Citation: Carl S. Helrich. Studies of cholesterol structures in phospholipid bilayers[J]. AIMS Biophysics, 2017, 4(3): 415-437. doi: 10.3934/biophy.2017.3.415
[1] | Ali MR, Cheng KH, Huang J (2007) Assess the nature of cholesterollipid interactions through the chemical potential of cholesterol in phosphatidylcholine bilayers. PNAS USA 104: 5372–5377. |
[2] | Anderson TG, McConnell HM (2001) Condensed complexes and the calorimetry of cholesterol-phospholipid bilayers. Biophys J 8: 2774–2785. |
[3] | Balyimez S, Park S, Huang J (2011) The maximum solubility of cholesterol in POPC/POPE lipid mixtures. Biophys J 100: 625a. |
[4] | Chong LG (1994) Evidence for regular distribution of sterols in liquid crystalline phosphatidylcholine bilayers. PNAS USA 91: 10069–10073. doi: 10.1073/pnas.91.21.10069 |
[5] | Chong LG, Olsher M (2004) Fluorescence studies of the existence and functional importance of regular distributions in liposomal membranes. Soft Mat 2: 85–108. doi: 10.1081/SMTS-200056098 |
[6] | Coutinho A, Prieto M (2003) Cooperative partition model of nystatin interaction with phospholipid vesicles. Biophys J 84: 3061–3078. doi: 10.1016/S0006-3495(03)70032-0 |
[7] | Coutinho A, Silva L, Fedorov A, et al. (2004) Cholesterol and ergosterol influence nystatin surface aggregation: relation to pore formation. Biophys J 87: 3264–3276. doi: 10.1529/biophysj.104.044883 |
[8] | Dai J, Alwarawrah M, Huang J (2010) Study of the cholesterol umbrella effect in DPPC and DOPC bilayers by molecular dynamics simulation. Biophys J 98: 489a. |
[9] | Ege C, Ratajczak MK, Majewski J, et al. (2006) Evidence for lipid/cholesterol ordering in model lipid membranes. Biophys J 91: L01–L03. doi: 10.1529/biophysj.106.085134 |
[10] | Gibbs JW (1902) Elementary Principles in Statistical Mechanics, New Haven: Yale University Press. |
[11] | Helrich CS (2009) Modern Thermodynamics with Statistical Mechanics, Berlin: Springer. |
[12] | Helrich CS, Schmucker JA, Woodbury DJ (2006) Evidence that nystatin channels form at the boundaries, not the interiors of lipid domains. Biophys J 91: 1116–1127. doi: 10.1529/biophysj.105.076281 |
[13] | Huang J (2002) Exploration of molecular interactions in cholesterol superlattices: effect of multibody interactions. Biophys J 83: 1014–1025. doi: 10.1016/S0006-3495(02)75227-2 |
[14] | Huang J, Feigenson GW (1999) A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys J 76: 2142–2157. doi: 10.1016/S0006-3495(99)77369-8 |
[15] | Keller SL, Anderson TG, McConnell HM (2000) Miscibility critical pressures in monolayers of ternary lipid mixtures. Biophys J 79: 2033–2042. doi: 10.1016/S0006-3495(00)76451-4 |
[16] | Kuzmin PI, Akimov SA, Chimadzhev YA (2005) Line tension and interaction energies of membrane rafts calculated from lipid splay and tilt. Biophys J 88: 1120–1133. doi: 10.1529/biophysj.104.048223 |
[17] | Liu F, Sugar IP, Chong PL (1997) Cholesterol and ergosterol superlattices in three-component liquid crystalline lipid bilayers as revealed by dehydroergosterol fluorescence. Biophys J 72: 2243–2254. doi: 10.1016/S0006-3495(97)78868-4 |
[18] | Metropolis N, Rosenbluth AW, Rosenbluth MN, et al. (1953) Equation of state calculations by fast computing machines. J Chem Phys 21: 1087–1092. doi: 10.1063/1.1699114 |
[19] | Nishimura SY, Vrljic M, Klein LO, et al. (2006) Cholesterol depletion induces solid-like regions in the plasma membrane. Biophys J 90: 927–938. doi: 10.1529/biophysj.105.070524 |
[20] | Parker A, Miles K, Cheng KH, et al. (2004) Lateral distribution of cholesterol in dioleoylphosphatidylcholine lipid bilayers: cholesterol-phospholipid interactions at high cholesterol limit. Biophys J 86: 1532–1544. doi: 10.1016/S0006-3495(04)74221-6 |
[21] | Radhakrishnan A, McConnell HM (1999) Condensed complexes of cholesterol and phospholipids. Biophys J 77: 1507–1517. doi: 10.1016/S0006-3495(99)76998-5 |
[22] | Radhakrishnan A, Anderson TG, McConnell HM (2000) Condensed complexes, rafts, and the chemical activity of cholesterol in membranes. PNAS USA 97: 12422–12427. doi: 10.1073/pnas.220418097 |
[23] | Richardson G, Cummings LJ, Harris HJ, et al. (2007) Toward a mathematical model of the assembly and disassembly of membrane microdomains: comparison with experimental models. Biophys J 92: 4145–4156. doi: 10.1529/biophysj.106.090233 |
[24] | Schroeder F, Barenholz Y, Gratton E, et al. (1987) A fluorescence study of dehydroergosterol in phosphatidylcholine bilayer vesicles. Biochemistry 26: 2441–2448. doi: 10.1021/bi00383a007 |
[25] | Sintes T, Baumgrtner A (1997) Protein attraction in membranes induced by lipid fluctuations. Biophys J 73: 2251–2259. doi: 10.1016/S0006-3495(97)78257-2 |
[26] | Somerharju PJ, Virtanen JA, Eklund KK, et al. (1985) 1-Palmitoyl-2-pyrenedecanoyl glycerophospholipids as membrane probes: evidence for regular distribution in liquid-crystalline phosphatidylcholine bilayers. Biochemistry 24: 2773–2781. doi: 10.1021/bi00332a027 |
[27] | Sugar IP, Tang D, Chong PLG (1994) Monte Carlo simulation of lateral distribution of molecules in a two-component lipid membrane. Effect of long-range repulsive interactions. J Phys Chem 98: 7201–7210. |
[28] | Tang D, Chong PL (1992) E/M dips. Evidence for lipids regularly distributed into hexagonal super-lattices in pyrene-PC/DMPC binary mixtures at specific concentrations. Biophys J 63: 903–910. |
[29] | Venegas B, Sugr IP, Chong PLG (2007) Critical factors for detection of biphasic changes in membrane properties at specific sterol mole fractions for maximal superlattice formation. J Phys Chem B 111: 5180–5192. doi: 10.1021/jp070222k |
[30] | Virtanen JA, Somerharju P, Kinnunen PKJ (1988) Prediction of patterns for the regular distribution of soluted guest molecules in liquid crystalline phospholipid membranes. J Mol Electron 4: 233–236. |
[31] | Vrljic M, Nishimura SY, Moerner WE, et al. (2005) Cholesterol depletion suppresses the translational diffusion of class II major histocompatibility complex proteins in the plasma membrane. Biophys J 88: 334–347. doi: 10.1529/biophysj.104.045989 |