Review Special Issues

The Contribution of Cell Surface Components to the Neutrophil Mechanosensitivity to Shear Stresses

  • Received: 18 April 2015 Accepted: 30 July 2015 Published: 18 August 2015
  • This review discusses the regulation of neutrophils by fluid shear stress in the context of factors that may govern cell mechanosensitivity and its influence on cell functions. There is substantial evidence that mechanoreceptors located on the peripheral membrane contribute to the ability of shear stress to regulate cell activity. In the case of neutrophils, the formyl peptide receptor (FPR) and the CD18 integrins on the cell membrane have been shown to provide neutrophils with the ability to sense shear stresses in their local environment and alter their physiological state, accordingly. This configuration is also found for other types of cells, although they involve different cell-specific mechanoreceptors. Moreover, from an examination of the neutrophil mechanotransducing capacity, it is apparent that cellular mechanosensitivity depends on a number of factors that, if altered, contribute to dysregulation and ultimately pathophysiology. To exemplify this, we first describe the neutrophil responses to shear exposure. We then review two neutrophil mechanoreceptors, specifically FPR and CD18 integrins, which participate in controlling cell activity levels under physiological conditions. Next, we discuss the various factors that may alter neutrophil mechanosensitivity to shear stress and how these may underlie the circulatory pathobiology of two cardiovascular disease states: hypertension and hypercholesterolemia. Based on the material presented, it is conceivable that cell mechanosensitivity is a powerful global metric that permits a more efficient approach to understanding the contribution of mechanobiology to physiology and to disease processes.

    Citation: Michael L. Akenhead, Hainsworth Y. Shin. The Contribution of Cell Surface Components to the Neutrophil Mechanosensitivity to Shear Stresses[J]. AIMS Biophysics, 2015, 2(3): 318-335. doi: 10.3934/biophy.2015.3.318

    Related Papers:

  • This review discusses the regulation of neutrophils by fluid shear stress in the context of factors that may govern cell mechanosensitivity and its influence on cell functions. There is substantial evidence that mechanoreceptors located on the peripheral membrane contribute to the ability of shear stress to regulate cell activity. In the case of neutrophils, the formyl peptide receptor (FPR) and the CD18 integrins on the cell membrane have been shown to provide neutrophils with the ability to sense shear stresses in their local environment and alter their physiological state, accordingly. This configuration is also found for other types of cells, although they involve different cell-specific mechanoreceptors. Moreover, from an examination of the neutrophil mechanotransducing capacity, it is apparent that cellular mechanosensitivity depends on a number of factors that, if altered, contribute to dysregulation and ultimately pathophysiology. To exemplify this, we first describe the neutrophil responses to shear exposure. We then review two neutrophil mechanoreceptors, specifically FPR and CD18 integrins, which participate in controlling cell activity levels under physiological conditions. Next, we discuss the various factors that may alter neutrophil mechanosensitivity to shear stress and how these may underlie the circulatory pathobiology of two cardiovascular disease states: hypertension and hypercholesterolemia. Based on the material presented, it is conceivable that cell mechanosensitivity is a powerful global metric that permits a more efficient approach to understanding the contribution of mechanobiology to physiology and to disease processes.


    加载中
    [1] Schmid-Schonbein GW (2006) Analysis of inflammation. Annu Rev Biomed Eng 8: 93-131. doi: 10.1146/annurev.bioeng.8.061505.095708
    [2] Segel GB, Halterman MW, Lichtman MA (2011) The paradox of the neutrophil's role in tissue injury. J Leukoc Biol 89: 359-372. doi: 10.1189/jlb.0910538
    [3] Mazzoni MC, Schmid-Schonbein GW (1996) Mechanisms and consequences of cell activation in the microcirculation. Cardiovascular Research 32: 709-719. doi: 10.1016/0008-6363(96)00146-0
    [4] Harris AG, Skalak TC (1993) Effects of leukocyte activation on capillary hemodynamics in skeletal muscle. Am J Physiol 264: H909-916.
    [5] Helmke BP, Sugihara-Seki M, Skalak R, et al. (1998) A mechanism for erythrocyte-mediated elevation of apparent viscosity by leukocytes in vivo without adhesion to the endothelium. Biorheology 35: 437-448. doi: 10.1016/S0006-355X(99)80021-3
    [6] Aggarwal BB, Shishodia S, Sandur SK, et al. (2006) Inflammation and cancer: how hot is the link? Biochem Pharmacol 72: 1605-1621. doi: 10.1016/j.bcp.2006.06.029
    [7] Akter K, Lanza EA, Martin SA, et al. (2011) Diabetes mellitus and Alzheimer's disease: shared pathology and treatment? Br J Clin Pharmacol 71: 365-376. doi: 10.1111/j.1365-2125.2010.03830.x
    [8] Kim YM, Yamazaki I, Piette LH (1994) The effect of hemoglobin, hematin, and iron on neutrophil inactivation in superoxide generating systems. Arch Biochem Biophys 309: 308-314. doi: 10.1006/abbi.1994.1118
    [9] Miles K, Clarke DJ, Lu W, et al. (2009) Dying and necrotic neutrophils are anti-inflammatory secondary to the release of alpha-defensins. J Immunol 183: 2122-2132. doi: 10.4049/jimmunol.0804187
    [10] Noris M, Morigi M, Donadelli R, et al. (1995) Nitric oxide synthesis by cultured endothelial cells is modulated by flow conditions. Circ Res 76: 536-543 doi: 10.1161/01.RES.76.4.536
    [11] Tedgui A, Mallat Z (2001) Anti-inflammatory mechanisms in the vascular wall. Circ Res 88: 877-887. doi: 10.1161/hh0901.090440
    [12] Watanabe J, Lin JA, Narasimha AJ, et al. (2010) Novel anti-inflammatory functions for endothelial and myeloid cyclooxygenase-2 in a new mouse model of Crohn's disease. Am J Physiol Gastrointest Liver Physiol 298: G842-850. doi: 10.1152/ajpgi.00468.2009
    [13] Berk BC, Abe JI, Min W, et al. (2001) Endothelial atheroprotective and anti-inflammatory mechanisms. Ann N Y Acad Sci 947: 93-109.
    [14] Hsieh HJ, Liu CA, Huang B, et al. (2014) Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. J Biomed Sci 21: 3. doi: 10.1186/1423-0127-21-3
    [15] Makino A, Glogauer M, Bokoch GM, et al. (2005) Control of neutrophil pseudopods by fluid shear: role of Rho family GTPases. Am J Physiol Cell Physiol 288: C863-871.
    [16] Shin HY, Zhang X, Makino A, et al. (2011) Mechanobiological Evidence for the Control of Neutrophil Activity by Fluid Shear Stress. In: Mechanobiology Handbook. CRC Press, 139-175.
    [17] Shin HY, Simon SI, Schmid-Schonbein GW (2008) Fluid shear-induced activation and cleavage of CD18 during pseudopod retraction by human neutrophils. J Cell Physiol 214: 528-536. doi: 10.1002/jcp.21235
    [18] Zhang X, Zhan D, Shin HY (2013) Integrin subtype-dependent CD18 cleavage under shear and its influence on leukocyte-platelet binding. J Leukoc Biol 93: 251-258. doi: 10.1189/jlb.0612302
    [19] Makino A, Prossnitz ER, Bunemann M, et al. (2006) G protein-coupled receptors serve as mechanosensors for fluid shear stress in neutrophils. Am J Physiol Cell Physiol 290: C1633-1639. doi: 10.1152/ajpcell.00576.2005
    [20] Mitchell MJ, King MR (2012) Shear-induced resistance to neutrophil activation via the formyl peptide receptor. Biophys J 102: 1804-1814. doi: 10.1016/j.bpj.2012.03.053
    [21] Papaioannou TG, Stefanadis C (2005) Vascular wall shear stress: basic principles and methods. Hellenic J Cardiol 46: 9-15.
    [22] Sheikh S, Rainger GE, Gale Z, et al. (2003) Exposure to fluid shear stress modulates the ability of endothelial cells to recruit neutrophils in response to tumor necrosis factor-alpha: a basis for local variations in vascular sensitivity to inflammation. Blood 102: 2828-2834. doi: 10.1182/blood-2003-01-0080
    [23] Stepp DW, Nishikawa Y, Chilian WM (1999) Regulation of shear stress in the canine coronary microcirculation. Circulation 100: 1555-1561 doi: 10.1161/01.CIR.100.14.1555
    [24] Koutsiaris AG, Tachmitzi SV, Batis N, et al. (2007) Volume flow and wall shear stress quantification in the human conjunctival capillaries and post-capillary venules in vivo. Biorheology 44: 375-386
    [25] Marki A, Esko JD, Pries AR, et al. (2015) Role of the endothelial surface layer in neutrophil recruitment. J Leukoc Biol.
    [26] Dewitz TS, McIntire LV, Martin RR, et al. (1979) Enzyme release and morphological changes in leukocytes induced by mechanical trauma. Blood Cells 5: 499-512
    [27] Zhelev DV, Alteraifi AM, Chodniewicz D (2004) Controlled pseudopod extension of human neutrophils stimulated with different chemoattractants. Biophys J 87: 688-695. doi: 10.1529/biophysj.103.036699
    [28] Coughlin MF, Schmid-Schonbein GW (2004) Pseudopod projection and cell spreading of passive leukocytes in response to fluid shear stress. Biophys J 87: 2035-2042. doi: 10.1529/biophysj.104.042192
    [29] Komai Y, Schmid-Schonbein GW (2005) De-activation of neutrophils in suspension by fluid shear stress: a requirement for erythrocytes. Ann Biomed Eng 33: 1375-1386. doi: 10.1007/s10439-005-6768-6
    [30] Fukuda S, Yasu T, Predescu DN, et al. (2000) Mechanisms for regulation of fluid shear stress response in circulating leukocytes. Circ Res 86: E13-18. doi: 10.1161/01.RES.86.1.e13
    [31] Moazzam F, DeLano FA, Zweifach BW, et al. (1997) The leukocyte response to fluid stress. Proc Natl Acad Sci U S A 94: 5338-5343. doi: 10.1073/pnas.94.10.5338
    [32] Shive MS, Salloum ML, Anderson JM (2000) Shear stress-induced apoptosis of adherent neutrophils: a mechanism for persistence of cardiovascular device infections. Proc Natl Acad Sci U S 97: 6710-6715. doi: 10.1073/pnas.110463197
    [33] Lee D, Schultz JB, Knauf PA, et al. (2007) Mechanical shedding of L-selectin from the neutrophil surface during rolling on sialyl Lewis x under flow. J Biol Chem 282: 4812-4820. doi: 10.1074/jbc.M609994200
    [34] Shive MS, Brodbeck WG, Anderson JM (2002) Activation of caspase 3 during shear stress-induced neutrophil apoptosis on biomaterials. J Biomed Mater Res 62: 163-168. doi: 10.1002/jbm.10225
    [35] Makino A, Shin HY, Komai Y, et al. (2007) Mechanotransduction in leukocyte activation: a review. Biorheology 44: 221-249.
    [36] Zhang X, Hurng J, Rateri DL, et al. (2011) Membrane cholesterol modulates the fluid shear stress response of polymorphonuclear leukocytes via its effects on membrane fluidity. Am J Physiol Cell Physiol 301: C451-460. doi: 10.1152/ajpcell.00458.2010
    [37] Akenhead ML, Zhang X, Shin HY (2014) Characterization of the shear stress regulation of CD18 surface expression by HL60-derived neutrophil-like cells. Biomech Model Mechanobiol 13: 861-870.
    [38] Sugihara-Seki M, Schmid-Schonbein GW (2003) The fluid shear stress distribution on the membrane of leukocytes in the microcirculation. J Biomech Eng 125: 628-638 doi: 10.1115/1.1611515
    [39] Conway DE, Breckenridge MT, Hinde E, et al. (2013) Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr Biol 23: 1024-1030. doi: 10.1016/j.cub.2013.04.049
    [40] Goldmann WH (2012) Mechanotransduction and focal adhesions. Cell Biol Int 36: 649-652. doi: 10.1042/CBI20120184
    [41] Kamm RD, Kaazempur-Mofrad MR (2004) On the molecular basis for mechanotransduction. Mech Chem Biosyst 1: 201-209
    [42] Lee SE, Kamm RD, Mofrad MR (2007) Force-induced activation of talin and its possible role in focal adhesion mechanotransduction. J Biomech 40: 2096-2106. doi: 10.1016/j.jbiomech.2007.04.006
    [43] Jannat RA, Robbins GP, Ricart BG, et al. (2010) Neutrophil adhesion and chemotaxis depend on substrate mechanics. J Phys Condens Matter 22: 194117. doi: 10.1088/0953-8984/22/19/194117
    [44] Fukuda S, Schmid-Schonbein GW (2003) Regulation of CD18 expression on neutrophils in response to fluid shear stress. Proc Natl Acad Sci U S A 100: 13152-13157. doi: 10.1073/pnas.2336130100
    [45] Su SS, Schmid-Schonbein GW (2008) Fluid stresses on the membrane of migrating leukocytes. Ann Biomed Eng 36: 298-307. doi: 10.1007/s10439-007-9406-7
    [46] Seely AJ, Pascual JL, Christou NV (2003) Science review: Cell membrane expression (connectivity) regulates neutrophil delivery, function and clearance. Crit Care 7: 291-307. doi: 10.1186/cc1853
    [47] Tarbell JM, Pahakis MY (2006) Mechanotransduction and the glycocalyx. J Intern Med 259: 339-350. doi: 10.1111/j.1365-2796.2006.01620.x
    [48] White CR, Frangos JA (2007) The shear stress of it all: the cell membrane and mechanochemical transduction. Philos Trans R Soc Lond B Biol Sci 362: 1459-1467. doi: 10.1098/rstb.2007.2128
    [49] Bodin S, Welch MD (2005) Plasma membrane organization is essential for balancing competing pseudopod- and uropod-promoting signals during neutrophil polarization and migration. Mol Biol Cell 16: 5773-5783. doi: 10.1091/mbc.E05-04-0358
    [50] Butler PJ, Norwich G, Weinbaum S, et al. (2001) Shear stress induces a time- and position-dependent increase in endothelial cell membrane fluidity. Am J Physiolp Cell Physiolp 280: C962-969.
    [51] Berlin RD, Fera JP (1977) Changes in membrane microviscosity associated with phagocytosis: effects of colchicine. Proc Natl Acad Sci U S A 74: 1072-1076. doi: 10.1073/pnas.74.3.1072
    [52] Wiles ME, Dykens JA, Wright CD (1994) Regulation of polymorphonuclear leukocyte membrane fluidity: effect of cytoskeletal modification. Journal of leukocyte biology 56: 192-199.
    [53] Tomonaga A, Hirota M, Snyderman R (1983) Effect of membrane fluidizers on the number and affinity of chemotactic factor receptors on human polymorphonuclear leukocytes. Microbiol Immunol 27: 961-972. doi: 10.1111/j.1348-0421.1983.tb00662.x
    [54] Yuli I, Tomonaga A, Synderman R (1982) Chemoattractant receptor functions in human polymorphonuclear leukocytes are divergently altered by membrane fluidizers. Proc Natl Acad Sci U S A 79: 5906-5910. doi: 10.1073/pnas.79.19.5906
    [55] Ferraro JT, Daneshmand M, Bizios R, et al. (2004) Depletion of plasma membrane cholesterol dampens hydrostatic pressure and shear stress-induced mechanotransduction pathways in osteoblast cultures. Am J Physiol Cell Physiol 286: C831-839. doi: 10.1152/ajpcell.00224.2003
    [56] Rizzo V, McIntosh DP, Oh P, et al. (1998) In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association. J Biol Chem 273: 34724-34729. doi: 10.1074/jbc.273.52.34724
    [57] Rizzo V, Sung A, Oh P, et al. (1998) Rapid mechanotransduction in situ at the luminal cell surface of vascular endothelium and its caveolae. J Biol Chem 273: 26323-26329. doi: 10.1074/jbc.273.41.26323
    [58] Niggli V, Meszaros AV, Oppliger C, et al. (2004) Impact of cholesterol depletion on shape changes, actin reorganization, and signal transduction in neutrophil-like HL-60 cells. Exp Cell Res 296: 358-368. doi: 10.1016/j.yexcr.2004.02.015
    [59] Tuluc F, Meshki J, Kunapuli SP (2003) Membrane lipid microdomains differentially regulate intracellular signaling events in human neutrophils. Int Immunopharmacol 3: 1775-1790. doi: 10.1016/j.intimp.2003.08.002
    [60] Marwali MR, Rey-Ladino J, Dreolini L, et al. (2003) Membrane cholesterol regulates LFA-1 function and lipid raft heterogeneity. Blood 102: 215-222. doi: 10.1182/blood-2002-10-3195
    [61] Solomkin JS, Robinson CT, Cave CM, et al. (2007) Alterations in membrane cholesterol cause mobilization of lipid rafts from specific granules and prime human neutrophils for enhanced adherence-dependent oxidant production. Shock 28: 334-338. doi: 10.1097/shk.0b013e318047b893
    [62] Cattaruzza M, Dimigen C, Ehrenreich H, et al. (2000) Stretch-induced endothelin B receptor-mediated apoptosis in vascular smooth muscle cells. FASEB J 14: 991-998.
    [63] Chachisvilis M, Zhang YL, Frangos JA (2006) G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci U S A 103: 15463-15468. doi: 10.1073/pnas.0607224103
    [64] Yasuda N, Miura S, Akazawa H, et al. (2008) Conformational switch of angiotensin II type 1 receptor underlying mechanical stress-induced activation. EMBO Rep 9: 179-186. doi: 10.1038/sj.embor.7401157
    [65] Zhang YL, Frangos JA, Chachisvilis M (2009) Mechanical stimulus alters conformation of type 1 parathyroid hormone receptor in bone cells. Am J Physiol Cell Physiol 296: C1391-1399. doi: 10.1152/ajpcell.00549.2008
    [66] Zou Y, Akazawa H, Qin Y, et al. (2004) Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 6: 499-506. doi: 10.1038/ncb1137
    [67] Chen KD, Li YS, Kim M, et al. (1999) Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J Biol Chem 274: 18393-18400.
    [68] Iwasaki H, Eguchi S, Ueno H, et al. (2000) Mechanical stretch stimulates growth of vascular smooth muscle cells via epidermal growth factor receptor. Am J Physiol Heart Circ Physiol 278: H521-529.
    [69] Jin ZG, Ueba H, Tanimoto T, et al. (2003) Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase. Circ Res 93: 354-363. doi: 10.1161/01.RES.0000089257.94002.96
    [70] Lee HJ, Koh GY (2003) Shear stress activates Tie2 receptor tyrosine kinase in human endothelial cells. Biochem Biophys Res Commun 304: 399-404. doi: 10.1016/S0006-291X(03)00592-8
    [71] Milkiewicz M, Doyle JL, Fudalewski T, et al. (2007) HIF-1alpha and HIF-2alpha play a central role in stretch-induced but not shear-stress-induced angiogenesis in rat skeletal muscle. J Physiol 583: 753-766. doi: 10.1113/jphysiol.2007.136325
    [72] Palumbo R, Gaetano C, Melillo G, et al. (2000) Shear stress downregulation of platelet-derived growth factor receptor-beta and matrix metalloprotease-2 is associated with inhibition of smooth muscle cell invasion and migration. Circulation 102: 225-230. doi: 10.1161/01.CIR.102.2.225
    [73] Shay-Salit A, Shushy M, Wolfovitz E, et al. (2002) VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proc Natl Acad Sci U S A 99: 9462-9467. doi: 10.1073/pnas.142224299
    [74] Gu CX, Juranka PF, Morris CE (2001) Stretch-activation and stretch-inactivation of Shaker-IR, a voltage-gated K+ channel. Biophys J 80: 2678-2693. doi: 10.1016/S0006-3495(01)76237-6
    [75] Maingret F, Patel AJ, Lesage F, et al. (1999) Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem 274: 26691-26696 doi: 10.1074/jbc.274.38.26691
    [76] Tarbell JM, Weinbaum S, Kamm RD (2005) Cellular fluid mechanics and mechanotransduction. Ann Biomed Eng 33: 1719-1723. doi: 10.1007/s10439-005-8775-z
    [77] Haugh MG, Vaughan TJ, McNamara LM (2015) The role of integrin alpha(V)beta(3) in osteocyte mechanotransduction. J Mech Behav Biomed Mater 42: 67-75. doi: 10.1016/j.jmbbm.2014.11.001
    [78] Teravainen TP, Myllymaki SM, Friedrichs J, et al. (2013) alphaV-integrins are required for mechanotransduction in MDCK epithelial cells. PloS one 8: e71485. doi: 10.1371/journal.pone.0071485
    [79] Watabe H, Furuhama T, Tani-Ishii N, et al. (2011) Mechanotransduction activates alpha(5)beta(1) integrin and PI3K/Akt signaling pathways in mandibular osteoblasts. Exp Cell Res 317: 2642-2649. doi: 10.1016/j.yexcr.2011.07.015
    [80] Gudi S, Nolan JP, Frangos JA (1998) Modulation of GTPase activity of G proteins by fluid shear stress and phospholipid composition. Proc Natl Acad Sci U S A 95: 2515-2519. doi: 10.1073/pnas.95.5.2515
    [81] Gudi SR, Clark CB, Frangos JA (1996) Fluid flow rapidly activates G proteins in human endothelial cells. Involvement of G proteins in mechanochemical signal transduction. Circ Res 79: 834-839.
    [82] Migeotte I, Communi D, Parmentier M (2006) Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses. Cytokine Growth Factor Rev 17: 501-519. doi: 10.1016/j.cytogfr.2006.09.009
    [83] Gerisch G, Keller HU (1981) Chemotactic reorientation of granulocytes stimulated with micropipettes containing fMet-Leu-Phe. J Cell Sci 52: 1-10.
    [84] Welch MD, Mallavarapu A, Rosenblatt J, et al. (1997) Actin dynamics in vivo. Curr Opin Cell Biol 9: 54-61. doi: 10.1016/S0955-0674(97)80152-4
    [85] Hall A (1994) Small GTP-binding proteins and the regulation of the actin cytoskeleton. Ann Rev Cell Biol 10: 31-54. doi: 10.1146/annurev.cb.10.110194.000335
    [86] Ridley AJ (2001) Rho family proteins: coordinating cell responses. Trends Cell Biol 11: 471-477. doi: 10.1016/S0962-8924(01)02153-5
    [87] Chen AY, DeLano FA, Valdez SR, et al. (2010) Receptor cleavage reduces the fluid shear response in neutrophils of the spontaneously hypertensive rat. Am J Physiol Cell Physiol 299: C1441-1449. doi: 10.1152/ajpcell.00157.2010
    [88] Su SS, Schmid-Schonbein GW (2010) Internalization of Formyl Peptide Receptor in Leukocytes Subject to Fluid Stresses. Cell Mol Bioeng 3: 20-29. doi: 10.1007/s12195-010-0111-5
    [89] Mazzone A, Ricevuti G (1995) Leukocyte CD11/CD18 integrins: biological and clinical relevance. Haematologica 80: 161-175.
    [90] Root RK (1990) Leukocyte adhesion proteins: their role in neutrophil function. Trans Am Clin Climatol Assoc 101: 207-224; discussion 224-206.
    [91] Diacovo TG, Roth SJ, Buccola JM, et al. (1996) Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the beta 2-integrin CD11b/CD18. Blood 88: 146-157.
    [92] Hentzen ER, Neelamegham S, Kansas GS, et al. (2000) Sequential binding of CD11a/CD18 and CD11b/CD18 defines neutrophil capture and stable adhesion to intercellular adhesion molecule-1. Blood 95: 911-920.
    [93] Paszkowiak JJ, Dardik A (2003) Arterial wall shear stress: observations from the bench to the bedside. Vascular Endovascular Surgery 37: 47-57. doi: 10.1177/153857440303700107
    [94] Shyy JY, Chien S (2002) Role of integrins in endothelial mechanosensing of shear stress. Circ Res 91: 769-775. doi: 10.1161/01.RES.0000038487.19924.18
    [95] Tzima E, Irani-Tehrani M, Kiosses WB, et al. (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437: 426-431. doi: 10.1038/nature03952
    [96] Lipowsky HH (2005) Microvascular rheology and hemodynamics. Microcirculation 12: 5-15. doi: 10.1080/10739680590894966
    [97] Pohlman TH, Harlan JM (2000) Adaptive responses of the endothelium to stress. J Surg Res 89: 85-119. doi: 10.1006/jsre.1999.5801
    [98] Butler PJ, Tsou TC, Li JY, et al. (2002) Rate sensitivity of shear-induced changes in the lateral diffusion of endothelial cell membrane lipids: a role for membrane perturbation in shear-induced MAPK activation. FASEB J 16: 216-218.
    [99] Haidekker MA, L'Heureux N, Frangos JA (2000) Fluid shear stress increases membrane fluidity in endothelial cells: a study with DCVJ fluorescence. Am J Physiol Heart Circ Physiol 278: H1401-1406.
    [100] Friedland JC, Lee MH, Boettiger D (2009) Mechanically activated integrin switch controls alpha5beta1 function. Science 323: 642-644. doi: 10.1126/science.1168441
    [101] Puklin-Faucher E, Gao M, Schulten K, et al. (2006) How the headpiece hinge angle is opened: New insights into the dynamics of integrin activation. J Cell Biol 175: 349-360. doi: 10.1083/jcb.200602071
    [102] Marschel P, Schmid-Schonbein GW (2002) Control of fluid shear response in circulating leukocytes by integrins. Ann Biomed Eng 30: 333-343. doi: 10.1114/1.1475342
    [103] McCleverty CJ, Liddington RC (2003) Engineered allosteric mutants of the integrin alphaMbeta2 I domain: structural and functional studies. Biochem J 372: 121-127.
    [104] Luo BH, Karanicolas J, Harmacek LD, et al. (2009) Rationally designed integrin beta3 mutants stabilized in the high affinity conformation. J Biol Chem 284: 3917-3924. doi: 10.1074/jbc.M806312200
    [105] Lenaz G (1987) Lipid fluidity and membrane protein dynamics. Biosci Rep 7: 823-837. doi: 10.1007/BF01119473
    [106] Ben-Bassat H, Polliak A, Rosenbaum SM, et al. (1977) Fluidity of membrane lipids and lateral mobility of concanavalin A receptors in the cell surface of normal lymphocytes and lymphocytes from patients with malignant lymphomas and leukemias. Cancer Res 37: 1307-1312.
    [107] Yeagle PL (1991) Modulation of membrane function by cholesterol. Biochimie 73: 1303-1310. doi: 10.1016/0300-9084(91)90093-G
    [108] Chabanel A, Flamm M, Sung KL, et al. (1983) Influence of cholesterol content on red cell membrane viscoelasticity and fluidity. Biophys J 44: 171-176. doi: 10.1016/S0006-3495(83)84288-X
    [109] Cooper RA (1978) Influence of increased membrane cholesterol on membrane fluidity and cell function in human red blood cells. J Supramol Struct 8: 413-430. doi: 10.1002/jss.400080404
    [110] Khatibzadeh N, Spector AA, Brownell WE, et al. (2013) Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics. PloS one 8: e57147. doi: 10.1371/journal.pone.0057147
    [111] Pierini LM, Eddy RJ, Fuortes M, et al. (2003) Membrane lipid organization is critical for human neutrophil polarization. J Biol Chem 278: 10831-10841. doi: 10.1074/jbc.M212386200
    [112] Park H, Go YM, St John PL, et al. (1998) Plasma membrane cholesterol is a key molecule in shear stress-dependent activation of extracellular signal-regulated kinase. J Biol Chem 273: 32304-32311. doi: 10.1074/jbc.273.48.32304
    [113] Shen K, DeLano FA, Zweifach BW, et al. (1995) Circulating leukocyte counts, activation, and degranulation in Dahl hypertensive rats. Circ Res 76: 276-283. doi: 10.1161/01.RES.76.2.276
    [114] Tatsukawa Y, Hsu WL, Yamada M, et al. (2008) White blood cell count, especially neutrophil count, as a predictor of hypertension in a Japanese population. Hypertens Res 31: 1391-1397. doi: 10.1291/hypres.31.1391
    [115] Fukuda S, Yasu T, Kobayashi N, et al. (2004) Contribution of fluid shear response in leukocytes to hemodynamic resistance in the spontaneously hypertensive rat. Circ Res 95: 100-108. doi: 10.1161/01.RES.0000133677.77465.38
    [116] Zhang X, Cheng R, Rowe D, et al. (2014) Shear-sensitive regulation of neutrophil flow behavior and its potential impact on microvascular blood flow dysregulation in hypercholesterolemia. Arterioscler Thromb Vasc Biol 34: 587-593.
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5947) PDF downloads(1050) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog