Citation: Michelle de Medeiros Aires, Janine Treter, Antônio Nunes Filho, Igor Oliveira Nascimento, Alexandre José Macedo, Clodomiro Alves Júnior. Minimizing Pseudomonas aeruginosa adhesion to titanium surfaces by a plasma nitriding process[J]. AIMS Biophysics, 2017, 4(1): 19-32. doi: 10.3934/biophy.2017.1.19
[1] | Garg H, Bedi G, Garg A (2012) Implante surface m odifications: uma revisão. J Clin Diagn Res 6: 319–324. |
[2] | Zhao L, Chu PK, Zhang Y, et al. (2009) Antibacterial revestimentos sobre implantes de titânio. J Biomed Mater Res 91B: 470–480. doi: 10.1002/jbm.b.31463 |
[3] | Hanawa TJ (2011) A comprehensive review of techniques for biofunctionalization of titanium. Periodontal Implant Sci 41: 263–272. |
[4] | Neoh KG, Hu X, Zheng D, et al. (2012) Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces. Biomaterials 33: 2813–2822. doi: 10.1016/j.biomaterials.2012.01.018 |
[5] | Hori K, Matsumoto S (2010) Bacterial adhesion: from mechanism to control biochemical. Eng J 48: 424–434. |
[6] | Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Micro 2: 95–108. doi: 10.1038/nrmicro821 |
[7] | Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284: 1318–1322. doi: 10.1126/science.284.5418.1318 |
[8] | Coenye T, Nelis HJ (2010) In vitro and in vivo model systems to study microbial biofilm formation. J Microbiol Methods 83: 89–105. doi: 10.1016/j.mimet.2010.08.018 |
[9] | Rosenthal VD (2008) Device-associated nosocomial infections in limited-resources countries: findings of the international nosocomial infection control consortium (INICC). Am J Infect Control 36: S171.e177–S171.e112. |
[10] | Chen Y, Zheng X, Xie Y, et al. (2010) Silver release from silver-containing hydroxyapatite coatings. Surf Coat Tech 205: 1892–1896. doi: 10.1016/j.surfcoat.2010.08.073 |
[11] | Breidenstein EBM, de la Fuente-Núñez C, Hancock REW (2011) Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 19: 419–426. doi: 10.1016/j.tim.2011.04.005 |
[12] | Campoccia D, Montanaro L, Arciola CR (2006) The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 27: 2331–2339. doi: 10.1016/j.biomaterials.2005.11.044 |
[13] | Kipnis E, Sawa T, Wiener-Kronish J (2006) Targeting mechanisms of Pseudomonas aeruginosa pathogenesis. Med Mal Infect 36: 78–91. doi: 10.1016/j.medmal.2005.10.007 |
[14] | Lavoie EG, Wangdi T, Kazmierczak BI (2011) Innate immune responses to Pseudomonas aeruginosa infection. Microbes Infect 13: 1133–1145. |
[15] | Sarró MI, Moreno DA, Ranninger C, et al. (2006) Influence of gas nitriding of Ti6Al4V alloy at high temperature on the adhesion of Staphylococcus aureus. Surf Coat Tech 201: 2807–2812. doi: 10.1016/j.surfcoat.2006.05.023 |
[16] | Scarano A, Piattelli M, Vrespa G, et al. (2003) Bacterial adhesion on titanium nitride-coated and uncoated implants: an in vivo human study. J Oral Implantol 29: 80–85. |
[17] | Annunziata M, Oliva A, Basile MA, et al. (2011) The effects of titanium nitride-coating on the topographic and biological features of TPS implant surfaces. J Dent 39: 720–728. |
[18] | Alves Junior C (2001) Nitretação a plasma: fundamentos e aplicações. Editora UFRN. |
[19] | Aires MM, Oliveira RHA, Maribondo NKAG, et al. (2011) Análise da preferência celular em diferentes superfícies de Ti exposta ao mesmo meio de cultura. Revista Brasileira de Odontologia 68: 1. |
[20] | Costa THC, Feitor MC, Alves Junior C, et al. (2008) Caracterização de filmes de poliéster modificados por plasma de O2 a baixa pressão. Matéria 13: 65–76. |
[21] | Sá JC, de Brito RA, Moura CE, et al. (2009) Influence of argon-ion bombardment of titanium surfaces on the cell behavior. Surf Coat Tech 203: 1765–1770. doi: 10.1016/j.surfcoat.2008.12.017 |
[22] | de Sousa RRM, de Araújo FO, Barbosa JCP, et al. (2008) Nitriding using cathodic cage technique of austenitic stainless steel AISI 316 with addition of CH4. Mat Sci EngA 487: 124–127. doi: 10.1016/j.msea.2007.10.001 |
[23] | Öner D, McCarthy TJ (2000) Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir 16: 7777–7782. |
[24] | Deshmukh R, Bhat N (2003) The mechanism of adhesion and printability of plasma processed PET films. Mater Res Innov 7: 283–290. doi: 10.1007/s10019-003-0265-z |
[25] | Trentin DdS, Giordani RB, Zimmer KR, et al. (2011) Potential of medicinal plants from the Brazilian semi-arid region (Caatinga) against Staphylococcus epidermidis planktonic and biofilm lifestyles. J Ethnopharmacol 137: 327–335. doi: 10.1016/j.jep.2011.05.030 |
[26] | Soltani-Farshi M, Baumann H, Rück D, et al. (1998) Content of hydrogen in boron-, carbon-, nitrogen-, oxygen-, fluorine- and neon-implanted titanium. Surf Coat Tech 103–104: 299–303. |
[27] | Elias CN, Oshida Y, Lima JHC, et al. (2008) Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. J Mech Behav Biomed Mater 1: 234–242. doi: 10.1016/j.jmbbm.2007.12.002 |
[28] | Whitehead SA, Shearer AC, Watts DC, et al. (1995) Comparison of methods for measuring surface roughness of ceramic. J Oral Rehabil 22: 421–427. doi: 10.1111/j.1365-2842.1995.tb00795.x |
[29] | Lim YJ, Oshida Y (2001) Initial contact angle measurements on variously treated dental/medical titanium materials. Biomed Mater Eng 11: 325–341. |
[30] | Albrektsson T, Wennerberg A (2004) Oral implant surfaces: part 2—review focusing on clinical knowledge of different surfaces. Int J Prosthodont 17: 544–564. |
[31] | Whitehead SA, Shearer AC, Watts DC, et al. (1999) Comparison of two stylus methods for measuring surface texture. Dent Mater 15: 79–86. doi: 10.1016/S0109-5641(99)00017-2 |
[32] | Kasemo B (2002) Biological surface science. Surf Sci 500: 656–677. doi: 10.1016/S0039-6028(01)01809-X |
[33] | Deligianni DD, Katsala N, Ladas S, et al. (2001) Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials 22: 1241–1251. doi: 10.1016/S0142-9612(00)00274-X |
[34] | Michael KE, Vernekar VN, Keselowsky BG, et al. (2003) Adsorption-induced conformational changes in fibronectin due to interactions with well-defined surface chemistries. Langmuir 19: 8033–8040. doi: 10.1021/la034810a |
[35] | Puckett SD, Taylor E, Raimondo T, et al. (2010) The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials 31: 706–713. doi: 10.1016/j.biomaterials.2009.09.081 |
[36] | Xu LC, Siedlecki CA (2007) Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials 28: 3273–3283. doi: 10.1016/j.biomaterials.2007.03.032 |
[37] | Truong V, Rundell S, Lapovok R, et al. (2009) Effect of ultrafine-grained titanium surfaces on adhesion of bacteria. Appl Microbiol Biotechnol 83: 925–937. doi: 10.1007/s00253-009-1944-5 |
[38] | Darouiche RO (2004) Treatment of infections associated with surgical implants. N Engl J Med 350: 1422–1429. |
[39] | Pascual A (2002) Pathogenesis of catheter-related infections: lessons for new designs. Clin Microbiol Infect 8: 256–264. doi: 10.1046/j.1469-0691.2002.00418.x |
[40] | Pavithra D, Doble M (2008) Biofilm formation, bacterial adhesion and host response on polymeric implants—issues and prevention. Biomed Mater 3: 034003. doi: 10.1088/1748-6041/3/3/034003 |
[41] | Treter J, Macedo AJ (2011) Catheters: a suitable surface for biofilm formation. Science against microbial pathogens: communicating current research and technological advances 2: 835–842. |