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Abstract: The research of the interaction between bacteria-surface has great importance for titanium 
biomedical applications once microorganisms offer risks because promoting implant loss. Therefore, 
study bacterial adhesion and colonization on titanium is interesting because are principal factors 
infections pathogeny on biomaterials. In this study, commercial grade II titanium was submitted to 
nitriding treatment to plasma at 2.2 mbar, using gas mixtures of 80% hydrogen (H2) and 20% 
nitrogen (N2) during 1 hour and 3 hour. The surfaces were physically and chemically characterized. 
In order to evaluate bacterial response, the surfaces were exposed to Pseudomonas aeruginosa. The 
titanium surface modified in nitriding plasma, although exposes a higher roughness as compared 
with untreated samples, exhibited lower bacterial growth. The nitrided sample for 3 hour exhibited 
the higher amount of TiN phase and the higher concentration of atomic nitrogen on surface and 
lower bacterial adhered count. These results were confirmed by scanning electron microscopy. Based 
on these results can be said to the thermochemical treatment of plasma nitriding on titanium samples 
results a significant reduction of adherence of Pseudomonas aeruginosa. It was found that the Ti 
surface nitrided offers significant reduction of bacterial adherence which prevent biofilm formation 
and offersing lower risk of infection and implant remotion. 
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1. Introduction 

The success of new biomaterials involves the understanding of what occurs at the cell/implant 
interface. The development of biomaterials with characteristics that enhance biocompatibility and 
reduce the occurrence of serious adverse effects such as implant rejection and infection is 
increasingly attracting the interest of the scientific community. Accordingly, processes that modify 
the composition, structure and morphology of the surface of the material and at the same time leave 
the mechanical properties of the bulk material intact are considered promising for the development of 
such new biomaterials. 

Commercially pure titanium is widely used in dental implants while titanium alloys are 
employed principally in endosseous implants [1]. Several studies have demonstrated that titanium 
implants are biocompatible and capable of osseointegration. The biocompatibility between implant 
and the bone tissue leads to the formation of a protein layer on the implant surface under specified 
physiological conditions [2]. Therefore this phenomenon reveals the conflict between increased 
protein adsorption and inhibition of bacterial adhesion [3]. The surface of the implant through its 
interactions with proteins, bacteria and tissue cells plays a crucial role in the success of the  
implant [4], since implant failure are mainly due to lack of integration with the neighboring tissue or 
due to infections [4].  

The adhesion of bacteria to the surface of the implant is considered the main cause of infections, 
as bacterial adhesion is the first stage in colonization and biofilm formation [5]. Biofilms, after 
adhering to a surface, begin to produce an exopolysaccharidic matrix which involves the bacteria [6], 
making it more resistant to antibiotics and to the host immune system [7]. It is estimated that  
65–80% of nosocomial infections are associated with biofilm formation [8]. Normally, the 
occurrence of infections leads to the removal of implants, which not only imparts health problems to 
the individual patients, but also enhances costs within the public health system [9]. 

In order to reduce the risk of infection, prophylaxis is usually carried out by intravenous 
injection of an antibiotic before surgery. However high drugs concentrations in the blood for a long 
period of time can induce toxicity [10] and increase bacterial resistance to antibiotics [11]. 

The Gram-negative bacterium Pseudomonas aeruginosa is a major cause of infections 
associated with biomedical devices [12]. This is an opportunistic pathogen which colonizes human 
biotic and abiotic surfaces [13]. A study in the literature pointed out several important structures for 
adhesion and motility in biomedical devices [14]. 

In this sense, reduction bacterial adhesion may be a valuable strategy to prevent infections [2]. 
The control of surface composition by means of conventional plasma nitriding of titanium may be a 
promising approach to manipulate bacterial adhesion on biomedical implants [15]. 

Surface titanium nitride has shown a significant reduction of bacteria on the implant  
surface [16,17]. Plasma nitriding is a surface treatment technique which is commercially already 
established, mainly used for improvement of physical and mechanical properties of steels. The 
technique consists in introducing nitrogen into the material through a process activated by  
plasma [18]. In the last five years, this technique has led to the studies in which investigations of the 
biological properties of materials subjected to plasma nitriding were carried out [19]. 

In this work, titanium surfaces were nitrided by plasma and surface properties were correlated 
with bacterial response. The goal of the surface treatment was to minimize bacterial adhesion and 
subsequent biofilm formation. 
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2. Materials and Method 

2.1. Material 

Titanium disks were prepared from cp Ti (Grade II) with dimensions 3 mm × 9 mm (diameter × 
thickness). Initially, the disks were metallographically prepared with silicon carbide sandpaper and 
polished with porous neoprene cloth (Pantec ®) impregnated with colloidal silica solution and 
hydrogen peroxide. The samples were afterwards washed with enzyme detergent followed by 
absolute ethanol and distilled water and submitted to ultrasound treatment for 10 minutes after each 
of that steps [20]. Samples of polished titanium disks were used as controls in each assay. 

2.2. Plasma treatment 

Surface modification of titanium disks was carried out in a cylindrical (300 mm × 300 mm) 
plasma-reactor made of stainless steel, equipped with a direct current power supply and a vacuum 
system as previously described [21,22]. Before plasma nitriding, a pre-cleaning step was performed 
as an attempt to remove oxides and another contaminants by using ionic bombardment with the 
following parameters: 2.0 sccm argon and 2.0 sccm hydrogen flow rates, 1.5 mbar pressure, 200 °C 
temperature and 448 volts of voltage, resulting in a current of 0,10 A. These conditions allowed 
plasma formation in which neutral species and charged ones, such as Ar1+, H1+ e H2+, were present. 
These species were allowed to clean the sample surface by sputtering and etching for 30 min.  

For the plasma treatment itself, flow rates of 8 sccm hydrogen (H2) and 2 sccm nitrogen (N2) 
were employed. The working pressure was set at 2.2 mbar and the temperature during treatment was 
kept constant at 500 °C for 1 hour. After that, the equipment was turned off and the samples were 
allowed to cool down in the reactor chamber. 

2.3. Surface characterization 

Diffraction measurements were carried out by using an X-ray grazing angle of 0.5° with the 
diffractometer (XRD) Shimadzu-6000, Cu Kα radiation at a 2θ scan from 33.0 to 45.0°. The PDF 
cards used as reference to identify the phases present were 44-1288 for Ti, 89-6975 for TiO2 and 87-
0632 to the TiN acquired with the aid of JCPDS database. The diffraction peaks were decomposed 
with Gaussian functions using MagickPlot software.  

The 2D and 3D nanotopography of the samples was observed using a Shimadzu SPM 9600 
atomic force microscope (AFM). Four roughness parameters were thereby evaluated: average 
roughness (Ra), average maximum height of the profile (Rz), maximum profile peak height (Rp) and 
maximum profile valley depth (Rv). Photomicrographs were obtained in three different regions of 
each 2D and 3D sample. For each 2D micrograph, lines were obtained in order to determine the 
roughness profile.  

Surface wettability measurements were also conducted. The sessile drop technique was used to 
characterize sample wettability [23]. The contact angle of distilled water droplets was measured on 6 
disks of each surface type (nitrided and non-nitrided). Before the measurements, the samples were 
placed in a solution of 0.5% enzyme detergent in bidistilled water and submitted to ultrasound 
treatment for 10 min. After two washing procedures, the disks were washed with absolute ethanol, 
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followed by bidistilled water. The contact angle measurements were performed by dropping 20 L of 
either one the two investigated liquids: bidistilled water and glycerol as previously described [20,21]. 
Photographs were obtained at different times until complete drop relaxation, using Pinnacle Studio 
9.0 image editing software. The results of wettability tests were obtained by using the free software 
free surftens, in which the contact angle between the solid surface (disk) and the tangential plane of 
the liquid surface (water or glycerol) is measured. The results for the contact angle for each surface 
were determined in this way [24]. 

2.4. Nuclear reaction analysis 

The profile of N in nitrided samples was obtained with aid of Nuclear Reaction Analysis (NRA), 
using the reaction 15N (p, αγ) 12C. The NRA analysis was performed with the equipment single-
ended accelerator (High Voltage Engineering Europe) 500 keV, the proton beam between 427–455 
keV and 1 keV step, BGO detector (Bi4Ge3O12) located behind the sample aligned with the proton 
beam. The data obtained from the reaction 15N (p, αγ) 2C provides a curve of gamma radiation 
counts as a function of the energy of the proton beam. Using a standard sample, the counting of γ 
radiation was converted into atomic concentration of the isotope 15N which has natural abundance of 
0.366%. This allows the calculation of the concentration of nitrogen (all isotopes) as a function of 
material depth. 

2.5. Microorganisms, culture conditions and sample preparation 

Pseudomonas aeruginosa ATCC 27853 cells were aerobically grown at 37 °C for 24 hour on 
Mueller Hinton agar plates (OXOID, England). Several colonies were used to make the bacterial 
suspension in sterile sodium chloride 0.9% to achieve an optical density of 0.150 ± 0.003 at 600 nm 
(Spectramax M2e Multimode Microplate Reader, Molecular Devices, USA). P. aeruginosa biofilms 
were grown in 24-well plates containing a sterile titanium disk by using a technique adapted  
from [25]. After 6 hour of incubation at 37 °C, titanium samples were washed twice with sterile 
0.9% sodium chloride and prepared to scanning electron microscopy. The sample was fixed in 
glutaraldehyde 2.5% followed by sodium cacodylate buffer 100 mM (pH 7.2) washing and treated 
with 2% osmium tetroxide. After that, a second washing process was carried out, in which the 
samples were dehydrated using increasing concentrations of acetone. After employing the CO2 
critical point technique (CPD 030 Balzers, Liechtenstein) to remove all residual water, the 
metallization process utilizing gold was carried out in order to allow visualization at the JEOL JSM-
6060 scanning electron microscope. 

3. Results and Discussion 

Results of Grazing Incidence X-ray Diffraction (GIXRD) are shown in Figure 1. Peaks were 
identified by Gaussian functions in order to separate phases present at the surface. The presence of 
TiO2 at the surface of the sample of untreated Ti (Figure 1a) is an indication of spontaneous 
oxidation that occurs when titanium is exposed to the environment. GIXRD analysis of samples 
nitrided for 1 hour and 3 hour (Figure 1b and 1c respectively) show broad peaks of TiN phase plans 
(111) and (200), which may be an indication of low crystallinity. 
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(a) 

 

(b) 
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(c) 

Figure 1. X-Ray diffratogram in GIXRD of titanium disks samples: (a) untreated (b) 
treated in 8H2-2N2 during 1 hour and (c) treated in 8H2-2N2 during 3 hour. 

As expected, the sample nitrided for 3 hours (Figure 1c) shows peaks with greater intensity than 
the sample nitrided for 1 hour. The increase in peak width of nitrided samples as compared to the 
untreated material may be attributed to a concentration gradient of nitrogen in titanium. It is known 
that nitrogen concentration decreases with increasing depth. This means that titanium lattice is more 
expanded at the surface than inside the material. That is, there is a distribution of diffraction intensity 
for each point which is penetrated by X-rays, reflected by peak broadening defects [26]. These are 
caused by the penetration of interstitial elements, which generates a non-uniform distribution of N in 
the network. 

The existence of a concentration profile of nitrogen can be observed by analyzing NRA results 
(Figure 2). The sample treated for 3 hour has a maximum concentration of atomic nitrogen which is 
twice the maximum value for the sample treated for 1 hour. Nevertheless, the difference in nitrogen 
concentration for both samples is not so pronounced for greater depth values. This means that the 
process is controlled by the surface reaction. 

The half-height width of the NRA curves indicates that the depth of the layer is about 150 nm 
and 250 nm for nitriding for 1 hour and 3 hour, respectively. The exposure time of the samples 
during nitriding did not influence the thickness of the layer but rather the amount of widespread N. 

Regarding surface topography (Figure 3), nitrited surfaces are rougher than untreated ones. 
Roughness parameters Ra, Rz, Rp and Rv of the nanotopographies shown in Figure 3 are shown in 
Table 1 along with the value obtained for the contact angle by the sessile drop test with distilled 
water. 
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Figure 2. Concentration profile of nitrogen obtained by NRA on samples nitrided for 1 
hour and 3 hour. 

The parameter Ra is defined as the mean peak and valley height on a surface [27]. An alteration 
in this parameter does not express all roughness variations, that is, alterations in the distribution and 
heights of peak may share common Ra values, not clearly defining surface relief behavior [28]. 
Several authors have correlated Ra values with surface wettability [27–30]. All these studies report a 
direct relationship between roughness (Ra) and wettability. 

Another option for expressing topographic profile is the use of parameters Rp and Rz. The 
former is obtained by the mean peak height in relation to the midline in 5 consecutive readings and 
the latter is calculated from the sum of maximum peak height (Rp) and maximum valley depth (Rv), 
along the sample profile [31]. The Rp/Rz ratio is especially important for assessing surface format, 
since a ratio greater than 0.5 indicates sharp peaks, while values less than 0.5 indicate a surface with 
rounded peaks [31]. According to these authors, rounded peaks favor the scattering of liquids on the 
surface. Its influence on wettability can be estimated by using this hypothesis and assessing the 
Rp/Rz ratio. Wettability analysis is an important factor in defining biomaterial biocompatibility and 
this, in turn, is extremely important in biomaterial osseointegration [30]. Low contact angles means 
greater wettability, that is, a more hydrophilic surface [32]. 

The influence of topography and surface composition on bacterial adhesion is widely discussed 
in the literature.  

Surface characteristics such as roughness can influence the amount and/or the conformation of 
the adsorbed proteins thus influencing bacterial adhesion and thus biofilm formation [2,33,34]. A 
surface with high roughness at the nano level shows increased surface energy, which leads to further 
adsorption of proteins [35]. Moreover, changes in chemical composition of the surface will affect the 
characteristics of protein adsorption. 

In this work, as predicted in the literature, there is an inverse correlation between the parameter 
Ra and the contact angle. However, according to the obtained results, rounded peaks do not produce 
greater scattering of liquids, i.e., lower contact angle, as predicted in the literature [31]. It is 
observed that the surface with lowest value of Rp/Rz ratio (more rounded peaks) was not the one 
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with the lowest value of contact angle. The sample nitrided for 3 hour, which has the lowest 
value of Rp/Rz ratio, the higher amount of TiN phase and the higher concentration of atomic 
nitrogen should result, according to the literature, in a greater wettability. However, this did not 
happen. From topographic chemical analysis, it was observed that only Ra had a direct 
correlation with wettability. 

 

(a) 

 

(b) 
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(a) 

 

(c) 

Figure 3. AFM topographies of titanium disks samples at the plasma conditions: (a) 
without treatment; (b) treated in 8H2-2N2 during 1 hour and (c) treated in 8H2-2N2 during 
3 hour. Topographies profiles for scanning areas of 15 m × 15 m. 

Table 1. Roughness parameter values and contact angles of titanium surface before and 
after plasma treatment.  

Treatment conditions 
Roughness parameters (nm)  Contact angle (Graus) 

Ra Rz Rp Rv Rp/Rz  

Without treatment 0,51 10,67 8,81 1,86 0,83 70,20 ± 4,00 

Nitrided (1 hour) 21,00 269,00 186,00 83,00 0,69 45,00 ± 4,00 

Nitrided (3 hour) 11,62 128,50 61,00 67,49 0,47 56,00 ± 3,00 

A study by Xu and Siedlecki [36] on the influence of wettability in the adhesion strength of 
the proteins suggests that the value of the wettability can be a criterion for distinguishing 
adhesion proteins. It was also found by Truong, Rundell et al. [37] that bacteria S. aureus and P. 
aeruginosa had a tendency to adhere to hydrophobic titanium surfaces. Several authors have 
reported that hydrophilic materials are more resistant to bacterial adhesion than hydrophobic 
ones [38–41]. 

Figure 4 shows micrographs of titanium surfaces when exposed to culture of P. aeruginosa 
bacteria for 0.5 hour, 3 hour and 6 hour. It is observed that after 0.5 hour, the bacteria are attached in 
a dispersed manner then progressing to step clustering (usually when cell signaling begins) to finally 
form small bacterial clumps after 3 hour. It is clearly visible that the sample nitrided for 1 hour had 
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higher adhesion strength.  

 

Figure 4. Pseudomonas attachment to i. Untreated disks, ii. Nitrided 1 hour disks, 
Nitrided 3 hour disks iii. surfaces at (a) 0.5 hour (b) 3 hour and (c) 6 hour. 

Using an image processing software, it was possible to count the number of bacteria in each 
micrograph. Results suggest that bacteria count decreases with exposure time for all surfaces. This 
may be due to the occurrence of bacterial agglomeration (clumps), inhibiting the counting of 
individual bacteria, as the software recognizes a cluster of bacteria as one bacteria only. For the 
surface nitrided for 1 hour, the number of adherent cells is minimal and there was no formation of 
clumps or microcolonies. In addition to that, microbial growth did not occur and the bacteria 
dispersed without the presence of a chemical stress (such as antibiotic), which means that the 
environment formed after the thermochemical treatment of the surface is not conducive to the growth 
and development of a biofilm. 

Since the formation of bacterial clumps is an essential step in biofilm formation [41], the count 
of these clumps is more representative in order to express bacterial proliferation than individual 
bacteria counts (Figure 6). Image analysis was performed and only microcolonies with a diameter 
greater than 46.23 µm were considered. 

 
 

i. (a)  i. (b)  i. (c) 

ii. (a)  ii. (b)  ii. (c) 

iii. (a)  iii. (b) iii. (c) 
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Figure 5. Number of bacterial adherent cells to untreated Ti and nitrided titanium (TiN 1 
and 3 hour) disk. Correspondent roughness values are presented as black dots. 

 

Figure 6. Number of lumps formed on the surface of titanium for different times of 
exposure to the culture P. aeruginosa bacteria. 
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Results show that the sample treated for 1 hour showed no formation of clumps during the six 
hours of analysis. The untreated sample showed the highest bacterial growth with the formation of 
agglomerates in this sample even for the time period of 0.5 hour. Results indicate that nitrided 
surfaces are more resistant to bacterial growth when compared to untreated titanium.  

It is important to remember that the sample treated for 1 hour showed a greater Ra value than 
the one obtained for the sample nitrided for 3 hour and obviously a lower nitrogen concentration at 
the surface. Therefore, Ra is not a determining factor in bacterial adhesion and proliferation. On the 
other hand, the presence of TiN or titanium nitrogen atoms alone is not crucial to bacterial growth, 
since the sample nitrided for 3 hour had these conditions and results for this sample were worse than 
those of the sample nitrided for 1 hour. It is likely that the crystallinity and/or density of nitrides at 
the surface are a more important factor than those previously discussed. 

As we pointed in the introduction biofilm formation is nowadays challenging physicians and 
hospital clinical staff, since it is hard to overcome and antibiotic therapy is not capable to destroy 
most of the biofilms. In this sense, is important to highlight that the performed treatments inhibited 
significantly the bacterial adhesion and consequently biofilm formation of one of the most known 
pathogen, Pseudomonas aeruginosa. 

4. Conclusions 

Ion nitriding thermochemical treatment for 1 hour proved itself ideal for the purpose of this 
study because the surface generated at these conditions showed no formation of microcolonies until 
the period of time of 6 hours of exposure to bacterial culture. It was found that this particular 
produced surface showed, in addition to increased biocompatibility, significant reduction of 
adherence of Pseudomonas aeruginosa, which prevents biofilm formation and offers lower risk of 
infection and extrusion. 
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