Citation: Nily Dan. Bilayer degradation in reactive environments[J]. AIMS Biophysics, 2017, 4(1): 33-42. doi: 10.3934/biophy.2017.1.33
[1] | Bruggemann D, Frohnmayer JP, Spatz JP (2014) Model systems for studying cell adhesion and biomimetic actin networks. Beilstein J of Nanotec 5: 1193–1202. doi: 10.3762/bjnano.5.131 |
[2] | Wu F, Tan CM (2014) The engineering of artificial cellular nanosystems using synthetic biology approaches. Wiley Int Rev-Nanomed & Nanobiotech 6: 369–383. |
[3] | Chang HI, Yeh MK (2012) Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomed 7: 49–60. |
[4] | Gyorgy B, Hung ME, Breakefield XO, et al. (2015) Therapeutic applications of extracellular vesicles: clinical promise and open questions, In: Insel PA, editor, Annual Review of Pharmacology and Toxicology, 439–464. |
[5] | Lombardo D, Calandra P, Barreca D, et al. (2016) Soft interaction in liposome nanocarriers for therapeutic drug delivery. Nanomaterials 6. |
[6] | Anderson JM, Shive MS (2012) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Del Rev 64: 72–82. doi: 10.1016/j.addr.2012.09.004 |
[7] | Davis KA, Anseth KS (2002) Controlled release from crosslinked degradable networks. Crit Rev Ther Drug 19: 385–423. |
[8] | Herrero-Vanrell R, Refojo MF (2001) Biodegradable microspheres for vitreoretinal drug delivery. Adv Drug Del Rev 52: 5–16. doi: 10.1016/S0169-409X(01)00200-9 |
[9] | Andresen TL, Jensen SS, Jorgensen K (2005) Advanced strategies in liposomal cancer therapy: Problems and prospects of active and tumor specific drug release. Prog Lipid Res 44: 68–97. doi: 10.1016/j.plipres.2004.12.001 |
[10] | Allen TM, Cullis PR (2013) Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Delivery Rev 65: 36–48. doi: 10.1016/j.addr.2012.09.037 |
[11] | Guo X, Szoka FC (2003) Chemical approaches to triggerable lipid vesicles for drug and gene delivery. Accts Chem Res 36: 335–341. doi: 10.1021/ar9703241 |
[12] | Balaure PC, Grumezescu AM (2015) Smart synthetic polymer nanocarriers for controlled and site-specific drug delivery. Curr Topics Med Chem 15: 1424–1490. doi: 10.2174/1568026615666150414115852 |
[13] | Mellal D, Zumbuehl A (2014) Exit-strategies—smart ways to release phospholipid vesicle cargo. J Mat Chem B 2: 247–252. doi: 10.1039/C3TB21086C |
[14] | Felber AE, Dufresne MH, Leroux JC (2012) pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv Drug Del Rev 64: 979–992. doi: 10.1016/j.addr.2011.09.006 |
[15] | Fleige E, Quadir MA, Haag R (2012) Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Adv Drug Del Rev 64: 866–884. doi: 10.1016/j.addr.2012.01.020 |
[16] | Paliwal SR, Paliwal R, Vyas SP (2015) A review of mechanistic insight and application of pH-sensitive liposomes in drug delivery. Drug Del 22: 231–242. doi: 10.3109/10717544.2014.882469 |
[17] | Hwang JY, Li ZB, Loh XJ (2016) Small molecule therapeutic-loaded liposomes as therapeutic carriers: from development to clinical applications. Rsc Adv 6: 70592–70615. doi: 10.1039/C6RA09854A |
[18] | Karimi M, Ghasemi A, Zangabad PS, et al. (2016) Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 45: 1457–1501. doi: 10.1039/C5CS00798D |
[19] | Siepmann J, Siepmann F (2008) Mathematical modeling of drug delivery. I J Pharma 364: 328–343. |
[20] | Siepmann J, Siepmann F (2012) Modeling of diffusion controlled drug delivery. J Cont Rel 161: 351–362. doi: 10.1016/j.jconrel.2011.10.006 |
[21] | Siepmann J, Peppas NA (2011) Higuchi equation: Derivation, applications, use and misuse. I J Pharma 418: 6–12. |
[22] | Siepmann J, Gopferich A (2001) Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv Drug Del Rev 48: 229–247. doi: 10.1016/S0169-409X(01)00116-8 |
[23] | Peppas NA, Narasimhan B (2014) Mathematical models in drug delivery: How modeling has shaped the way we design new drug delivery systems. J Cont Rel 190: 75–81. doi: 10.1016/j.jconrel.2014.06.041 |
[24] | Dan N (2015) Compound release from core-shell carriers triggered by oscillating fields: Monte Carlo simulations. Coll & and Surf A 481: 80–86. |
[25] | Dan N (2016) Compound release from nanostructured lipid carriers (NLCs). J Food Eng 171: 37–43. doi: 10.1016/j.jfoodeng.2015.10.005 |
[26] | Dan N (2014) Nanostructured lipid carriers: effect of solid phase fraction and distribution on the release of encapsulated materials. Langmuir 30: 13809–13814. doi: 10.1021/la5030197 |
[27] | Duncan GA, Bevan MA (2015) Computational design of nanoparticle drug delivery systems for selective targeting. Nanoscale 7: 15332–15340. doi: 10.1039/C5NR03691G |
[28] | Biswas S, Mani E, Mondal A, et al. (2016) Supramolecular polyelectrolyte complex (SPEC): pH dependent phase transition and exploitation of its carrier properties. Soft Mat 12: 1989–1997. doi: 10.1039/C5SM02732B |
[29] | Eavarone DA, Soundararajan V, Haller T, et al. (2010) A voxel-based Monte Carlo model of drug release from bulk eroding nanoparticles. J Nanosci & Nanotech 10: 5903–5907. |
[30] | Landau DP, Binder K (2014) A guide to Monte Carlo simulations in statistical physics, Cambridge University Press. |
[31] | Nelson P (2013) Biological Physics: Freeman. |
[32] | Dan N (2015) Drug release through liposome pores. Coll & Surf B 126: 80–86. |
[33] | Dan N (2016) Environmentally-induced degradation of solid-lipid nanoparticles. Bioint Res-Appl Chem 6: 1464–1468. |
[34] | Parmentier J, Thomas N, Mullertz A, et al. (2012) Exploring the fate of liposomes in the intestine by dynamic in vitro lipolysis. I J Pharma 437: 253–263. |
[35] | Parmentier J, Thewes B, Gropp F, et al. (2011) Oral peptide delivery by tetraether lipid liposomes. I J Pharma 415: 150–157. |
[36] | Jensen SM, Christensen CJ, Petersen JM, et al. (2015) Liposomes containing lipids from Sulfolobus islandicus withstand intestinal bile salts: An approach for oral drug delivery? I J Pharma 493: 63–69. |
[37] | Zhang B, Xue AY, Zhang C, et al. (2016) Bile salt liposomes for enhanced lymphatic transport and oral bioavailability of paclitaxel. Pharmazie 71: 320–326. |
[38] | Allen TM, Everest JM (1983) Effect of liposome size and drug release properties on pharmacokinetics of encapsulated drugs in rats. J of Pharma and Exp Therapeutics 226: 539–544. |
[39] | Lasic DD, Needham D (1995) The “Stealth” liposome: A prototypical biomaterial. Chem Rev 95: 2601–2628. doi: 10.1021/cr00040a001 |