK (1990) Leukocyte adhesion proteins: their role in neutrophil function. Trans Am Clin Climatol Assoc 101: 207-224; discussion 224-206. |
[91] | Diacovo TG, Roth SJ, Buccola JM, et al. (1996) Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the beta 2-integrin CD11b/CD18. Blood 88: 146-157. |
[92] | Hentzen ER, Neelamegham S, Kansas GS, et al. (2000) Sequential binding of CD11a/CD18 and CD11b/CD18 defines neutrophil capture and stable adhesion to intercellular adhesion molecule-1. Blood 95: 911-920. |
[93] | Paszkowiak JJ, Dardik A (2003) Arterial wall shear stress: observations from the bench to the bedside. Vascular Endovascular Surgery 37: 47-57. doi: 10.1177/153857440303700107 |
[94] | Shyy JY, Chien S (2002) Role of integrins in endothelial mechanosensing of shear stress. Circ Res 91: 769-775. doi: 10.1161/01.RES.0000038487.19924.18 |
[95] | Tzima E, Irani-Tehrani M, Kiosses WB, et al. (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437: 426-431. doi: 10.1038/nature03952 |
[96] | Lipowsky HH (2005) Microvascular rheology and hemodynamics. Microcirculation 12: 5-15. doi: 10.1080/10739680590894966 |
[97] | Pohlman TH, Harlan JM (2000) Adaptive responses of the endothelium to stress. J Surg Res 89: 85-119. doi: 10.1006/jsre.1999.5801 |
[98] | Butler PJ, Tsou TC, Li JY, et al. (2002) Rate sensitivity of shear-induced changes in the lateral diffusion of endothelial cell membrane lipids: a role for membrane perturbation in shear-induced MAPK activation. FASEB J 16: 216-218. |
[99] | Haidekker MA, L'Heureux N, Frangos JA (2000) Fluid shear stress increases membrane fluidity in endothelial cells: a study with DCVJ fluorescence. Am J Physiol Heart Circ Physiol 278: H1401-1406. |
[100] | Friedland JC, Lee MH, Boettiger D (2009) Mechanically activated integrin switch controls alpha5beta1 function. Science 323: 642-644. doi: 10.1126/science.1168441 |
[101] | Puklin-Faucher E, Gao M, Schulten K, et al. (2006) How the headpiece hinge angle is opened: New insights into the dynamics of integrin activation. J Cell Biol 175: 349-360. doi: 10.1083/jcb.200602071 |
[102] | Marschel P, Schmid-Schonbein GW (2002) Control of fluid shear response in circulating leukocytes by integrins. Ann Biomed Eng 30: 333-343. doi: 10.1114/1.1475342 |
[103] | McCleverty CJ, Liddington RC (2003) Engineered allosteric mutants of the integrin alphaMbeta2 I domain: structural and functional studies. Biochem J 372: 121-127. |
[104] | Luo BH, Karanicolas J, Harmacek LD, et al. (2009) Rationally designed integrin beta3 mutants stabilized in the high affinity conformation. J Biol Chem 284: 3917-3924. doi: 10.1074/jbc.M806312200 |
[105] | Lenaz G (1987) Lipid fluidity and membrane protein dynamics. Biosci Rep 7: 823-837. doi: 10.1007/BF01119473 |
[106] | Ben-Bassat H, Polliak A, Rosenbaum SM, et al. (1977) Fluidity of membrane lipids and lateral mobility of concanavalin A receptors in the cell surface of normal lymphocytes and lymphocytes from patients with malignant lymphomas and leukemias. Cancer Res 37: 1307-1312. |
[107] | Yeagle PL (1991) Modulation of membrane function by cholesterol. Biochimie 73: 1303-1310. doi: 10.1016/0300-9084(91)90093-G |
[108] | Chabanel A, Flamm M, Sung KL, et al. (1983) Influence of cholesterol content on red cell membrane viscoelasticity and fluidity. Biophys J 44: 171-176. doi: 10.1016/S0006-3495(83)84288-X |
[109] | Cooper RA (1978) Influence of increased membrane cholesterol on membrane fluidity and cell function in human red blood cells. J Supramol Struct 8: 413-430. doi: 10.1002/jss.400080404 |
[110] | Khatibzadeh N, Spector AA, Brownell WE, et al. (2013) Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics. PloS one 8: e57147. doi: 10.1371/journal.pone.0057147 |
[111] | Pierini LM, Eddy RJ, Fuortes M, et al. (2003) Membrane lipid organization is critical for human neutrophil polarization. J Biol Chem 278: 10831-10841. doi: 10.1074/jbc.M212386200 |
[112] | Park H, Go YM, St John PL, et al. (1998) Plasma membrane cholesterol is a key molecule in shear stress-dependent activation of extracellular signal-regulated kinase. J Biol Chem 273: 32304-32311. doi: 10.1074/jbc.273.48.32304 |
[113] | Shen K, DeLano FA, Zweifach BW, et al. (1995) Circulating leukocyte counts, activation, and degranulation in Dahl hypertensive rats. Circ Res 76: 276-283. doi: 10.1161/01.RES.76.2.276 |
[114] | Tatsukawa Y, Hsu WL, Yamada M, et al. (2008) White blood cell count, especially neutrophil count, as a predictor of hypertension in a Japanese population. Hypertens Res 31: 1391-1397. doi: 10.1291/hypres.31.1391 |
[115] | Fukuda S, Yasu T, Kobayashi N, et al. (2004) Contribution of fluid shear response in leukocytes to hemodynamic resistance in the spontaneously hypertensive rat. Circ Res 95: 100-108. doi: 10.1161/01.RES.0000133677.77465.38 |
[116] | Zhang X, Cheng R, Rowe D, et al. (2014) Shear-sensitive regulation of neutrophil flow behavior and its potential impact on microvascular blood flow dysregulation in hypercholesterolemia. Arterioscler Thromb Vasc Biol 34: 587-593. |