Loading [MathJax]/jax/output/SVG/jax.js
Review Special Issues

Current insights into the molecular systems pharmacology of lncRNA-miRNA regulatory interactions and implications in cancer translational medicine

  • Received: 31 January 2016 Accepted: 11 April 2016 Published: 15 April 2016
  • In recent times, the role(s) of microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) in the pathogenesis of various cancers has received great attention. Indeed, there is also a growing recognition of regulatory RNA cross-talk, i.e., lncRNA-miRNA interactions, that may modulate various events in carcinogenesis and progression to metastasis. This review summarizes current evidence in the literature of lncRNA-miRNA interactions in various cancers such as breast, liver, stomach, lung, prostate, bladder, colorectal, blood, brain, skin, kidney, cervical, laryngeal, gall bladder, and bone. Further, the potential prognostic and theragnostic clinical applications of lncRNA-miRNA interactions in cancer are discussed along with an overview of noncoding RNA (ncRNA)-based studies that were presented at the American Society of Clinical Oncology (ASCO) 2015. Interestingly, the last decade has seen tremendous innovation, as well as increase in complexity, of the cancer biological network(s) from mRNA- to miRNA- and lncRNA-based networks. Thus, biological networks devoted to understanding regulatory interactions between these ncRNAs would be the next frontier in better elucidating the contributions of lncRNA-miRNA interactions in cancer. Herein, a cancer biological network of lncRNA-miRNA interactions is presented wherein “edges” connect interacting lncRNA-miRNA pairs, with each ncRNA serving as a discrete “node” of the network. In conclusion, the untapped potential of lncRNA-miRNA interactions in terms of its diagnostic, prognostic and therapeutic potential as targets for clinically actionable intervention as well as biomarker validation in discovery pipelines remains to be explored. Future research will likely harness this potential so as to take us closer to the goal of “precision” and “personalized medicine” which is tailor-made to the unique needs of each cancer patient, and is clearly the way forward going into the future.

    Citation: Sujit Nair. Current insights into the molecular systems pharmacology of lncRNA-miRNA regulatory interactions and implications in cancer translational medicine[J]. AIMS Molecular Science, 2016, 3(2): 104-124. doi: 10.3934/molsci.2016.2.104

    Related Papers:

    [1] Ning Bai, Juan Zhang , Li Li, Zhen Jin . Evaluating the effect of virus mutation on the transmission of avian influenza H7N9 virus in China based on dynamical model. Mathematical Biosciences and Engineering, 2019, 16(5): 3393-3410. doi: 10.3934/mbe.2019170
    [2] Jing-An Cui, Fangyuan Chen . Effects of isolation and slaughter strategies in different species on emerging zoonoses. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1119-1140. doi: 10.3934/mbe.2017058
    [3] Ryan Covington, Samuel Patton, Elliott Walker, Kazuo Yamazaki . Improved uniform persistence for partially diffusive models of infectious diseases: cases of avian influenza and Ebola virus disease. Mathematical Biosciences and Engineering, 2023, 20(11): 19686-19709. doi: 10.3934/mbe.2023872
    [4] Xue Zhang, Shuni Song, Jianhong Wu . Onset and termination of oscillation of disease spread through contaminated environment. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1515-1533. doi: 10.3934/mbe.2017079
    [5] Xiaomeng Wang, Xue Wang, Xinzhu Guan, Yun Xu, Kangwei Xu, Qiang Gao, Rong Cai, Yongli Cai . The impact of ambient air pollution on an influenza model with partial immunity and vaccination. Mathematical Biosciences and Engineering, 2023, 20(6): 10284-10303. doi: 10.3934/mbe.2023451
    [6] Baoxiang Zhang, Yongli Cai, Bingxian Wang, Weiming Wang . Dynamics and asymptotic profiles of steady states of an SIRS epidemic model in spatially heterogenous environment. Mathematical Biosciences and Engineering, 2020, 17(1): 893-909. doi: 10.3934/mbe.2020047
    [7] Liqiong Pu, Zhigui Lin . A diffusive SIS epidemic model in a heterogeneous and periodically evolvingenvironment. Mathematical Biosciences and Engineering, 2019, 16(4): 3094-3110. doi: 10.3934/mbe.2019153
    [8] Guodong Li, Wenjie Li, Ying Zhang, Yajuan Guan . Sliding dynamics and bifurcations of a human influenza system under logistic source and broken line control strategy. Mathematical Biosciences and Engineering, 2023, 20(4): 6800-6837. doi: 10.3934/mbe.2023293
    [9] Olivia Prosper, Omar Saucedo, Doria Thompson, Griselle Torres-Garcia, Xiaohong Wang, Carlos Castillo-Chavez . Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza. Mathematical Biosciences and Engineering, 2011, 8(1): 141-170. doi: 10.3934/mbe.2011.8.141
    [10] Omar Saucedo, Maia Martcheva, Abena Annor . Computing human to human Avian influenza $\mathcal{R}_0$ via transmission chains and parameter estimation. Mathematical Biosciences and Engineering, 2019, 16(5): 3465-3487. doi: 10.3934/mbe.2019174
  • In recent times, the role(s) of microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) in the pathogenesis of various cancers has received great attention. Indeed, there is also a growing recognition of regulatory RNA cross-talk, i.e., lncRNA-miRNA interactions, that may modulate various events in carcinogenesis and progression to metastasis. This review summarizes current evidence in the literature of lncRNA-miRNA interactions in various cancers such as breast, liver, stomach, lung, prostate, bladder, colorectal, blood, brain, skin, kidney, cervical, laryngeal, gall bladder, and bone. Further, the potential prognostic and theragnostic clinical applications of lncRNA-miRNA interactions in cancer are discussed along with an overview of noncoding RNA (ncRNA)-based studies that were presented at the American Society of Clinical Oncology (ASCO) 2015. Interestingly, the last decade has seen tremendous innovation, as well as increase in complexity, of the cancer biological network(s) from mRNA- to miRNA- and lncRNA-based networks. Thus, biological networks devoted to understanding regulatory interactions between these ncRNAs would be the next frontier in better elucidating the contributions of lncRNA-miRNA interactions in cancer. Herein, a cancer biological network of lncRNA-miRNA interactions is presented wherein “edges” connect interacting lncRNA-miRNA pairs, with each ncRNA serving as a discrete “node” of the network. In conclusion, the untapped potential of lncRNA-miRNA interactions in terms of its diagnostic, prognostic and therapeutic potential as targets for clinically actionable intervention as well as biomarker validation in discovery pipelines remains to be explored. Future research will likely harness this potential so as to take us closer to the goal of “precision” and “personalized medicine” which is tailor-made to the unique needs of each cancer patient, and is clearly the way forward going into the future.


    Avian influenza is an animal disease, it caused by avian influenza A virus. Avian influenza generally targets specific species, but the virus can infect humans by crossing species barriers in rare cases. For example, avian influenza virus AH5N1 and AH5N7. Since the first outbreak of avian influenza AH5N1 in Hong Kong in 1997, the virus has infected more than 400 people worldwide, with a mortality rate close to 60% [1]. In 2013, the avian influenza AH7N9 crossed the species barrier for the first outbreak in mainland China. More than 400 people have been infected, and the mortality rate is close to 40% [1]. Avian influenza has not only brought serious threat to human health, but also caused human psychological panic. And it caused a huge blow to the national economy. Therefore, to provide effective control and prevention strategies, mathematical models and methods have been widely adopted to study the epidemiological characteristics of infectious diseases.

    The mathematical dynamics method can describe the internal mechanism of infectious disease transmission by establishing a mathematical model. Kermack and McKendrick [2,3,4] established the famous compartmental model, a "threshold theory" was proposed to distinguish the prevalence of the disease. Liu and Ruan [5] constructed two bird-to-human avian influenza models with different growth laws of the avian population, and proved the globally asymptotic stability. Gourley et al. [6] established a patch model with delay to investigate the role of migratory birds in the spread of H5N1 avian influenza, they proved globally asymptotic stability of the disease-free equilibrium. Bourouiba et al. [6] established a delayed avian influenza model to investigate the role of migrating birds in the spread of avian influenza. S. Iwami et al. [7] constructed a mathematical model to explain the spread of avian influenza and mutant avian influenza. Tuncer and Martcheva [8] addressed the question of modeling the periodicity in cumulative number of human cases of H5N1. Three potential drivers of influenza seasonality were investigated. Hu [9] constructed an avian influenza model with nonlinear incidence and analyzed the stability of the model, as follows:

    $ {dSadt=ΛaλaSaIa1+α1IaμaSa,dIadt=λaSaIa1+α1IaδaIaμaIa,dShdt=ΛhλhShIa1+α2I2hμhSh,dIhdt=λhShIa1+α2I2hγhIhδhIhμhIh,dRhdt=γhIhμhRh, $ (1.1)

    in model (1.1), $ S_{a} $ and $ I_{a} $ denote the sizes of susceptible poultry and infectious poultry. $ S_{h} $, $ I_{h} $, and $ R_{h} $ denote the sizes of susceptible human, infectious human, recovery human, respectively. $ \frac{1}{1+\alpha_{1}I_{a}} $ [10] describes the saturation due to the protection measures of the poultry farmers when the number of infective poultry increases. Similarly, as the number of the infective human individuals increases, the susceptible human population may tend to reduce the number of contacts with infective infective avian population per unit time due to the psychological effect, so we use a nonmonotone incidence function to describe the transmission of the virus from infective poultry to susceptible human; that is, $ \frac{\beta_{h}S_{h}I_{a}}{1+\alpha_{2}I^{2}_{h}} $ [11,12]. All parameters are assumed non-negative and their meanings are described as follows: $ \Lambda_{a} $ and $ \Lambda_{h} $ denote the recruitment rate of poultry and human population, respectively; $ \lambda_{a} $ and $ \lambda_{h} $ represent the infected rate of poultry and human population, respectively; $ \mu_{a} $ and $ \mu_{h} $ represent the natural mortality rate of poultry and human population, respectively; $ \delta_{a} $ and $ \delta_{h} $ represent the mortality due to disease in poultry and human population, respectively; $ \gamma_{h} $ denotes recovery rate of infected human population.

    The model (1.1) is a time-dependent ordinary differential system. But in fact, the spread of infectious diseases are significantly affected by the spatial heterogeneity, for example, spatial position, water resource availability and other factors. There is increasing evidence that the spatial diffusion has significant impact on the spread of infectious diseases. Tang [13] investigated an avian influenza epidemic model with diffusion and nonlocal delay, this model describes the transmission of avian influenza among birds and human; especially the asymptomatic individuals in the latent period have infectious force. Lin [14] introduce two moving boundaries, which are called free boundaries, to describe the avian influenza virus transmitting in the habitat.

    However, all the above models are obtained under the assumption that all individuals are uniformly mixed, which means they have the same contact rate with other individuals in the region. That is, the mixture between individuals are homogeneous, but, the contact between poultry-to-poultry, and poultry-to-human are obviously heterogeneous [15] in reality. In order to reflect the heterogeneity of contacting between individuals, it is of great significance to explore the spread of avian influenza on coupled networks. Zhan [16] had studied the coupling dynamics between epidemic spreading and relevant information diffusion.

    On the other hand, as is known to all that avian influenza has posed huge economic burden which primarily includes opportunity loss, health care related expenditures, loss of employment and so on. Because of resource limitations, it is very necessary to formulate optimal control strategies which can prevent wide spreading of infectious diseases at minimum cost. Therefore, we introduce the slaughtering for poultry and treatment for humans as control variables, and establish an optimal control problem to decrease the number infected poultry and humans. Mathematically, the optimal control is obtained by solving the state equation and adjoint equation or the Hamilton-Jacobi-Bellman equation. In fact, for a complex system, such equations have difficulties giving analytic solutions. Optimal controls may not even exist in many situations, while near-optimal controls always exist. Many more near-optimal controls are available than optimal ones. Therefore, in this paper, we explore the near-optimal controls, aiming to slaughter poultry and treat infected humans while keeping the loss and cost to a minimum. The main contributions of this paper are as follows:

    ● An avian influenza model with spatial diffusion on complex networks is established.

    ● We define the basic reproduction number of virus and show that it is a threshold for viral persistence or extinction.

    ● The necessary and sufficient conditions of near-optimal control are presented.

    The rest of this paper is organized as follows. In section 2, we construct an avian influenza model with spatial diffusion on complex networks, In section 3, we discuss the well-posedness of the system. We compute the basic reproduction number of the avian influenza model in section 4. In section 5, we analyze the sufficient and necessary conditions for the near optimal control. In section 6, several numerical simulations are given to demonstrate the theory results. Finally, we give a brief conclusion and future work in section 7.

    We will use the following notations in this paper:

    ● $ \mid\cdot\mid $: the norm of an Euclidean space;

    ● $ f_{x} $: the partial derivation of $ f $ with respect to $ x $;

    ● $ \chi_{S} $: the indicator function of a set $ S $;

    ● $ C $: generally refers to all arbitary normal numbers.

    Considering the heterogeneity of the contact between poultry-to-poultry and poultry-to-human, we introduce one-way-coupled networks into avian influenza model. There are two separate networks, $ \mathcal{A} $ and $ \mathcal{H} $. Network $ \mathcal{H} $ consists of humanity, where each node represents an individual, and each connection between two individuals represents direct contact between them. Network $ \mathcal{A} $ is composed of poultry population. And there is a connection from subnetwork $ \mathcal{A} $ to subnetwork $ \mathcal{H} $. We express in degrees $ (i, j) $ that there are $ i $ edges connected to subnetwork $ \mathcal{A} $ and $ j $ edges connected to subnetwork $ \mathcal{H} $. And it is expressed in degrees $ (i, \cdot) $ that $ i $ edges are connected to subnetwork $ \mathcal{A} $, and any edges are connected to subnetwork $ \mathcal{H} $. The same degree $ (\cdot, j) $ indicates that any edge is connected to the subnetwork $ \mathcal{A} $ and $ j $ edges are connected to the sub-network $ \mathcal{H} $. Then, model (1.1) can be written as

    $ {dSai,j(t)dt=Λaλa(i)Sai,j(t)Θa(t)1+α1Θa(t)μaSai,j(t),dIai,j(t)dt=λa(i)Sai,j(t)Θa(t)1+α1Θa(t)δaIai,j(t)μaIai,j(t),dShi,j(t)dt=Λhλah(j)Shi,j(t)Θah(t)1+α2Θah(t)μhShi,j(t),dIhi,j(t)dt=λah(j)Shi,j(t)Θah(t)1+α2Θah(t)γhIhi,j(t)δhIhi,j(t)μhIhi,j(t),dRhi,j(t)dt=γhIhi,j(t)μhRhi,j(t), $ (2.1)

    $ \Theta_{a}(t) $ denotes the infection probability of susceptible poultry nodes with the degree $ i $ in contact with the infected poultry nodes. $ \Theta_{ah}(t) $ denotes the infection probability of susceptible human nodes with the degree $ j $ in contact with the infected poultry nodes. In the uncorrelated networks, $ \Theta_{a}(t) $, $ \Theta_{ah}(t) $ can be written as

    $ Θa(t)=1kani=1ipa(i,)Iai,j(t),Θah(t)=1kahnj=1jpa(,j)Iai,j(t), $

    where $ \langle k\rangle_{a} $ = $ \sum_{i = 1}^{n}ip_{a}(i, \cdot) $, $ \langle k\rangle_{ah} $ = $ \sum_{j = 1}^{n}jp_{a}(\cdot, j) $, $ p_{a}(i, \cdot) $ = $ \sum_{j = 1}^{n}p_{a}(i, j) $, $ p_{a}(\cdot, j) $ = $ \sum_{i = 1}^{n}p_{a}(i, j) $, $ p_{a}(i, j) $ = $ \frac{N^{a}_{i, j}}{N^{a}} $, $ N^{a} $ = $ \sum_{i = 1}^{n} \sum_{j = 1}^{n}S^{a}_{i, j}+\sum_{i = 1}^{n} \sum_{j = 1}^{n}I^{a}_{i, j} $. The stability of equilibrium points is often governed by a threshold called the basic reproduction number $ \mathcal{R}_{0} $. The basic reproduction number $ \mathcal{R}_{0} $ of model (2.1) is obtained by using the method in the reference [17], where

    $ R0=Λaμa(δa+μa)1kani=1λa(i)ipa(i,)=Λaλaμa(δa+μa)i2i, $

    where $ \langle i^{2}\rangle = \sum_{i = 1}^{n}i^{2}p_{a}(i, \cdot) $. The parameters of the coupling network are described in Table 1.

    Table 1.  The parameters of the coupling network are described in model (2.1).
    Parameter Description
    $ N^{X}_{i, j} $ The number of nodes with degree $ (i, j) $ on subnet $ X $
    $ S^{a}_{i, j}(I^{a}_{i, j}) $ The number of susceptible (infected) nodes with degree $ (i, j) $ on subnet $ \mathcal{A} $
    $ S^{h}_{i, j}(I^{h}_{i, j}) $ The number of susceptible (infected) nodes with degree $ (i, j) $ on subnet $ \mathcal{H} $
    $ R^{h}_{i, j} $ The number of recovered nodes nodes with degree $ (i, j) $ on subnet $ \mathcal{H} $
    $ p_{a}(i, \cdot)(p_{a}(\cdot, j)) $ The boundary degree distribution of subnet $ \mathcal{A} $
    $ \langle k\rangle_{a}(\langle k\rangle_{ah}) $ The average of nodes in subject $ \mathcal{A} $ connected to subnet $ \mathcal{A}(\mathcal{H}) $
    $ \lambda_{a}(i)=\lambda_{a}i $ Poultry to poultry transmission rate of degree $ i $
    $ \lambda_{ah}(j)=\lambda_{ah}j $ Poultry to human transmission rate of degree $ j $

     | Show Table
    DownLoad: CSV
    Table 2.  The parameters of the coupling network are described in model (2.1).
    Parameter Value Data Source
    $ \Lambda_{a}(\Lambda_{h}) $ 1000/245(2000/36500) per day [35,36]
    $ \lambda_{a}(\lambda_{h}) $ $ 5.1\times10^{-4} (2\times10^{-6}) $per day [35]
    $ \mu_{a}(\mu_{h}) $ $ 1/245(5.48\times10^{-5}) $per day [35,36]
    $ \delta_{a}(\delta_{h}) $ $ 1/400(0.001) $per day [35,37,38]
    $ \gamma_{h} $ 0.1per day [37,38]
    $ c $ 0.5 Assumed
    $ \alpha_{1} $ 0.01 Assumed
    $ \alpha_{2} $ 0.03 Assumed

     | Show Table
    DownLoad: CSV

    In general, the individual disperses randomly in the habitat. Therefore, we consider not only the individuals activity in temporal dimension, but also the distribution of the individual in the spatial and the dynamic characteristic of the avian influenza. Considering spatial spreading, Kim et al.[18] investigated a diffusive epidemic model, this model describes the transmission of avian influenza among birds and humans. (We assume that susceptible individuals, infectious individuals and recovered individuals move spatially randomly.) In view of the fact that the spatial diffusion and environmental heterogeneity are important factors in modeling the spread of many diseases, with reference [19], an extended version of the avian-human model can be described by

    $ {Sai,jtlk=1xk(DikSai,jxk)=Λaλa(i)Sai,jΘa1+α1ΘaμaSai,j,t>0,xΩ,Iai,jtlk=1xk(DikIai,jxk)=λa(i)Sai,jΘa1+α1ΘaδaIai,jμaIai,j,t>0,xΩ,Shi,jtlk=1xk(GkjShi,jxk)=Λhλah(j)Shi,jΘahμhShi,j,t>0,xΩ,Ihi,jtlk=1xk(GkjIhi,jxk)=λah(j)Shi,jΘahγhIhi,jδhIhi,jμhIhi,j,t>0,xΩ,Rhi,jtlk=1xk(GkjRhi,jxk)=γhIhi,jμhRhi,j,t>0,xΩ, $ (2.2)

    because the removed population has no effect on the dynamics of $ S^{h}_{i, j} $ and $ I^{h}_{i, j} $, model (2.2) can be decoupled to the following model

    $ {Sai,jtlk=1xk(DikSai,jxk)=Λaλa(i)Sai,jΘa1+α1ΘaμaSai,j,t>0,xΩ,Iai,jtlk=1xk(DikIai,jxk)=λa(i)Sai,jΘa1+α1ΘaδaIai,jμaIai,j,t>0,xΩ,Shi,jtlk=1xk(GkjShi,jxk)=Λhλah(j)Shi,jΘahμhShi,j,t>0,xΩ,Ihi,jtlk=1xk(GkjIhi,jxk)=λah(j)Shi,jΘahγhIhi,jδhIhi,jμhIhi,j,t>0,xΩ, $ (2.3)

    where $ S^{a}_{i, j}: = S^{a}_{i, j}(t, x) $, $ I^{a}_{i, j}: = I^{a}_{i, j}(t, x) $, $ S^{h}_{i, j}: = S^{h}_{i, j}(t, x) $, $ I^{h}_{i, j}: = I^{h}_{i, j}(t, x) $, $ x = (x_{1}, x_{2}, \cdots, x_{l})^{T}\in\Omega\subset \mathbb{R}^{l} $, $ \Omega $ is the spatial habitat in $ \mathbb{R}^{l} $ with smooth boundary $ \partial\Omega $, $ \Omega = \{x||x_{k}|\leq L_{k}\} $, $ L_{k} $ is constant, $ k = 1, 2, \cdots, l $; $ D_{ik}: = D_{ik}(t, x) > 0 $, $ G_{kj}: = G_{kj}(t, x) > 0 $ denote the transmission diffusion operator, $ \Lambda_{a}: = \Lambda_{a}(x) $, $ \Lambda_{h}: = \Lambda_{h}(x) $, $ \lambda_{a}(i): = \lambda_{a}(i)(x) $, $ \lambda_{ah}(j): = \lambda_{ah}(j)(x) $, $ \mu_{a}: = \mu_{a}(x) $, $ \mu_{h}: = \mu_{h}(x) $, $ \delta_{a}: = \delta_{a}(x) $, $ \delta_{h}: = \delta_{h}(x) $, and $ \gamma_{h}: = \gamma_{h}(x) $ are positive Hölder continuous functions on $ \overline{\Omega} $.

    $ Θa(t,x)=1kani=1ipa(i,)Iai,j(t,x):=Θa,Θah(t,x)=1kahnj=1jpa(,j)Iai,j(t,x):=Θah, $

    the initial conditions are given by $ S^{a}_{i, j}(0, x) = \phi_{1i} $, $ I^{a}_{i, j}(0, x) = \phi_{2i} $, $ S^{h}_{i, j}(0, x) = \phi_{3j} $, $ I^{h}_{i, j}(0, x) = \phi_{4j} $, $ \phi\in\mathbb{R_{+}} $, $ x\in\overline{\Omega}, i, j = 1, 2, \cdots, n $, where $ \mathbb{R_{+}} = \{x\in\mathbb{R}:x\geq0\} $. For $ x\in\Omega $, with homogeneous Neumann boundary conditions

    $ Sai,j(t,x)n=(Sai,j(t,x)x1,Sai,j(t,x)x2,,Sai,j(t,x)xl)T=0,t>0,xΩ,Iai,j(t,x)n=(Iai,j(t,x)x1,Iai,j(t,x)x2,,Iai,j(t,x)xl)T=0,t>0,xΩ,Shi,j(t,x)n=(Shi,j(t,x)x1,Shi,j(t,x)x2,,Shi,j(t,x)xl)T=0,t>0,xΩ,Ihi,j(t,x)n=(Ihi,j(t,x)x1,Ihi,j(t,x)x2,,Ihi,j(t,x)xl)T=0,t>0,xΩ, $ (2.4)

    where $ \Omega $ is a bounded smooth domain in $ \mathbb{R}^{l} $, $ \partial\Omega $ and $ \overline{\Omega} $ are the boundary and the closure of $ \Omega $, $ n $ is the outer normal vector of $ \partial\Omega $. Let $ \mathbb{X}: = C(\overline{\Omega}, \mathbb{R}^{4n}) $ be the Banach space with the supremum norm $ \|\cdot\| $. Define $ \mathbb{X}^{+}: = C(\overline{\Omega}, \mathbb{R}_{+}^{4n}) $. The symbol $ \nabla $ is the gradient operator.

    In this section, we will focus on the existence and uniqueness of the global solutions of model (2.3).

    Lemma 3.1. For every initial value function $ \phi: = (\phi_{1i}, \phi_{2i}, \phi_{3j}, \phi_{4j})\in\mathbb{X}^{+} $, the solution $ U(t, x;\phi) = (S^{a}_{i, j}(t, x;\phi_{1i}), I^{a}_{i, j}(t, x;\phi_{2i}), S^{h}_{i, j}(t, x;\phi_{3j}), I^{h}_{i, j}(t, x;\phi_{4j})) $ of model (2.3), satisfies that

    $ limtsup(Sai,j(t,x;ϕ1i)+Iai,j(t,x;ϕ2i)+Shi,j(t,x;ϕ3j)+Ihi,j(t,x;ϕ4j))<C, $

    where C is a normal constant.

    Proof. Let

    $ W(t)=Ω(Sai,j(t,x;ϕ1i)+Iai,j(t,x;ϕ2i)+Shi,j(t,x;ϕ3j)+Ihi,j(t,x;ϕ4j))dx, $
    $ W(t)dt=Ω(Sai,j(t,x;ϕ1i)t+Iai,j(t,x;ϕ2i)t+Shi,j(t,x;ϕ3j)t+Ihi,j(t,x;ϕ4j)t)dx=Ω(lk=1xk(DikSai,jxk)+lk=1xk(DikIai,jxk)+lk=1xk(GkjShi,jxk)+lk=1xk(GkjIhi,jxk)+ΛaμaSai,jδaIai,jμaIai,j+ΛhμhShi,jγhIhi,jδhIhi,jμhIhi,j)dxΩ(lk=1(DikSai,jn)+lk=1(DikIai,jn)+lk=1(GkjShi,jn)+lk=1(GkjIhi,jxk)+Λa+ΛhμhSai,jμhIai,jμhShi,jμhIhi,j)dx=Ω(Λa+Λh)dxμhW(t), $

    where $ |\Omega| $ represents the volume of $ \Omega $, we can obtain

    $ limtW(t)Ω(Λa+Λh)dxμh. $

    In other words, there is a positive constant $ C $ such that $ \lim_{t\rightarrow \infty}W(t) < C $. This proof is complete. Next, we will focus on the existence and uniqueness of the global solutions of model (2.3) by semigroup.

    Theorem 3.2. For every initial value function $ \phi: = (\phi_{1i}, \phi_{2i}, \phi_{3j}, \phi_{4j}) \in\mathbb{X}^{+} $, model (2.3) has a unique solution $ U(t, x;\phi) = (S^{a}_{i, j}(t, x;\phi_{1i}), I^{a}_{i, j}(t, x;\phi_{2i}), S^{h}_{i, j} (t, x;\phi_{3j}), I^{h}_{i, j}(t, x;\phi_{4j})) $ with $ U(0, x;\phi) = \phi $ and the semiflow $ \Psi_{t}:\mathbb{X}^{+}\longrightarrow\mathbb{X}^{+} $ generated by (2.3) is defined by

    $ Ψt(ϕ)=(Sai,j(t,x;ϕ),Iai,j(t,x;ϕ),Shi,j(t,x;ϕ),Ihi,j(t,x;ϕ)),x¯Ω,t0. $

    Furthermore, the semiflow $ \Psi_{t}:\mathbb{X}^{+}\rightarrow \mathbb{X}^{+} $ is point dissipative and the positive orbits of bounded subsets of $ \mathbb{X}^{+} $ for $ \Psi_{t} $ are bounded.

    Proof. Suppose $ \mathcal{T}_{1i}(t) $, $ \mathcal{T}_{2i}(t) $, $ \mathcal{T}_{3j}(t) $, $ \mathcal{T}_{4j}(t) $: $ C(\overline{\Omega}, \mathbb{R})\longrightarrow C(\overline{\Omega}, \mathbb{R}) $ be the $ C_{0} $ semigroups associated with $ \sum_{k = 1}^{l}\frac{\partial}{\partial x_{k}}(D_{ik}\frac{\partial}{\partial x_{k}})-\mu_{a} $, $ \sum_{k = 1}^{l}\frac{\partial}{\partial x_{k}}(D_{ik}\frac{\partial}{\partial x_{k}})-(\mu_{a}+\delta_{a}) $, $ \sum_{k = 1}^{l}\frac{\partial}{\partial x_{k}}(G_{kj}\frac{\partial}{\partial x_{k}})-\mu_{h} $, $ \sum_{k = 1}^{l}\frac{\partial}{\partial x_{k}}(G_{kj}\frac{\partial}{\partial x_{k}})-(\mu_{h}+\delta_{h}+\gamma_{h}) $ subject to the Neumann boundary condition, respectively. It then follows that $ \mathcal{T}(t) $: = ($ \mathcal{T}_{1i}(t) $, $ \mathcal{T}_{2i}(t) $, $ \mathcal{T}_{3j}(t) $, $ \mathcal{T}_{4j}(t) $), it is strongly positive and compact for each $ t > 0 $ [20]. For every initial value functions $ \phi $ = ($ \phi_{1i}(x) $, $ \phi_{2i}(x) $, $ \phi_{3j}(x) $, $ \phi_{4j}(x) $)$ \in\mathbb{X}^{+} $, we define $ F $ = ($ F_{1i} $, $ F_{2i} $, $ F_{3j} $, $ F_{4j} $): $ \mathbb{X}^{+}\longrightarrow\mathbb{X} $ by $ F_{1i}(\phi)(x) = \Lambda_{a}-\lambda_{a}(i)\phi_{1i}(x)\frac{\Theta_{a}(t, x, \phi_{2i})} {1+\alpha_{1}\Theta_{a}(t, x, \phi_{2i})} $, $ F_{2i}(\phi)(x) = \lambda_{a}(i)\phi_{1i}(x) \frac{\Theta_{a}(t, x, \phi_{2i})} {1+\alpha_{1}\Theta_{a}(t, x, \phi_{2i})} $, $ F_{3j}(\phi)(x) = \Lambda_{h} -\lambda_{ah}(j)\phi_{3j}(x) \Theta_{ah}(t, x, \phi_{2i}) $, $ F_{4j}(\phi)(x) = \lambda_{ah}(j)\phi_{3j}(x) \Theta_{ah}(t, x, \phi_{2i}) $. The model (2.3) can be rewritten as the integral equation

    $ U(t)=T(t)ϕ+t0T(ts)F(U(s))ds, $

    where $ U(t) = (S^{a}_{i, j}, I^{a}_{i, j}, S^{h}_{i, j}, I^{h}_{i, j})^{T} $. It is easy to show that $ \lim_{h\longrightarrow0^{+}}\; dist(\phi+hF(\phi), \mathbb{X}^{+}) = 0, \forall\phi\in\mathbb{X}^{+} $. By in [21], model (2.3) has a unique positive solution $ (S^{a}_{i, j}(t, x;\phi_{1i}), I^{a}_{i, j}(t, x;\phi_{2i}), S^{h}_{i, j}(t, x;\phi_{3j}), I^{h}_{i, j}(t, x;\phi_{4j})) $ on $ [0, \tau_{e})\times\Omega $, where $ 0 < \tau_{e}\leq\infty $. In what follows, we prove that the local solution can be extended to a global one, that is $ \tau_{e} = \infty $. For this purpose, by a standard argument, we only need to prove that the solution is bounded in $ [0, \tau_{e})\times\Omega $. To this end, we let $ N^{a}_{i, j}(t, x) = S^{a}_{i, j}(t, x) +I^{a}_{i, j}(t, x) $, $ N^{h}_{i, j}(t, x) = S^{h}_{i, j}(t, x)+I^{h}_{i, j}(t, x) +R^{h}_{i, j}(t, x) $. Then $ N^{a}_{i, j}(t, x) $, and $ N^{h}_{i, j}(t, x) $ satisfy the following system

    $ {Nai,j(t,x)tlk=1xk(DikNai,j(t,x)xk)=ΛaμaNai,j(t,x)δaIai,j(t,x),t>0,xΩ,Nhi,j(t,x)tlk=1xk(GkjNhi,j(t,x)xk)=ΛhμhNhi,j(t,x)γhIhi,j(t,x)δhIhi,j(t,x),t>0,xΩ,Nai,j(0,x)=Sai,j(0,x)+Iai,j(0,x)0,Nhi,j(0,x)=Shi,j(0,x)+Ihi,j(0,x)+Rhi,j(0,x)0,xΩ,DikNai,j(t,x)n=0,GkjNhi,j(t,x)n=0,t>0,xΩ. $ (3.1)

    Thank to [22], model (3.1) admits a unique positive steady state $ E^{0} $ which is globally asymptotically stable in $ C(\Omega, \mathbb{R}) $. It follows that $ U(t, x;\phi) = (S^{a}_{i, j}(t, x;\phi), I^{a}_{i, j}(t, x;\phi), S^{h}_{i, j}(t, x;\phi), I^{h}_{i, j}(t, x;\phi)) $ is bounded on $ [0, \tau_{e})\times\Omega $, which implies the Theorem.

    In the rest of this subsection, we first define the basic reproduction number of virus and show that it is a threshold for viral persistence or extinction.

    It follows from Theorem 3.2 model (2.3) with (2.4) admits a unique disease free steady state, $ E^{0} = (S^{a0}_{1, j}, S^{a0}_{2, j}, \cdots, S^{a0}_{n, j}, 0, 0, \cdots, 0, S^{h0}_{i, 1}, S^{h0}_{i, 2}, \cdots, S^{h0}_{i, n}, 0, 0, \cdots, 0) $, linearizing (2.3) with (2.4) at $ E^{0} $, we get the following linear cooperative system for $ I^{a}_{i, j} $, and $ I^{h}_{i, j} $, component

    $ {Iai,jtlk=1xk(DikIai,jxk)=λa(i)Sa0i,jΘaδaIai,jμaIai,j,t>0,xΩ,Ihi,jtlk=1xk(GkjIhi,jxk)=λah(j)Sh0i,jΘahγhIhi,jδhIhi,jμhIhi,j,t>0,xΩ,Iai,j(t,x)n=(Iai,j(t,x)x1,Iai,j(t,x)x2,,Iai,j(t,x)xl)T=0,t>0,xΩ,Ihi,j(t,x)n=(Ihi,j(t,x)x1,Ihi,j(t,x)x2,,Ihi,j(t,x)xl)T=0,t>0,xΩ,Iai,j(0,x)=ϕ2i,Ihi,j(0,x)=ϕ4j. $ (4.1)

    Substituting $ I^{a}_{i, j} = e^{\xi_{i} t}\psi_{i}(x), \; I^{h}_{i, j} = e^{\xi_{j}t}\varphi_{j}(x), $ into (4.1), $ \psi_{i}(x)\in C(\overline{\Omega}, \mathbb{R}^{2n}) $, $ \varphi_{j}(x)\in C(\overline{\Omega}, \mathbb{R}^{2n}) $, we obtain the following eigenvalue problem,

    $ {ξiψi(x)lk=1xk(Dikψi(x)xk)=λa(i)Sa0i,jkani=1ipa(i,)ψi(x)δaψi(x)μaψi(x),xΩ,ξjφj(x)lk=1xk(Gkjφj(x)xk)=λah(j)Sh0i,jkahnj=1jpa(,j)ψj(x)γhφj(x)δhφj(x)μhφj(x),xΩ,ψi(x)n=(ψi(x)x1,ψi(x)x2,,ψi(x)xl)T=0,xΩ,φj(x)n=(φj(x)x1,φj(x)x2,,φj(x)xl)T=0,xΩ,ψi(x)=ϕ2i,φj(x)=ϕ4j, $ (4.2)

    which is a cooperation system. By a similar argument in [39], it follows that (4.2) admits a unique principal eigenvalue $ \xi_{0}(E^{0}) $ with a strongly positive eigenfunction $ (\psi_{i}(x), \varphi_{j}(x)) $. Denote by $ \Gamma(t) $ the solution semigroup of (4.1) on $ C(\overline{\Omega}, \mathbb{R}^{2n}) $ with generator $ \mathcal{B}: = B+F $,

    $ B=[ωa+a1+λa(1)Sa01,jf(1)λa(1)Sa01,jf(n)00λa(n)Sa0n,jf(1)ωa+an+λa(n)Sa0n,jf(n)00λah(1)Sh0i,1g(1)λah(1)Sh0i,1g(n)ωh+h10λah(n)Sh0i,ng(1)λah(n)Sh0i,ng(n)0ωh+hn], $

    where $ \omega_{a} = -\mu_{a}-\delta_{a} $, $ \omega_{h} = -\mu_{h} -\delta_{h} $, $ f(i) = \frac{ip_{a}(i, \cdot)} {\langle k\rangle_{a}} $, $ g(j) = \frac{jp_{a}(\cdot, j)}{\langle k\rangle_{ah}} $, $ \triangle^{a}_{i} = \Sigma_{k = 1}^{l}\frac{\partial}{\partial x_{k}}D_{ik}\frac{\partial}{\partial x_{k}} $, $ \triangle^{h}_{j} = \Sigma_{k = 1}^{l}\frac{\partial} {\partial x_{k}}G_{kj}\frac{\partial}{\partial x_{k}} $, $ B = diag(\omega_{a}+\triangle^{a}_{1}, \cdots, \omega_{a}+\triangle^{a}_{n}, \omega_{h}+\triangle^{h}_{1}, \cdots, \omega_{h}+\triangle^{h}_{n})^{T} = diag(\triangle^{a}_{1}, \cdots, \triangle^{a}_{n}, \triangle^{h}_{1}, \cdots, \triangle^{h}_{n})^{T}-V $,

    $ F=[λa(1)Sa01,f(1)λa(1)Sa01,f(n)00λa(n)Sa0n,f(1)λa(n)Sa0n,f(n)00λah(1)Sh0,1g(1)λah(1)Sh0,1g(n)00λah(n)Sh0,ng(1)λah(n)Sh0,ng(n)00]. $

    We further let $ \overline{\Gamma}(t):C(\overline{\Omega}, \mathbb{R}^{2n})\rightarrow C(\overline{\Omega}, \mathbb{R}^{2n}) $ be the $ C_{0} $-semigroup generated by operator $ B $, we know that both $ B $ and $ -V $ are cooperative for any $ x\in\Omega $, which implies that $ \overline{\Gamma}(t) $ is a positive semigroup in the sense that $ \overline{\Gamma}(t)C(\overline{\Omega}, \mathbb{R}^{2n}_{+})\subseteq C(\overline{\Omega}, \mathbb{R}^{2n}_{+}) $. Further from [27] and the fact that both $ \mathcal{B} $ and $ B $ are resolvent-operators, it then follows that the next generation operator is $ \mathcal{L}: = -FB^{-1} $, given by $ \mathcal{L}(\phi) = \int_{0}^{\infty}F(x) \overline{\Gamma}(t)\phi(x)dt, \phi\in C(\overline{\Omega}, \mathbb{R}^{2n}), x\in\overline{\Omega} $. Then $ \mathcal{L} $ is well-defined, continuous, and positive operator on $ C(\overline{\Omega}, \mathbb{R}^{2n}) $, which maps the initial infection distribution $ \phi $ to the distribution of the total new infections produced during the infection period. We follow the procedure in [28] to define the spectral radius of $ \mathcal{L} $ as the basic reproduction number

    $ R0=r(L)=r(FB1)=sup{|λ|,λσ(L)}=Ωλa(i)Sa0i,j1kani=1ipa(i,)ψ2idxΩ[lk=1(kψi)T(Dikkψi)+(μa+δa)ψ2i]dx. $

    Lemma 4.1. $ \mathcal{R}_{0}-1 $ and $ \xi_{0}(E^{0}) $ have the same sign. The steady state $ E^{0} $ is asymptotically stable if $ \mathcal{R}_{0} < 1 $, and it is unstable $ \mathcal{R}_{0} > 1 $.

    Proof. The method was the same as that in reference [26,27].

    Theorem 4.2. (i)If $ \mathcal{R}_{0} < 1 $ then the disease-free equilibrium $ E^{0} $ is globally asymptotically stable.

    (ii) If $ \mathcal{R}_{0} > 1 $, then there exists $ \epsilon_{0} $ such that any positive solution of model (2.3) satisfies

    $ lim supt(Sai,j(t,),Iai,j(t,),Shi,j(t,),Ihi,j(t,))(Sa0i,j(t,),0,Sh0i,j(t,),0)>ϵ0. $

    Proof. The method was the same as that in reference [29,30].

    In this section, we will establish an near-optimal control of model (2.3) and get an optimal control strategy in theory. We introduce control variables $ u(t, x) $ = $ (u^{a}_{i}(t, x) $, $ u^{h}_{j}(t, x))^{T}\in\mathcal {U}([0, T]\times\Omega) $ = $ \{u^{a}_{i}(t, x) $ and $ u^{h}_{j}(t, x) $ measurable: $ 0\leq u^{a}_{i}(t, x)\leq1 $, $ 0 \leq u^{h}_{j}(t, x)\leq1 $, $ i, j = 1, 2, \cdots, n\} $. Assume the control set $ {U}([0, T]\times\Omega) $ is convex. $ u^{a}_{i}(t, x) $ denotes the proportion of slaughtered susceptible poultry and infected poultry, $ u^{h}_{j}(t, x) $ denotes the proportion of treatment for infected humans. Now, we obtain an optimal control system as follows,

    $ {Sai,jtlk=1xk(DikSai,jxk)=Λaλa(i)Sai,jΘa1+α1ΘaμaSai,juaiSai,j,t>0,xΩ,Iai,jtlk=1xk(DikIai,jxk)=λa(i)Sai,jΘa1+α1ΘaδaIai,jμaIai,juaiIai,j,t>0,xΩ,Shi,jtlk=1xk(GkjShi,jxk)=Λhλah(j)Shi,jΘahμhShi,j,t>0,xΩ,Ihi,jtlk=1xk(GkjIhi,jxk)=λah(j)Shi,jΘahγhIhi,jδhIhi,jμhIhi,jcuhjIhi,j1+α2Ihi,j,t>0,xΩ, $ (5.1)

    we take saturated treatment rate $ \frac{cu^{h}_{j}I^{h}_{i, j}} {1+\alpha_{2}I^{h}_{i, j}}\; (\alpha_{2} $ denotes saturation constant) because of the medical resources are limited. We intend to get an near-optimal pair of slaughter and treatment, which seeks to minimize the number of infected poultry, the number of infected humans, and the cost during the implementing these $ 2n $ control strategies. Therefore, we establish the following objective function

    $ J(uai(t,x),uhj(t,x))=T0Ωni=1A1iIai,j(t,x)+A2iuai(t,x)(Sai,j(t,x)+Iai,j(t,x))+12ςi(uai)2(t,x)dxdt+T0Ωnj=1A3jIhi,j(t,x)+A4juhj(t,x)Ihi,j(t,x)+12ϱj(uhj)2(t,x)dxdt, $ (5.2)

    where $ A_{1i}, \; A_{2i}, \; A_{3j}, \; A_{4j} $ are regarded as a tradeoff factor. The meaning of the objective functional $ J(u^{a}_{i}(t, x), u^{h}_{j}(t, x)) $ is described as follows:

    (1) The term $ \int_{0}^{T}\int_{\Omega}\sum_{i = 1}^{n}A_{1i} I^{a}_{i, j}(t, x)dxdt +\int_{0}^{T}\int_{\Omega}\sum_{j = 1}^{n}A_{3j}I^{h}_{i, j}(t, x)dxdt $ gives the total number of infected poultry infected with avian influenza virus and the total number of infected human over the time period $ T $.

    (2) The term $ \int_{0}^{T}\int_{\Omega}\sum_{i = 1}^{n}A_{2i}u^{a}_{i}(t, x)(S^{a}_{i, j}(t, x)+I^{a}_{i, j}(t, x)) +\frac{1}{2}\varsigma_{i}(u^{a}_{i})^{2}(t, x)dxdt $ gives the total cost of slaughtering for susceptible and infected avian.

    (3) The term $ \int_{0}^{T}\int_{\Omega}\sum_{j = 1}^{n}A_{4j}u^{h}_{j}(t, x)I^{h}_{i, j}(t, x) +\frac{1}{2}\varrho_{j}(u^{h}_{j})^{2}(t, x)dxdt $ gives the total cost of treatment for infected humans.

    The objective of the optimal control problem is to minimize the cost function $ J(u^{a}_{i}(t, x), u^{h}_{j}(t, x)) $ over all $ u(t, x) = (u^{a}_{i}(t, x), u^{h}_{j}(t, x))^{T}\in\mathcal{U}([0, T]\times\Omega) $. The value function is defined as

    $ V(0,ϕ(0,x))=inf(uai(t,x),uhj(t,x))U([0,T]×Ω)J(0,ϕ(0,x);uai(t,x),uhj(t,x)). $

    Definition 5.1. (Near-optimal Control)[24] Both a family of admissible pairs $ \{(u^{a\varepsilon}_{i}(t, x), u^{h\varepsilon}_{j}(t, x)\} $ parameterized by $ \varepsilon > 0 $ and any element $ (u^{a\varepsilon}_{i}(t, x), u^{h\varepsilon}_{j}(t, x)) $ in the family are called near-optimal if

    $ |J(0,ϕ(0,x);uaεi(t,x),uhεj(t,x))V(0,ϕ(0,x);uai(t,x),uhj(t,x))|r(ε), $

    holds for sufficiently small $ \varepsilon $, where $ r $ is a function of $ \varepsilon $ satisfying $ r(\varepsilon)\rightarrow 0 $ as $ \varepsilon\rightarrow 0 $. The estimate $ r(\varepsilon) $ is called an error bound. If $ r(\varepsilon) = c\varepsilon^{\kappa} $ for some $ \kappa $ independent of the constant $ c $, then $ u^{a\varepsilon}_{i}(t), \; u^{h\varepsilon}_{j}(t) $ are called near-optimal with order $ \varepsilon^{\kappa} $.

    Lemma 5.2. (Ekeland's Principle, [25]). Let (S, d) be a complete metrix space, and let $ \rho(\cdot):S\rightarrow R^{1} $ be lower semicontinuous and bounded from below. For $ \epsilon\geq0 $, suppose that $ u^{\epsilon}(t, x)\in S $ satisfies

    $ ρ(uϵ())infu()Sρ(u())+ϵ, $

    then, for any $ \iota > 0 $, there exists $ u^{\iota}(\cdot)\in S $ such that $ \rho(u^{\iota}(\cdot))\leq\rho(u^{\epsilon}(\cdot), \; d(u^{\iota}(\cdot), u^{\epsilon}(\cdot))\leq\iota, \; \rho(u^{\iota}(\cdot))\leq\rho(u(\cdot)) +\frac{\epsilon}{\iota}d(u(\cdot), u^{\iota}(\cdot)) $.

    In this section, we will first show a few lemmas, which will be used to establish the sufficient and necessary condition for the near-optimal control of model (5.1). As is well known, the study of adjoint equations plays a key role in deriving the necessary and sufficient conditions of optimality. Next, we introduce the adjoint equation:

    $ {p1i(t,x)dt=(μa+uai+λa(i)Θa1+α1Θalk=1xkDikxk)p1iλa(i)Θa1+α1Θap2iA2iuai,p2i(t,x)dt=λa(i)f(i)Sai,j(1+α1Θa)2p1i+(δa+μa+uaiλa(i)f(i)Sai,j(1+α1Θa)2lk=1xkDikxk)p2i+λah(j)g(j)Shi,jp3jλah(j)g(j)Shi,jp4jA1iA2iuai,p3j(t,x)dt=(μh+λah(j)Θahlk=1xkDikxk)p3jλah(j)Θahp4j,p4j(t,x)dt=(γh+δh+μh+cuhj(1+α2Ihi,j)2lk=1xkDikxk)p4jA3jA4juhj,p1i(T,x)=p2i(T,x)=p3j(T,x)=p4j(T,x)=0. $ (5.3)

    The following Lemma 5.3 shows that the solution of model model (5.1) is bounded.

    Lemma 5.3. For any $ \eta\geq0 $, and $ (u^{a}_{i}(t, x), \; u^{h}_{j}(t, x))\in\mathcal{U}([0, T]\times\Omega) $, we have

    $ sup0tT|Sai,j(t,x)|η+|Iai,j(t,x)|η+|Shi,j(t,x)|η+|Ihi,j(t,x)|ηC, $ (5.4)

    where $ C $ is a constant that depends only on $ \eta $.

    Proof. The method was the same as that the Lemma 3.1, we get the almost surely positively invariant set of model model (5.1), which means that the inequality (5.4) holds.

    Lemma 5.4. For any $ (u^{a}_{i}(t, x), \; u^{h}_{j}(t, x))\in\mathcal{U}([0, T]\times\Omega) $, we have

    $ sup0tT|p1i(t,x)|2+|p2i(t,x)|2+|p3j(t,x)|2+|p4j(t,x)|2C, $

    where $ C $ is a constant.

    The proof is shown in Appendix A.

    For any $ u(t, x), \; \widetilde{u}(t, x)\in\mathcal{U}([0, T]\times\Omega) $, define a metric on $ \mathcal{U}([0, T]\times\Omega) $ as follows

    $ d(u(t,x),˜u(t,x))=E[mes{(t,x)[0,T]×Ω:u(t,x)˜u(t,x)}], $

    by a similar way as Lemma 6.4 in [32], we know that $ \mathcal{U}([0, T]\times\Omega) $ is a complete space under $ d $.

    The following Lemma will show the continuity of the state process $ (S^{a}_{i, j}(t, x) $, $ I^{a}_{i, j}(t, x) $, $ S^{h}_{i, j}(t, x) $, $ I^{h}_{i, j}(t, x)) $ under metric $ d $.

    Lemma 5.5. For any $ \eta\geq0 $, and $ 0 < \kappa < 1 $ satisfying $ \kappa\eta < 1 $, there exists a constant $ C_{\kappa\eta} $ such that $ u(t, x), \widetilde{u}(t, x)\in\mathcal{U}([0, T]\times\Omega) $ along with the corresponding trajectory $ (S^{a}_{i, j}(t, x) $, $ I^{a}_{i, j}(t, x) $, $ S^{h}_{i, j}(t, x) $, $ I^{h}_{i, j}(t, x)) $, $ (\widetilde{S}^{a}_{i, j}(t, x) $, $ \widetilde{S}^{a}_{i, j}(t, x) $, $ \widetilde{S}^{h}_{i, j}(t, x) $, $ \widetilde{S}^{h}_{i, j}(t, x)) $, we have

    $ sup0tT|Sai,j˜Sai,j|2η+|Iai,j˜Iai,j|2η+|Shi,j˜Shi,j|2η+|Shi,j˜Shi,j|2ηC[d(uai,˜uai)κη+d(uhj,˜uhj)κη]. $

    The proof is shown in Appendix B.

    The next lemma will show that the $ pth $ moment continuity of the solutions to the adjoint Eq (5.3) under metric $ d $.

    Lemma 5.6. For any $ 1 < \eta < 2 $, and $ 0 < \kappa < 1 $ satisfying $ (1+\kappa)\eta < 2 $, there exists a constant $ C_{\kappa\eta} $ such that $ u(t, x), \; \widetilde{u}(t, x) \in\mathcal{U}([0, T]\times\Omega) $ along with the corresponding trajectory $ (S^{a}_{i, j}(t, x) $, $ I^{a}_{i, j}(t, x) $, $ S^{h}_{i, j}(t, x) $, $ I^{h}_{i, j}(t, x)) $, $ (\widetilde{S}^{a}_{i, j}(t, x) $, $ \widetilde{S}^{a}_{i, j}(t, x) $, $ \widetilde{S}^{h}_{i, j}(t, x) $, $ \widetilde{S}^{h}_{i, j}(t, x)) $, and the solution of corresponding adjoint equation, we have

    $ sup0tT|p1i˜p1i|η+|p2i˜p2i|η+|p3j˜p3j|η+|p4j˜p4j|ηC[d(uai,˜uai)κη2+d(uhj,˜uhj)κη2]. $

    The proof is shown in Appendix C.

    To obtain the sufficient conditions, we define the Hamiltonian function $ H $ as follows:

    $ H=ni=1(A1iIai,j+A2iuai(Sai,j+Iai,j)+12ςi(uai)2+p1i(lk=1xk(DikSai,jxk)+Λaλa(i)Sai,jΘa1+α1ΘaμaSai,juaiSai,j)+p2i(lk=1xk(DikIai,jxk)+λa(i)Sai,jΘa1+α1ΘaδaIai,jμaIai,juaiIai,j))+nj=1(A3jIhi,j+A4juhjIhi,j+12ϱj(uhj)2+p3j(lk=1xk(GkjShi,jxk)+Λhλah(j)Shi,jΘahμhShi,j)+p4j(lk=1xk(GkjIhi,jxk)+λah(j)Shi,jΘahγhIhi,jδhIhi,jμhIhi,jcuhjIhi,j1+α2Ihi,j)). $ (5.5)

    We can test the Hamiltonian function $ H $ is convex, a.s. Next, the sufficient conditions for the approximate optimal controls of model model (5.1) are proposed.

    Theorem 5.7. Let $ (S^{a\varepsilon}_{i, j}(t, x) $, $ I^{a\varepsilon}_{i, j}(t, x) $, $ S^{h\varepsilon}_{i, j}(t, x) $, $ I^{h\varepsilon}_{i, j}(t, x) $ , $ u^{a\varepsilon}_{i}(t, x) $, $ u^{h\varepsilon}_{j}(t, x)) $ be an admissible pair and $ (p^{\varepsilon}_{1i}(t, x) $, $ p^{\varepsilon}_{2i}(t, x) $, $ p^{\varepsilon}_{3j}(t, x) $, $ p^{\varepsilon}_{4j}(t, x)) $ be the solution of (5.3) corresponding to $ (S^{a\varepsilon}_{i, j}(t, x) $, $ I^{a\varepsilon}_{i, j}(t, x) $, $ S^{h\varepsilon}_{i, j}(t, x) $, $ I^{h\varepsilon}_{i, j}(t, x) $ , $ u^{a\varepsilon}_{i}(t, x) $, $ u^{h\varepsilon}_{j}(t, x)) $. Assume the control set $ \mathcal{U}([0, T]\times\Omega) $ is convex.a.s. Then for any $ \varepsilon > 0 $, if

    $ supuaiU([0,T]×Ω)T0Ωni=1(A2i(Saεi,j+Iaεi,j)+12ςi(uaεi+uai))Saεi,jpε1iIaεi,jpε2i)(uaεiuai)dxdtε2,supuhjU([0,T]×Ω)T0Ωnj=1(A4jIhεi,j+12ϱj(uhεj+uhj)cIhεi,jpε4j1+α2Ihεi,j)(uhεjuhj)dxdtε2, $

    we have

    $ T0Ωni=1A2iuaεi(Saεi,j+Iaεi,j)+12ςi(uaεi)2dxdt+T0Ωnj=1A4juhεjIhεi,jdxdtinf(uai,uhj)U([0,T]×Ω)T0Ωni=1A2iuai(Saεi,j+Iaεi,j)+12ςi(uai)2dxdt+T0Ωnj=1A4juhjIhεi,jdxdt+Cε12. $

    Proof. In order to prove that $ H_{u} $ can be estimated by $ \varepsilon $, we define a new metric $ d $ on $ \mathcal{U}([0, T]\times\Omega) $. Since the control region is closed, $ \mathcal{U}([0, T]\times\Omega) $ becomes a complete matric space when endowed with the metric

    $ d(u,˜u)=T0Ωni=1vε(t,x)|uai˜uai|dxdt+T0Ωnj=1vε(t,x)|uhj˜uhj|dxdt, $

    where $ v^{\varepsilon}(t, x) = 1+|S^{a\varepsilon}_{i, j}| +|I^{a\varepsilon}_{i, j}|+ |S^{h\varepsilon}_{i, j}|+|I^{h\varepsilon}_{i, j}| $. Next, we will estimate $ J(0, \phi(0, x);u^{a\varepsilon}_{i}(t, x), u^{h\varepsilon}_{j}(t, x)) -J(0, \phi(0, x);u^{a}_{i}(t, x), u^{h}_{j}(t, x)) $. From the Hamiltonian function (5.5) and the objective function (5.2), we have

    $ J(0,ϕ(0,x);uaεi(t,x),uhεj(t,x))J(0,ϕ(0,x);uai(t,x),uhj(t,x))T0Ωni=1(A2i(Sai,j+Iai,j)+ςiuaip1iSai,jp2iIai,j)(uaεiuai)dxdt+T0Ωnj=1(A4jIhi,j+ϱjuhjcIhi,jp4j1+α2Ihi,j)(uhεjuhj)dxdt. $ (5.6)

    Next, we will focus on the estimation of $ H_{u} $. Firstly, we define a new functional $ M(\cdot):\mathcal{U}([0, T]\times\Omega)\rightarrow \mathbb{R} $,

    $ M(u)=T0Ωni=1(A2iuai(Saεi,j+Iaεi,j)+12ςi(uai)2pε1iuaiSaεi,jpε2iuaiIaεi,j)dxdt+T0Ωnj=1(A4juhjIhεi,j+12ϱj(uhj)2cuhjIhεi,jpε4j1+α2Ihεi,j)dxdt, $

    we show that

    $ |M(u)M(˜u)|=T0Ωni=1(A2i(Saεi,j+Iaεi,j)(uai˜uai)+12ςi(uai˜uai)(uai+˜uai)pε1iSaεi,j(uai˜uai)pε2iIaεi,j(uai˜uai))dxdt+T0Ωnj=1(A4jIhεi,j(uhj˜uhj)+12ϱj(uhj˜uhj)(uhj+˜uhj)cpε4jIhεi,j1+α2Ihεi,j(uhj˜uhj))dxdtT0Ωni=1[A2i(Saεi,j+Iaεi,j)+ςi](uai˜uai)dxdt+T0Ωnj=1[A4jIhεi,j+ϱj](uhj˜uhj)dxdtCT0Ωni=1(Saεi,j+Iaεi,j)(uai˜uai)dxdt+T0Ωnj=1(Shεi,j+Ihεi,j)(uhj˜uhj)dxdt. $

    Thus, $ M(u) $ is continuous on $ \mathcal{U}([0, T]\times\Omega) $ with respect to $ d $. According to the conditions of Theorem (4.2) and Lemma 5.2, we can see that there exists $ \widetilde{u}^{\varepsilon}\in\mathcal{U}([0, T]\times\Omega) $ such that

    $ d(uε˜uε)ε12,M(˜uε)M(u)+ε12d(u,˜uε),uU([0,T]×Ω). $

    This show that

    $ T0Ωni=1(A2i˜uaεi(Saεi,j+Iaεi,j)+12ςi(˜uaεi)2pε1i˜uaεiSaεi,jpε2i˜uaεiIaεi,j)dxdt+T0Ωnj=1(A4j˜uhεjIhεi,j+12ϱj(˜uhεj)2c˜uhεjIhεi,jpε4j1+α2Ihεi,j)dxdt=min(uai,uhj)U([0,T]×Ω)T0Ωni=1(A2iuai(Saεi,j+Iaεi,j)+12ςi(uai)2pε1iuaiSaεi,jpε2iuaiIaεi,j+ε12vε|uai˜uaεi|)dxdt+T0Ωnj=1(A4juhjIhεi,j+12ϱj(uhj)2cuhjIhεi,jpε4j1+α2Ihεi,j+ε12vε|uhj˜uhεj|)dxdt. $ (5.7)

    According to [23], we have

    $ 0ni=1(A2i(Saεi,j+Iaεi,j)+ςi˜uaεipε1iSaεi,jpε2iIaεi,j)+nj=1(A4jIhεi,j+ϱj˜uhεjcIhεi,jpε4j1+α2Ihεi,j)ni=1(A2i(Saεi,j+Iaεi,j)+ςi˜uaεipε1iSaεi,jpε2iIaεi,j)+nj=1(A4jIhεi,j+ϱj˜uhεjcIhεi,jpε4j1+α2Ihεi,j)+[ε12vε,ε12vε]. $ (5.8)

    Because the Hamiltonian function $ H $ is differentiable in $ u $, it follows from (5.8) that there exists a $ \vartheta^{\varepsilon}\in [-\varepsilon^{\frac{1}{2}}v^{\varepsilon}, \varepsilon^{\frac{1}{2}}v^{\varepsilon}] $ such that

    $ ni=1(A2i(Saεi,j+Iaεi,j)+ςi˜uaεipε1iSaεi,jpε2iIaεi,j)+nj=1(A4jIhεi,j+ϱj˜uhεjcIhεi,jpε4j1+α2Ihεi,j)+ϑε=0. $ (5.9)

    From (5.9), we have

    $ |ni=1(A2i(Saεi,j+Iaεi,j)+ςiuaεipε1iSaεi,jpε2iIaεi,j)+nj=1(A4jIhεi,j+ϱjuhεjcIhεi,jpε4j1+α2Ihεi,j)||ni=1ςi(uaεi˜uaεi)+nj=1ϱj(uhεj˜uhεj)|+|ni=1(A2i(Saεi,j+Iaεi,j)+ςi˜uaεipε1iSaεi,jpε2iIaεi,j)+nj=1(A4jIhεi,j+ϱj˜uhεjcIhεi,jpε4j1+α2Ihεi,j)|C(ni=1vε|uaεi˜uaεi|+nj=1vε|uhεj˜uhεj|)+ϑεC(ni=1vε|uaεi˜uaεi|+nj=1vε|uhεj˜uhεj|)+2ε12vε. $ (5.10)

    This proof is complete.

    From the Lemma 5.4 and definition of $ d $, we can achieve the desired conclusion from (5.6) and (5.10) by Hölder's inequality. Furthermore, according to the ideas in Lenhart and Workman [34], the optimal control $ (u^{a\ast}_{i}, u^{h\ast}_{j}) $, which minimizes the objective function $ J(u^{a}_{i}(t, x), u^{h}_{j}(t, x)) $, is obtained and represented by

    $ {uai(t,x)=min{max{(p1i(t,x)A2i)Sai,j(t,x)+p2i(t,x)Iai,j(t,x)ςi,0},1},i=1,2,,n,uhj(t,x)=min{max{cp4j(t,x)Ihi,j(t,x)A4jIhi,j(t,x)(1+α2Ihi,j(t,x))(1+α2Ihi,j(t,x))ϱj,0},1},j=1,2,,n. $ (5.11)

    In this suction, we will derive the necessary conditions for near optimal control of model (5.1).

    Theorem 5.8. Let $ (S^{a\varepsilon}_{i, j}(t, x) $, $ I^{a\varepsilon}_{i, j}(t, x) $, $ S^{h\varepsilon}_{i, j}(t, x) $, $ I^{h\varepsilon}_{i, j}(t, x) $ , $ u^{a\varepsilon}_{i}(t, x) $, $ u^{h\varepsilon}_{j}(t, x)) $ be an admissible pair. There exists a constant C such that any $ \eta\in[0, 1), \varepsilon > 0 $ and any $ \varepsilon $-optimal pair $ (S^{a\varepsilon}_{i, j}(t, x) $, $ I^{a\varepsilon}_{i, j}(t, x) $, $ S^{h\varepsilon}_{i, j}(t, x) $, $ I^{h\varepsilon}_{i, j}(t, x), $ $ u^{a\varepsilon}_{i}(t, x) $, $ u^{h\varepsilon}_{j}(t, x)) $, the following condition holds:

    $ infuaiU([0,T]×Ω)T0Ωni=1(A2i(Saεi,j+Iaεi,j)+12ςi(uai+uaεi)Saεi,jpε1iIaεi,jpε2i)(uaiuaεi)dxdtCεη3,infuhjU([0,T]×Ω)T0Ωnj=1(A4jIhεi,j+12ϱj(uhj+uhεj)cIhεi,jpε4j1+α2Ihεi,j)(uhjuhεj)dxdtCεη3. $

    Proof. We have that $ J(0, \phi(0, x);u^{a}_{i}(t, x), u^{h}_{j}(t, x)) $:$ \mathcal{U}([0, T]\times\Omega) \rightarrow \mathbb{R} $ is continuous under the metric $ d $, therefore, by using Ekeland's Principle 5.2, we can choose $ \iota = \varepsilon^{\frac{2}{3}} $, there exists an admissible pair ($ S^{a\varepsilon}_{i, j} $, $ I^{a\varepsilon}_{i, j} $, $ S^{h\varepsilon}_{i, j} $, $ I^{h\varepsilon}_{i, j} $, $ u^{a\varepsilon}_{i} $, $ u^{h\varepsilon}_{j} $) such that $ d(u^{\varepsilon}, \widetilde{u}^{\varepsilon}) < \varepsilon^{\frac{2}{3}} $, and $ \widetilde{J}(0, \phi(0, x); \widetilde{u}^{\varepsilon}) \leq\widetilde{J}(0, \phi(0, x); u), \forall u\in\mathcal{U}([0, T]\times\Omega) $, where $ \widetilde{J}(0, \phi(0, x); u(t, x)) = J(0, \phi(0, x); u(t, x))+\varepsilon^{\frac{1}{3}} d(u^{\varepsilon}, \widetilde{u}^{\varepsilon}) $. This show that $ (S^{a\varepsilon}_{i, j}, I^{a\varepsilon}_{i, j}, S^{h\varepsilon}_{i, j}, I^{h\varepsilon}_{i, j}, u^{a\varepsilon}_{i}, u^{h\varepsilon}_{j}) $ is an optimal pair for the objective function $ \widetilde{J}(0, \phi(0, x); u(t, x)) $. Next, we will use the spike variation technique to derive a "maximum principle" for $ (S^{a\varepsilon}_{i, j}, I^{a\varepsilon}_{i, j}, S^{h\varepsilon}_{i, j}, I^{h\varepsilon}_{i, j}, u^{a\varepsilon}_{i}, u^{h\varepsilon}_{j}) $. Let $ \overline{t}\in[0, T], \; \delta > 0 $, and $ u(t, x))\in\mathcal{U}([0, T]\times\Omega) $, we define $ u^{\delta}(t, x)\in\mathcal{U}([0, T]\times\Omega) $ as follows

    $ uδ(t,x)={u(t,x),if(t,x)[¯t,¯t+δ]×Ω,˜uε(t,x),if(t,x)[0,T][¯t,¯t+δ]×Ω. $

    Then, we have

    $ ˜J(0,ϕ(0,x);˜uε(t,x))˜J(0,ϕ(0,x);uδ(t,x)),d(uδ(t,x),˜uε(t,x))δ. $ (5.12)

    Thus $ J(0, \phi(0, x);\widetilde{u}^{\varepsilon}(t, x)) = \widetilde{J}(0, \phi(0, x); \widetilde{u}^{\varepsilon}(t, x))\leq\widetilde{J}(0, \phi(0, x); u^{\delta}(t, x)) = J(0, \phi(0, x); u^{\delta}(t, x))+\delta\varepsilon^{\frac{1}{3}} $. It follows from (5.12), Lemma 5.5 and Taylor's expansion, we can obtain that

    $ δε13J(0,ϕ(0,x);uδ(t,x))J(0,ϕ(0,x);˜uε(t,x))T0Ωni=1A2iuai(Saδi,j˜Saεi,j)+(A1i+A2iuai)(Iaδi,j˜Iaεi,j)dxdt+T0Ωnj=1(A3j+A4juhj)(Ihδi,j˜Ihεi,j)dxdt+¯t+δ¯tΩni=1(A2i(Sai,j+Iai,j)(uai˜uaεi)+12ςi(uai˜uaεi)(uai+˜uaεi))dxdt+¯t+δ¯tΩnj=1(A4jIhi,j(uhj˜uhεj)+12ϱj(uhj˜uhεj)(uhj+˜uhεj))dxdt+(δ). $ (5.13)

    Using the Itô's formula to $ Q(t, x) = \widetilde{p}^{\varepsilon}_{1i} (S^{a\delta}_{i, j} -\widetilde{S}^{a\varepsilon}_{i, j}) + \widetilde{p}^{\varepsilon}_{2i} (I^{a\delta}_{i, j} -\widetilde{I}^{a\varepsilon}_{i, j}) + \widetilde{p}^{\varepsilon}_{3j} (S^{h\delta}_{i, j} -\widetilde{S}^{h\varepsilon}_{i, j})+ \widetilde{p}^{\varepsilon}_{4j} (I^{h\delta}_{i, j} -\widetilde{I}^{h\varepsilon}_{i, j}) $, and from Lemmas 5.3 and 5.4, we can obtain that

    $ T0Ωni=1A2iuai(Saδi,j˜Saεi,j)+(A1i+A2iuai)(Iaδi,j˜Iaεi,j)dxdt+T0Ωnj=1(A3j+A4juhj)(Ihδi,j˜Ihεi,j)dxdt¯t+δ¯tΩni=1(uaδiSaδi,j˜uaεi˜Saεi,j)˜pε1i(uaδiIaδi,j˜uaεi˜Iaεi,j)˜pε2idxdt¯t+δ¯tΩnj=1(uhδj˜uhεj)˜pε4jdxdt. $ (5.14)

    Substituting (5.14) into (5.13), we have

    $ δε13J(0,ϕ(0,x);uδ(t,x))J(0,ϕ(0,x);˜uε(t,x))¯t+δ¯tΩni=1(A2i(Sai,j+Iai,j)(uai˜uaεi)+12ςi(uai˜uaεi)(uai+˜uaεi))dxdt+¯t+δ¯tΩnj=1(A4jIhi,j(uhj˜uhεj)+12ϱj(uhj˜uhεj)(uhj+˜uhεj))dxdt+(δ)¯t+δ¯tΩni=1((uaδiSaδi,j˜uaεi˜Saεi,j)˜pε1i+(uaδiIaδi,j˜uaεi˜Iaεi,j)˜pε2i)dxdt¯t+δ¯tΩnj=1(uhδj˜uhεj)˜pε4jdxdt. $ (5.15)

    Dividing (5.15) by $ \delta $ and letting $ \delta\rightarrow0 $, we can get

    $ ε13Ωni=1(A2i(Sai,j(¯t)+Iai,j(¯t))(uai(¯t)˜uaεi(¯t))+12ςi(uai(¯t)˜uaεi(¯t))(uai(¯t)+˜uaεi(¯t))[uaδi(¯t)Saδi,j(¯t)˜uaεi(¯t)˜Saεi,j(¯t)]˜pε1i(¯t)[uaδi(¯t)Iaδi,j(¯t)˜uaεi(¯t)˜Iaεi,j(¯t)]˜pε2i(¯t))dx+Ωnj=1A4jIhi,j(¯t)(uhj(¯t)˜uhεj(¯t))+12ϱj(uhj(¯t)˜uhεj(¯t))(uhj(¯t)+˜uhεj(¯t))[uhδj(¯t)˜uhεj(¯t)]˜pε4j(¯t))dx. $ (5.16)

    Now, we will derive an estimate for the right side of (5.16) with all the $ (\widetilde{S}^{a\varepsilon}_{i, j}, \widetilde{I}^{a\varepsilon}_{i, j}, \widetilde{S}^{h\varepsilon}_{i, j}, \widetilde{I}^{h\varepsilon}_{i, j}, \widetilde{u}^{a\varepsilon}_{i}, \widetilde{u}^{h\varepsilon}_{j}) $ replaced by $ (S^{a\varepsilon}_{i, j}, I^{a\varepsilon}_{i, j}, S^{h\varepsilon}_{i, j}, I^{h\varepsilon}_{i, j}, u^{a\varepsilon}_{i}, u^{h\varepsilon}_{j}) $. To achieve this goal, we first estimate the following difference:

    $ T0Ωni=1([uaδiSaδi,j˜uaεi˜Saεi,j]˜pε1i[uaδiSaδi,juaεiSaεi,j]pε1i)dxdt=T0Ωni=1(˜pε1ipε1i)(uaδiSaδi,juaεiSaεi,j)dxdt+T0Ωni=1˜pε1i(uaεiSaεi,j˜uaεi˜Saεi,j)dxdt. $

    From Lemma 5.6 and due to $ d(u^{\varepsilon}, \widetilde{u}^{\varepsilon}) < \varepsilon^{\frac{2}{3}} $, we have that for any $ 1 < \eta < 2 $, and $ 0 < \kappa < 1 $ satisfying $ (1+\kappa)\eta < 2 $, and

    $ T0Ωni=1(˜pε1ipε1i)(uaδiSaδi,juaεiSaεi,j)dxdt(T0Ωni=1|˜pε1ipε1i|ηdxdt)1η(T0Ωni=1|uaδiSaδi,juaεiSaεi,j|ηη1dxdt)η1ηC(d(uai,˜uai)κη2)1η(T0Ωni=1|uaδiSaδi,j|ηη1+|uaεiSaεi,j|ηη1dxdt)η1ηCεη3, $

    similarly, we have

    $ T0Ωni=1˜pε1i(uaεiSaεi,j˜uaεi˜Saεi,j)dxdtC(T0Ωni=1|˜pε1i|2dxdt)12(T0Ωni=1|uaεi˜uaεi|2χuaεi˜uaεidxdt)12C(T0Ωni=1|uaεi|4+|˜uaεi|4dxdt)14(T0Ωni=1χuaεi˜uaεidxdt)14C(d(uaεi,˜uaεi))14Cεη3. $

    Thus

    $ T0Ωni=1([uaδiSaδi,j˜uaεi˜Saεi,j]˜pε1i[uaδiSaδi,juaεiSaεi,j]pε1i)dxdtCεη3. $ (5.17)

    By analogous calculation as (5.17), we have

    $ T0Ωni=1(A2i(Sai,j+Iai,j)(uai˜uaεi)+12ςi(uai˜uaεi)(uai+˜uaεi))dxdt+T0Ωnj=1(A4jIhi,j(uhj˜uhεj)+12ϱj(uhj˜uhεj)(uhj+˜uhεj))dxdtCεη3, $
    $ T0Ωni=1(uaδiIaδi,j˜uaεi˜Iaεi,j)˜pε2idxdtCεη3,T0Ωnj=1(uhδj˜uhεj)˜pε4jdxdtCεη3. $

    Combine the expression of Hamiltonian function (5.5), we can immediately obtain the conclusion.

    In this section, we present numerical simulations to demonstrate the results. Let $ [0, T]\times\Omega $ be the admissible control domain. We consider a near-optimal problem with the following objective function, simulations are based on a scale-free network with $ p(k) = (r-1)m^{(r-1)}k^{-r} $, where $ m $ represents the smallest degree on a scale-free network nodes, $ r $ is power exponent. Let $ m = 1, r = 3 $, the number of nodes on a scale-free network is $ N = 100 $, and we add each new node with 3 new edges. We choose degree $ k $ as $ k_{1} = 1, k_{2} = 2, k_{3} = 3, k_{4} = 4, k_{5} = 5, k_{6} = 6, k_{7} = 7, k_{8} = 8, k_{9} = 9 $. We get the average degree of complex network structure $ \langle k\rangle_{a}(\langle k^{2}\rangle_{a}) = 3.27(9.04) $ through simple calculation. The parameter values are chosen as follows:

    Example 6.1. For model (2.3) all parameters are positive constants, we choose degree $ k $ as $ k_{1} = 1, k_{2} = 2, k_{3} = 3, k_{4} = 4, k_{5} = 5, k_{6} = 6, k_{7} = 7, k_{8} = 8, k_{9} = 9 $. We get the average degree of complex network structure $ \langle k\rangle_{a}(\langle k^{2}\rangle_{a}) = 3.27(9.04) $ through simple calculation, when we choose $ \lambda_{a} = 7\times10^{-4} $, $ \mathcal{R}_{0} = 1.5246 > 1 $; when we choose $ \lambda_{a} = 3\times10^{-4} $, $ \mathcal{R}_{0} = 0.3689 < 1 $.

    Figure 1 shows the unique endemic equilibrium point is globally asymptotically stable, and the virus will persist. Figure 2 shows the unique disease-free equilibrium point $ E^{0} $ is globally asymptotically stable, and the virus will die out in the long run. Furthmore, we can obtain that the density of infected nodes increase with the degree k increase in Example 6.1. In other words, the lager the degree k is, the higher the density of infected nodes is, which indicates that the nodes having lots of relative neighbors are more likely to be infected by contacting frequently.

    Figure 1.  The density of susceptible and infected human nodes with different degree $ k = 1, 2, 3, 4, 5, 6, 7, 8, 9 $ when $ \mathcal{R}_{0} > 1 $.
    Figure 2.  The density of susceptible and infected poultry nodes with different degree $ k = 1, 2, 3, 4, 5, 6, 7, 8, 9 $ when $ \mathcal{R}_{0} < 1 $.

    Example 6.2. We analyzed the effects of slaughter rate and curative ratio on avian influenza control. Let's take a one-dimensional spatial variable, $ \Omega = [0, L] $. The control $ u^{a}_{i}(t, x), \; u^{h}_{j}(t, x) $ are measurable and for any $ (t, x)\in[0, T]\times[0, L], \; 0\leq u^{a}_{i}(t, x), \; u^{h}_{j}(t, x)\leq1 $. Without the loss of generality, for any fixes time $ T $, we give step size $ \Delta t\in(0, 1) $ and for any fixes space $ L $, we give step size $ \Delta x\in(0, 1) $, we denote $ t_{m} = m\Delta t, \; x_{n} = n\Delta t $, $ m = 0, 1, \cdots, [\frac{T}{\Delta t}], \; n = 0, 1, \cdots, [\frac{L}{\Delta x} $]. For the numerical simulations of model (5.1) and adjoint Eq (5.3), we use the Milstein's method [33]. Thus, model (5.1) and (5.3) can be rewritten as the following discrete equations:

    $ {Sai,j(tm+1,xn)=Sai,j(tm,xn)+(Di1(tm,xn)Sai,j(tm,xn+1)2Sai,j(tm,xn)+Sai,j(tm,xn1)(Δx)2+Λaλa(i)Sai,j(tm,xn)Θa(tm,xn)1+α1Θa(tm,xn)μaSai,j(tm,xn)uai(tm,xn)Sai,j(tm,xn))Δt,Iai,j(tm+1,xn)=Iai,j(tm,xn)+(Di1(tm,xn)Iai,j(tm,xn+1)2Iai,j(tm,xn)+Iai,j(tm,xn1)(Δx)2+λa(i)Sai,j(tm,xn)Θa(tm,xn)1+α1Θa(tm,xn)δaIai,j(tm,xn)μaIai,j(tm,xn)uai(tm,xn)Iai,j(tm,xn))Δt,Shi,j(tm+1,xn)=Shi,j(tm,xn)+(G1j(tm,xn)Shi,j(tm,xn+1)2Shi,j(tm,xn)+Shi,j(tm,xn1)(Δx)2+Λhλah(j)Shi,j(tm,xn)Θah(tm,xn)μhShi,j(tm,xn))Δt,Ihi,j(tm+1,xn)=Ihi,j(tm,xn)+(G1j(tm,xn)Ihi,j(tm,xn+1)2Ihi,j(tm,xn)+Ihi,j(tm,xn1)(Δx)2+λah(j)Shi,j(tm,xn)Θah(tm,xn)γhIhi,j(tm,xn)δhShi,j(tm,xn)μhShi,j(tm,xn)cuhj(tm,xn)Shi,j(tm,xn)1+α2Shi,j(tm,xn))Δt, $ (6.1)
    $ {p1i(tm+1,xn)=p1i(tm,xn)+(Di1(tm,xn)p1i(tm,xn+1)2p1i(tm,xn)+p1i(tm,xn1)(Δx)2+μap1i(tm,xn)+uai(tm,xn)p1i(tm,xn)+λa(i)Θa(tm,xn)1+α1Θa(tm,xn)λa(i)Θa(tm,xn)1+α1Θa(tm,xn)p2i(tm,xn)A2iuai(tm,xn))Δt,p2i(tm+1,xn)=p2i(tm,xn)+(Di1(tm,xn)p2i(tm,xn+1)2p2i(tm,xn)+p2i(tm,xn1)(Δx)2A2iuai(tm,xn)+λa(i)f(i)Sai,j(tm,xn)(1+α1Θa(tm,xn))2p1i(tm,xn)+δap2i(tm,xn)+μap2i(tm,xn)+uai(tm,xn)p2i(tm,xn)A1iλa(i)f(i)Sai,j(tm,xn)p2i(tm,xn)(1+α1Θa(tm,xn))2+λah(j)g(j)Shi,j(tm,xn)p3j(tm,xn)λah(j)g(j)Shi,j(tm,xn)p4j(tm,xn))Δt,p3j(tm+1,xn)=p3j(tm,xn)+(D3j(tm,xn)p3j(tm,xn+1)2p3j(tm,xn)+p3j(tm,xn1)(Δx)2+μhp3j(tm,xn)+λah(j)Θah(tm,xn)p3j(tm,xn)λah(j)Θah(tm,xn)p4j(tm,xn))Δt,p4j(tm+1,xn)=p4j(tm,xn)+(D4j(tm,xn)p4j(tm,xn+1)2p4j(tm,xn)+p4j(tm,xn1)(Δx)2+γhp4j(tm,xn)+δhp4j(tm,xn)+μhp4j(tm,xn)+cuhj(tm,xn)p4j(tm,xn)(1+α2Ihi,j(tm,xn))2A3jA4juhj(tm,xn))Δt, $ (6.2)

    in order to find the optimal control of $ u^{a}_{i} $, $ u^{h}_{j} $, we give the nonlinear conjugate gradient algorithm [40] as follows:

    Step 1: Choose an initial $ u^{a}_{i0} $, $ u^{h}_{j0} $, an initial step size $ s_{0} $ and stopping tolerances $ Tol_{1} $ and $ Tol_{2} $, initial states $ (S^{a}_{i, j}(0) $, $ I^{a}_{i, j}(0) $, $ S^{h}_{i, j}(0) $, $ I^{h}_{i, j}(0)) $ by solving Eq (6.1), initial adjoints $ p_{0} $ = ($ p_{1i}(0) $, $ p_{2i}(0) $, $ p_{3j}(0) $, $ p_{4j}(0)) $ by solving Eq (6.2), gradient of $ J $, i.e., $ g_{i, 0} = \varsigma_{i} u^{a}_{i0} + (p_{1i}(0)-A_{2i})S^{a\ast}_{i, j}(0) +p_{2i}(0)I^{a\ast}_{i, j}(0) $, $ h_{j, 0} = (1+\alpha_{2}I^{h\ast}_{i, j}(0) u^{h}_{j0} + cp_{4j}(0)I^{h\ast}_{i, j}(0) -A_{4j}I^{h\ast}_{i, j}(0) (1+\alpha_{2}I^{h\ast}_{i, j}(0)) $, anti-gradient of $ J $, i.e., $ d^{*}_{0} = -g_{i, 0} $, $ d_{0} = -h_{j, 0} $.

    Step 2: control, i.e., $ u_{k+1} = u_{k} + s_{k}d_{k} $, states $ (S^{a}_{i, \cdot, k+1} $, $ I^{a}_{i, \cdot, k+1} $, $ S^{h}_{\cdot, j, k+1} $, $ I^{h}_{\cdot, j, k+1}) $ = ($ S^{a}_{i, \cdot, u_{k+1}} $, $ I^{a}_{i, \cdot, u_{k+1}} $, $ S^{h}_{\cdot, j, u_{k+1}} $, $ I^{h}_{\cdot, j, u_{k+1}}) $ by solving Eq (6.1) $ (p_{1i, k+1} $, $ p_{2i, k+1} $, $ p_{3j, k+1} $, $ p_{4j, k+1}) $ = $ (p_{1i, S^{a}_{i, \cdot, k+1}} $, $ p_{2i, I^{a}_{i, \cdot, k+1}} $, $ p_{3j, S^{h}_{\cdot, j, k+1}} $, $ p_{4j, I^{h}_{\cdot, j, u_{k+1}}}) $ by solving Eq (6.2), gradient of $ J $, i.e., $ g_{i, k+1} = \varsigma_{i} u^{a}_{i, k+1} + (p_{1i, k+1}-A_{2i})S^{a\ast}_{i, \cdot, k+1} +p_{2i, k+1}I^{a\ast}_{i, \cdot, k+1} $, $ h_{j, k+1} = (1+\alpha_{2}I^{h\ast}_{\cdot, j, k+1} u^{h}_{j, k+1} + cp_{4j, k+1}I^{h\ast}_{\cdot, j, k+1} -A_{4j}I^{h\ast}_{\cdot, j, k+1} (1+\alpha_{2}I^{h\ast}_{\cdot, j, k+1}) $.

    Step 3: Stop if $ \|g_{i, k+1}\| < Tol_{1} $, $ \|h_{j, k+1}\| < Tol_{1} $ or $ \|J_{k+1} - J_{k}\| \leq Tol_{2} $.

    Compute the conjugate direction $ \varpi_{k+1} $ according to one of the updated formulas [41].

    $ d_{k+1} = -g_{i, k+1} + \varpi_{k+1}d_{k} $. aselect step size $ s_{k+1} $ in terms of some standard options.

    Set $ k: = k+1 $ and go to Step 1.

    Figure 3 shows the solution of model (2.3) curves representing the variation of populations for susceptible poultry, infected poultry, susceptible human, infected human. Figure 4 shows the solution of model (5.1) curves representing the variation of populations for susceptible poultry, infected poultry, susceptible human, infected human. The comparison between Figure 4 and Figure 3 shows that the proportion of slaughtered susceptible poultry and infected poultry can effectively prevent the outbreak of avian influenza; With limited medical resources, treatment of infected humans can reduce the spread of avian influenza among humans. Figure 6, we can see that in order to prevent the spread of avian influenza and reduce the economic loss it brings, the slaughter rate of poultry should be gradually reduced over time. In order to reduce the risk of the spread of avian influenza, the proportion of treatment for infected humans should be gradually increased over time. However, because of limited medical resources, after the treatment rate reaches a peak for infected humans, it will gradually decrease. Figure 7 shows the optimal control $ u^{a\ast}_{i}, u^{h\ast}_{j} $ and the near-optimal control $ u^{a\varepsilon}_{i}, u^{h\varepsilon}_{j} $, respectively. The optimal control $ u^{a\ast}_{i} $ indicates that the optimal slaughter rate for the poultry gradually decreases; the optimal control $ u^{h\ast}_{j} $ denotes that the optimal treatment rate of the human is different in different times. The results show that the error of numerical simulation results of optimal control and near-optimal control is less than 0.2.

    Figure 3.  The density of susceptible and infected nodes.
    Figure 4.  The density of susceptible and infected nodes without control.
    Figure 5.  The path of $ I^{a}_{i, j} $ and $ I^{h}_{i, j} $ of with and without control.
    Figure 6.  The optimal control of slaughtering $ u^{a}_{i} $ and treatment $ u^{h}_{j} $ with time-space.
    Figure 7.  Taking $ \varepsilon = 0.2 $ and $ 0.5 $, we obtained optimal control $ u^{a\ast}_{i}, u^{h\ast}_{j} $ and near-optimal control $ u^{a\varepsilon}_{i}, u^{h\varepsilon}_{j} $.

    The optimal control problem is usually composed of a group of state equations and adjoint equations, but these equations have difficulties obtaining an exact solution. Therefore, we concerned the near-optimal control and threshold behavior of an avian influenza model with saturation on heterogenous complex networks in this paper. We first give the basic reproduction number $ \mathcal{R}_{0} $, which can be used to govern the threshold dynamics of influenza disease. In addition, we obtained the sufficient and necessary conditions for the near-optimality. Lastly, numerical simulations were performed to illustrate the results and confirm that the treatment control resulted in a substantial reduction in the level of infected population while the treatment cost was minimized. In this paper, we assumed that the parameters are all precisely known, however, they may not be true due to the unavoidable errors and the lack of sufficient information in the measurement process and so on. How uncertain parameter values and Lévy noise affect the near-optimality of this epidemic model remains unclear and deserves further investigation. We will study the near optimal control of the avian influenza model on complex network with Lévy noise and imprecise parameters in the future work. Firstly, we give the method of parameter estimates of the avian influenza model. According to the Lévy-It$ \hat{o} $'s decomposition theorem, we have $ \widetilde{L}(t) = \sigma B(t)+\int_{Y}\nu \widetilde{N}(t, d\nu) $. Then, by using Ekeland's principle and Hamiltonian function, we obtain the sufficient and necessary conditions of near optimal of the avian influenza model with Lévy noise and imprecise parameters.

    The research was supported by the Ningxia Natural Science Foundation Project (2020AAC03048) and by the Graduate Innovation Project of North Minzu University, China (No.YCX21164).

    This work does not have any conflict of interest.

    Proof. Integrating both sides of the first equation of (5.3) from $ t $ to $ T $, we get

    $ p1i(t)=p1i(T)Tt([μa+uai+λa(i)Θa1+α1Θalk=1xkDikxk]p1iλa(i)Θa1+α1Θap2iA2iuai)ds. $

    By squaring the sides of the above equation, we have

    $ |p1i(t)|2C|p1i(T)|2+C(Tt)Tt|([μa+uai+λa(i)Θa1+α1Θalk=1xkDikxk]p1iλa(i)Θa1+α1Θap2iA2iuai)|2dsC|p1i(T)|2+C(Tt)Tt|p1i(s)|2+|p2i(s)|2ds, $ (A1)

    similarly, we have

    $ |p2i(t)|2C|p2i(T)|2+C(Tt)Tt|(λa(i)f(i)Sai,j(1+α1Θa)2p1i+[δa+μa+uaiλa(i)f(i)Sai,j(1+α1Θa)2lk=1xkDikxk]p2i+λah(j)g(j)Shi,jp3jλah(j)g(j)Shi,jp4jA1iA2iuai)|2dsC|p2i(T)|2+C(Tt)Tt(|p1i(s)|2+|p2i(s)|2+|p3j(s)|2+|p4j(s)|2)ds, $ (A2)
    $ |p3j(t)|2C|p3j(T)|2+C(Tt)Tt|([μh+λah(j)Θahlk=1xkDikxk]p3jλah(j)Θahp4j)|2C|p3j(T)|2+C(Tt)Tt|p3j(s)|2+|p4j(s)|2ds, $ (A3)
    $ |p4j(t)|2C|p4j(T)|2+C(Tt)Tt|([γh+δh+μh+cuhj(1+α2Ihi,j)2lk=1xkDikxk]p4jA3jA4juhj)|2C|p4j(T)|2+C(Tt)Tt|p4j(s)|2ds. $ (A4)

    It follows from (A1)-(A4) that

    $ |p1i(t,x)|2+|p2i(t,x)|2+|p3j(t,x)|2+|p4j(t,x)|2C(|p1i(T,x)|2+|p2i(T,x)|2+|p3j(T,x)|2+|p4j(T,x)|2)+C(Tt)Tt(|p1i(s,x)|2+|p2i(s,x)|2+|p3j(s,x)|2+|p4j(s,x)|2)ds, $ (A5)

    where $ t\in[T-\epsilon, T] $ with $ \epsilon = \frac{1}{C} $. Using Gronwall's inequality [31], we derive from (A5) that

    $ sup0tT|p1i(t,x)|2+|p2i(t,x)|2+|p3j(t,x)|2+|p4j(t,x)|2C,fort[Tϵ,T]. $ (A6)

    We apply the same method to (A1)–(A2) in $ [T-\epsilon, T] $, and we can see that for any $ t\in[T-2\epsilon, T] $, (A6) holds. Repeating a finite number of steps, we know that for any $ t\in[0, T] $, the estimate (A6) holds.

    Proof. If $ \eta\geq1 $. For any $ r > 0 $, an estimate of $ |S^{a}_{i, j}-\widetilde{S}^{a}_{i, j}|^{2\eta} $ can be obtained as follows:

    $ sup0tr|Sai,j˜Sai,j|2ηCr0(lk=1|xk(Dik(Sai,j˜Sai,j)xk)|2η+λ2ηa(i)|˜Sai,j˜Θa1+α1˜ΘaSai,jΘa1+α1Θa|2η+μ2ηa|(˜Sai,jSai,j)|2η+|˜uai˜Sai,juaiSai,j|2η)dtCr0(lk=1|xk(Dik(Sai,j˜Sai,j)xk)|2η+λ2ηa(i)|˜Θa|2η|Sai,j˜Sai,j|2η+|˜Sai,j|2η|Θa˜Θa|2η+μ2ηa|(˜Sai,jSai,j)|2η+|uai|2η|Sai,j˜Sai,j|2η+|uai˜uai|2η)dtCr0(|Sai,j˜Sai,j|2η+|Iai,j˜Iai,j|2η)dt+C(r0Xuai˜uaidt)κηC(r0(|Sai,j˜Sai,j|2η+|Iai,j˜Iai,j|2η)dt+d(uai,˜uai)κη), $
    $ sup0tr|Iai,j˜Iai,j|2ηCr0(lk=1|xk(Dik(Iai,j˜Iai,j)xk)|2η+λ2ηa(i)|Sai,jΘa1+α1Θa˜Sai,j˜Θa1+α1˜Θa|2η+(δa+μa)2η|(˜Iai,jIai,j)|2η+|˜uai˜Iai,juaiIai,j|2η)dtC(r0(|Sai,j˜Sai,j|2η+|Iai,j˜Iai,j|2η)dt+d(uai,˜uai)κη), $
    $ sup0tr|Shi,j˜Shi,j|2ηCr0(lk=1|xk(Gkj(Shi,j˜Shi,j)xk)|2η+λ2ηah(j)|˜Shi,j˜ΘahShi,jΘah|2η+μ2ηh|˜Shi,jShi,j|2η)dtC(r0(|Sai,j˜Sai,j|2η+|Iai,j˜Iai,j|2η)dt),sup0tr|Ihi,j˜Ihi,j|2ηCr0(lk=1|xk(Gkj(Ihi,j˜Ihi,j)xk)|2η+λ2ηah(j)|λah(j)Shi,jΘah˜Shi,j˜Θah|2η+(μh+δh+γh)2η|˜Ihi,jIhi,j|2η+c˜uhj˜Ihi,j1+α2˜Ihi,jcuhjIhi,j1+α2Ihi,j)dtC(r0(|Sai,j˜Sai,j|2η+|Iai,j˜Iai,j|2η)dt+d(uhj,˜uhj)κη), $

    so, we have

    $ sup0tr|Sai,j˜Sai,j|2η+|Iai,j˜Iai,j|2η+|Shi,j˜Shi,j|2η+|Shi,j˜Shi,j|2ηC(r0sup0ts(|Sai,j˜Sai,j|2η+|Shi,j˜Shi,j|2η+|Iai,j˜Iai,j|2η+|Ihi,j˜Ihi,j|2η)ds+d(uai,˜uai)κη+d(uhj,˜uhj)κη). $

    We have the result using Gronwall's inequality. Next considering $ 0\leq\eta < 1 $, by using Cauchy-Schwartz's inequality, we have

    $ sup0tT|Sai,j˜Sai,j|2η+|Iai,j˜Iai,j|2η+|Shi,j˜Shi,j|2η+|Shi,j˜Shi,j|2ηC[d(uai,˜uai)κη+d(uhj,˜uhj)κη]. $

    This proof is complete.

    Proof. We let $ \widehat{p}_{1i} = p_{1i} -\widetilde{p}_{1i}, \; \widehat{p}_{2i} = p_{2i} -\widetilde{p}_{2i}, \; \widehat{p}_{3j} = p_{3j} -\widetilde{p}_{3j} $, $ \widehat{p}_{4j} = p_{4j} -\widetilde{p}_{4j} $. Then according to adjoint Eq (5.3), we can see

    $ {dˆp1i=((μaλa(i)Θa1+α1Θa+lk=1xkDikxk)ˆp1i+λa(i)Θa1+α1Θaˆp2i+ˆf1i)dt,dˆp2i=(λa(i)f(i)Sai,j(1+α1Θa)2ˆp1i+(δaμa+λa(i)f(i)Sai,j(1+α1Θa)2+lk=1xkDikxk)ˆp2iλah(j)g(j)Shi,jˆp3j+λah(j)g(j)Shi,jˆp4j+ˆf2i)dt,dˆp3j=((μhλah(j)Θah+lk=1xkDikxk)ˆp3j+ˆf3j)dt,dˆp4j=((γhδhμhcuhj(1+α2Ihi,j)2+lk=1xkDikxk)ˆp4j+ˆf4j)dt, $ (C1)

    where

    $ {ˆf1i=λa(i)(Θa1+α1Θa˜Θa1+α1˜Θa)(˜p2i˜p1i)+A2i(uai˜uai)+˜uai˜p1iuaip1i,ˆf2i=λa(i)f(i)(Sai,j(1+α1Θa)2˜Sai,j(1+α1˜Θa)2)(˜p2i˜p1i)+λah(j)g(j)(Shi,j˜Shi,j)(˜p4j˜p3j)+A2i(uai˜uai)+˜uai˜p2iuaip2i,ˆf3j=λah(j)(Θah˜Θah)(˜p4j˜p3j),ˆf4j=(c˜uhj(1+α2˜Ihi,j)2cuhj(1+α2Ihi,j)2)˜p4j+A4j(uhj˜uhj). $ (C2)

    We assume that $ \varphi = (\varphi_{1i}, \; \varphi_{2i}, \; \varphi_{3j}, \; \varphi_{4j})^{T} $ is the following linear differential equation:

    $ {dφ1i=((μaλa(i)Θa1+α1Θa+lk=1xkDikxk)φ1iλa(i)f(i)Sai,j(1+α1Θa)2φ2i+|ˆp1i|η1sgn(ˆp1i))dt,dφ2i=(λa(i)Θa1+α1Θaφ1i+(δaμa+λa(i)f(i)Sai,j(1+α1Θa)2+lk=1xkDikxk)φ2i+|ˆp2i|η1sgn(ˆp2i))dt,dφ3j=(λah(j)g(j)Shi,jφ2i+(μhλah(j)Θah+lk=1xkDikxk)φ3j+|ˆp3j|η1sgn(ˆp3j))dt,dφ4j=(λah(j)g(j)Shi,jφ2i+(γhδhμhcuhj(1+α2Ihi,j)2+lk=1xkDikxk)φ4j+|ˆp4j|η1sgn(ˆp4j))dt, $ (C3)

    where $ sgn(\cdot) $ is a symbolic function. According to assumption and Lemma 5.5, the existence and uniqueness of solution of (C1) can be verified, and we have

    $ T0Ω(||ˆp1i|η1sgn(ˆp1i)|2+||ˆp2i|η1sgn(ˆp2i)|2+||ˆp3j|η1sgn(ˆp3j)|2+||ˆp4j|η1sgn(ˆp4j)|2)dxdt<+. $

    Because $ 1 < \eta < 2 $, thus there exist $ \eta_{1} > 2 $ such that $ \frac{1}{\eta_{1}}+\frac{1}{\eta} = 1 $. So, using Cauchy-Schwartz's inequality, we have

    $ sup0tT(|φ1i|η1+|φ2i|η1+|φ3j|η1+|φ4j|η1)T0Ω(|ˆp1i|η+|ˆp2i|η+|ˆp3j|η+|ˆp4j|η)dxdtC(T0Ω(|ˆf1i|η+|ˆf2i|η+|ˆf3j|η+|ˆf4j|η)dxdt). $

    Using Cauchy-Schwartz's inequality, we have

    $ T0Ω|ˆf1i|ηdxdtC(T0Ω|Iai,j˜Iai,j|η(|˜p1i|η+|˜p2i|η)dxdt+Cd(uai,˜uai)κη2)C((T0Ω|Iai,j˜Iai,j|2η2ηdxdt)1η2(T0Ω(|˜p1i|2+|˜p2i|2)dxdt)η2+Cd(uai,˜uai)κη2). $

    Note that $ \frac{2\eta}{1-\eta} < 1, \; 1-\frac{\eta}{2} > \frac{\kappa\eta}{2} $ and $ d(u, \widetilde{u}) < 1 $. It follows from $ \int_{0}^{T}\int_{\Omega}|\widehat{f}_{1i}|^{\eta}dxdt\leq Cd(u^{a}_{i}, \widetilde{u}^{a}_{i})^ {\frac{\kappa\eta}{2}} $. In the same way, we get $ \int_{0}^{T}\int_{\Omega}| \widehat{f}_{2i}|^{\eta}dxdt\leq Cd(u^{a}_{i}, \widetilde{u}^{a}_{i})^ {\frac{\kappa\eta}{2}} $, $ \int_{0}^{T}\int_{\Omega}|\widehat{f}_{3j}|^{\eta}dxdt\leq Cd(u^{h}_{j}, \widetilde{u}^{h}_{j})^ {\frac{\kappa\eta}{2}} $, $ \int_{0}^{T}\int_{\Omega}|\widehat{f}_{4j}|^{\eta}dxdt\leq Cd(u^{h}_{j}, \widetilde{u}^{h}_{j})^ {\frac{\kappa\eta}{2}} $. So, we have

    $ T0Ω(|ˆp1i|η+|ˆp2i|η+|ˆp3j|η+|ˆp4j|η)dxdtC(T0Ω(|ˆf1i|η+|ˆf2i|η+|ˆf3j|η+|ˆf4j|η)dxdt)C(d(uai,˜uai)κη2+d(uhj,˜uhj)κη2). $

    This completes the proof.

    [1] Hayes EL, Lewis-Wambi JS (2015) Mechanisms of endocrine resistance in breast cancer: an overview of the proposed roles of noncoding RNA. Breast Cancer Res 17: 40. doi: 10.1186/s13058-015-0542-y
    [2] Ergun S, Oztuzcu S (2015) Oncocers: ceRNA-mediated cross-talk by sponging miRNAs in oncogenic pathways. Tumour Biol 36: 3129-3136. doi: 10.1007/s13277-015-3346-x
    [3] Neelakandan K, Babu P, Nair S (2012) Emerging roles for modulation of microRNA signatures in cancer chemoprevention. Curr Cancer Drug Targets 12: 716-740. doi: 10.2174/156800912801784875
    [4] Li Y, Wang X (2015) Role of long noncoding RNAs in malignant disease (Review). Mol Med Rep 13: 1463-1469.
    [5] Lo PK, Wolfson B, Zhou X, et al. (2015) Noncoding RNAs in breast cancer. Brief Funct Genom pii: elv055.
    [6] Takayama KI, Inoue S (2015) The emerging role of noncoding RNA in prostate cancer progression and its implication on diagnosis and treatment. Brief Funct Genom pii: elv057.
    [7] Xu YJ, Du Y, Fan Y (2015) Long noncoding RNAs in lung cancer: what we know in 2015. Clin Transl Oncol in press.
    [8] Xie X, Tang B, Xiao YF, et al. (2015) Long non-coding RNAs in colorectal cancer. Oncotarget 7: 5226-5239.
    [9] Jalali S, Bhartiya D, Lalwani MK, et al. (2013) Systematic transcriptome wide analysis of lncRNA-miRNA interactions. PLoS One 8: e53823. doi: 10.1371/journal.pone.0053823
    [10] Yoon JH, Abdelmohsen K, Gorospe M (2014) Functional interactions among microRNAs and long noncoding RNAs. Semin Cell Dev Biol 34: 9-14. doi: 10.1016/j.semcdb.2014.05.015
    [11] Cai Y, He J, Zhang D (2015) Long noncoding RNA CCAT2 promotes breast tumor growth by regulating the Wnt signaling pathway. Onco Targets Ther 8: 2657-2664.
    [12] Tuo YL, Li XM, Luo J (2015) Long noncoding RNA UCA1 modulates breast cancer cell growth and apoptosis through decreasing tumor suppressive miR-143. Eur Rev Med Pharmacol Sci 19: 3403-3411.
    [13] Wu Q, Guo L, Jiang F, et al. (2015) Analysis of the miRNA-mRNA-lncRNA networks in ER+ and ER- breast cancer cell lines. J Cell Mol Med 19: 2874-2887. doi: 10.1111/jcmm.12681
    [14] Tordonato C, Di Fiore PP, Nicassio F (2015) The role of non-coding RNAs in the regulation of stem cells and progenitors in the normal mammary gland and in breast tumors. Front Genet 6: 72.
    [15] Bailey ST, Westerling T, Brown M (2015) Loss of estrogen-regulated microRNA expression increases HER2 signaling and is prognostic of poor outcome in luminal breast cancer. Cancer Res 75: 436-445. doi: 10.1158/0008-5472.CAN-14-1041
    [16] Zhang H, Cai K, Wang J, et al. (2014) MiR-7, inhibited indirectly by lincRNA HOTAIR, directly inhibits SETDB1 and reverses the EMT of breast cancer stem cells by downregulating the STAT3 pathway. Stem Cells 32: 2858-2868. doi: 10.1002/stem.1795
    [17] Li JT, Wang LF, Zhao YL, et al. (2014) Nuclear factor of activated T cells 5 maintained by Hotair suppression of miR-568 upregulates S100 calcium binding protein A4 to promote breast cancer metastasis. Breast Cancer Res 16: 454. doi: 10.1186/s13058-014-0454-2
    [18] Hou P, Zhao Y, Li Z, et al. (2014) LincRNA-ROR induces epithelial-to-mesenchymal transition and contributes to breast cancer tumorigenesis and metastasis. Cell Death Dis 5: e1287. doi: 10.1038/cddis.2014.249
    [19] Zhang Z, Zhu Z, Watabe K, et al. (2013) Negative regulation of lncRNA GAS5 by miR-21. Cell Death Differ 20: 1558-1568. doi: 10.1038/cdd.2013.110
    [20] Augoff K, McCue B, Plow EF, et al. (2012) miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer. Mol Cancer 11: 5. doi: 10.1186/1476-4598-11-5
    [21] Matouk IJ, Raveh E, Abu-lail R, et al. (2014) Oncofetal H19 RNA promotes tumor metastasis. Biochim Biophys Acta 1843: 1414-1426. doi: 10.1016/j.bbamcr.2014.03.023
    [22] Paci P, Colombo T, Farina L (2014) Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer. BMC Syst Biol 8: 83. doi: 10.1186/1752-0509-8-83
    [23] Li N, Zhou P, Zheng J, et al. (2014) A polymorphism rs12325489C>T in the lincRNA-ENST00000515084 exon was found to modulate breast cancer risk via GWAS-based association analyses. PLoS One 9: e98251. doi: 10.1371/journal.pone.0098251
    [24] Zhang J, Fan D, Jian Z, et al. (2015) Cancer Specific Long Noncoding RNAs Show Differential Expression Patterns and Competing Endogenous RNA Potential in Hepatocellular Carcinoma. PLoS One 10: e0141042. doi: 10.1371/journal.pone.0141042
    [25] Li H, Li J, Jia S, et al. (2015) miR675 upregulates long noncoding RNA H19 through activating EGR1 in human liver cancer. Oncotarget 6: 31958-31984.
    [26] Lv J, Ma L, Chen XL, et al. (2014) Downregulation of LncRNAH19 and MiR-675 promotes migration and invasion of human hepatocellular carcinoma cells through AKT/GSK-3beta/Cdc25A signaling pathway. J Huazhong Univ Sci Technol Med Sci 34: 363-369. doi: 10.1007/s11596-014-1284-2
    [27] Zhang L, Yang F, Yuan JH, et al. (2013) Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis 34: 577-586. doi: 10.1093/carcin/bgs381
    [28] Zamani M, Sadeghizadeh M, Behmanesh M, et al. (2015) Dendrosomal curcumin increases expression of the long non-coding RNA gene MEG3 via up-regulation of epi-miRs in hepatocellular cancer. Phytomedicine 22: 961-967. doi: 10.1016/j.phymed.2015.05.071
    [29] Wang J, Liu X, Wu H, et al. (2010) CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res 38: 5366-5383. doi: 10.1093/nar/gkq285
    [30] Cui M, Xiao Z, Wang Y, et al. (2015) Long noncoding RNA HULC modulates abnormal lipid metabolism in hepatoma cells through an miR-9-mediated RXRA signaling pathway. Cancer Res 75: 846-857. doi: 10.1158/0008-5472.CAN-14-1192
    [31] Li T, Xie J, Shen C, et al. (2015) Amplification of Long Noncoding RNA ZFAS1 Promotes Metastasis in Hepatocellular Carcinoma. Cancer Res 75: 3181-3191. doi: 10.1158/0008-5472.CAN-14-3721
    [32] Cao C, Sun J, Zhang D, et al. (2015) The long intergenic noncoding RNA UFC1, a target of MicroRNA 34a, interacts with the mRNA stabilizing protein HuR to increase levels of beta-catenin in HCC cells. Gastroenterology 148: 415-426 e418. doi: 10.1053/j.gastro.2014.10.012
    [33] Zhao Q, Li T, Qi J, et al. (2014) The miR-545/374a cluster encoded in the Ftx lncRNA is overexpressed in HBV-related hepatocellular carcinoma and promotes tumorigenesis and tumor progression. PLoS One 9: e109782. doi: 10.1371/journal.pone.0109782
    [34] Chen CL, Tseng YW, Wu JC, et al. (2015) Suppression of hepatocellular carcinoma by baculovirus-mediated expression of long non-coding RNA PTENP1 and MicroRNA regulation. Biomaterials 44: 71-81. doi: 10.1016/j.biomaterials.2014.12.023
    [35] Braconi C, Kogure T, Valeri N, et al. (2011) microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene 30: 4750-4756. doi: 10.1038/onc.2011.193
    [36] Yuan SX, Wang J, Yang F, et al. (2016) Long noncoding RNA DANCR increases stemness features of hepatocellular carcinoma by derepression of CTNNB1. Hepatology 63: 499-511. doi: 10.1002/hep.27893
    [37] Tsang FH, Au SL, Wei L, et al. (2015) Long non-coding RNA HOTTIP is frequently up-regulated in hepatocellular carcinoma and is targeted by tumour suppressive miR-125b. Liver Int 35: 1597-1606. doi: 10.1111/liv.12746
    [38] Lempiainen H, Couttet P, Bolognani F, et al. (2013) Identification of Dlk1-Dio3 imprinted gene cluster noncoding RNAs as novel candidate biomarkers for liver tumor promotion. Toxicol Sci 131: 375-386. doi: 10.1093/toxsci/kfs303
    [39] Tang J, Zhuo H, Zhang X, et al. (2014) A novel biomarker Linc00974 interacting with KRT19 promotes proliferation and metastasis in hepatocellular carcinoma. Cell Death Dis 5: e1549. doi: 10.1038/cddis.2014.518
    [40] Takahashi K, Yan IK, Kogure T, et al. (2014) Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer. FEBS Open Bio 4: 458-467. doi: 10.1016/j.fob.2014.04.007
    [41] Takahashi K, Yan IK, Haga H, et al. (2014) Modulation of hypoxia-signaling pathways by extracellular linc-RoR. J Cell Sci 127: 1585-1594. doi: 10.1242/jcs.141069
    [42] Yuan JH, Yang F, Wang F, et al. (2014) A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell 25: 666-681. doi: 10.1016/j.ccr.2014.03.010
    [43] Li DF, Yang MF, Shi SL, et al. (2015) TM4SF5-CTD-2354A18.1-miR-4697-3P may play a key role in the pathogenesis of gastric cancer. Bratisl Lek Listy 116: 608-615.
    [44] Xia T, Liao Q, Jiang X, et al. (2014) Long noncoding RNA associated-competing endogenous RNAs in gastric cancer. Sci Rep 4: 6088.
    [45] Zhang ZX, Liu ZQ, Jiang B, et al. (2015) BRAF activated non-coding RNA (BANCR) promoting gastric cancer cells proliferation via regulation of NF-kappaB1. Biochem Biophys Res Commun 465: 225-231. doi: 10.1016/j.bbrc.2015.07.158
    [46] Song B, Guan Z, Liu F, et al. (2015) Long non-coding RNA HOTAIR promotes HLA-G expression via inhibiting miR-152 in gastric cancer cells. Biochem Biophys Res Commun 464: 807-813. doi: 10.1016/j.bbrc.2015.07.040
    [47] Liu XH, Sun M, Nie FQ, et al. (2014) Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Mol Cancer 13: 92. doi: 10.1186/1476-4598-13-92
    [48] Qi P, Xu MD, Shen XH, et al. (2015) Reciprocal repression between TUSC7 and miR-23b in gastric cancer. Int J Cancer 137: 1269-1278. doi: 10.1002/ijc.29516
    [49] Zhou X, Ye F, Yin C, et al. (2015) The Interaction Between MiR-141 and lncRNA-H19 in Regulating Cell Proliferation and Migration in Gastric Cancer. Cell Physiol Biochem 36: 1440-1452. doi: 10.1159/000430309
    [50] Dey BK, Pfeifer K, Dutta A (2014) The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes Dev 28: 491-501. doi: 10.1101/gad.234419.113
    [51] Zhuang M, Gao W, Xu J, et al. (2014) The long non-coding RNA H19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1. Biochem Biophys Res Commun 448: 315-322. doi: 10.1016/j.bbrc.2013.12.126
    [52] Li H, Yu B, Li J, et al. (2014) Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget 5: 2318-2329. doi: 10.18632/oncotarget.1913
    [53] Hu Y, Wang J, Qian J, et al. (2014) Long noncoding RNA GAPLINC regulates CD44-dependent cell invasiveness and associates with poor prognosis of gastric cancer. Cancer Res 74: 6890-6902. doi: 10.1158/0008-5472.CAN-14-0686
    [54] Iio A, Takagi T, Miki K, et al. (2013) DDX6 post-transcriptionally down-regulates miR-143/145 expression through host gene NCR143/145 in cancer cells. Biochim Biophys Acta 1829: 1102-1110. doi: 10.1016/j.bbagrm.2013.07.010
    [55] Yan J, Guo X, Xia J, et al. (2014) MiR-148a regulates MEG3 in gastric cancer by targeting DNA methyltransferase 1. Med Oncol 31: 879. doi: 10.1007/s12032-014-0879-6
    [56] Fan QH, Yu R, Huang WX, et al. (2014) The has-miR-526b binding-site rs8506G>a polymorphism in the lincRNA-NR_024015 exon identified by GWASs predispose to non-cardia gastric cancer risk. PLoS One 9: e90008. doi: 10.1371/journal.pone.0090008
    [57] Zhang EB, Kong R, Yin DD, et al. (2014) Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a. Oncotarget 5: 2276-2292. doi: 10.18632/oncotarget.1902
    [58] Xu C, Shao Y, Xia T, et al. (2014) lncRNA-AC130710 targeting by miR-129-5p is upregulated in gastric cancer and associates with poor prognosis. Tumour Biol 35: 9701-9706. doi: 10.1007/s13277-014-2274-5
    [59] Lu L, Luo F, Liu Y, et al. (2015) Posttranscriptional silencing of the lncRNA MALAT1 by miR-217 inhibits the epithelial-mesenchymal transition via enhancer of zeste homolog 2 in the malignant transformation of HBE cells induced by cigarette smoke extract. Toxicol Appl Pharmacol 289: 276-285. doi: 10.1016/j.taap.2015.09.016
    [60] Shao T, Wu A, Chen J, et al. (2015) Identification of module biomarkers from the dysregulated ceRNA-ceRNA interaction network in lung adenocarcinoma. Mol Biosyst 11: 3048-3058. doi: 10.1039/C5MB00364D
    [61] You J, Zhang Y, Liu B, et al. (2014) MicroRNA-449a inhibits cell growth in lung cancer and regulates long noncoding RNA nuclear enriched abundant transcript 1. Indian J Cancer 51 Suppl 3: e77-81.
    [62] Chamoux A, Berthon P, Laubignat JF (1996) Determination of maximum aerobic velocity by a five minute test with reference to running world records. A theoretical approach. Arch Physiol Biochem 104: 207-211. doi: 10.1076/apab.104.2.207.12877
    [63] Yang Y, Li H, Hou S, et al. (2013) The noncoding RNA expression profile and the effect of lncRNA AK126698 on cisplatin resistance in non-small-cell lung cancer cell. PLoS One 8: e65309. doi: 10.1371/journal.pone.0065309
    [64] Prensner JR, Chen W, Han S, et al. (2014) The long non-coding RNA PCAT-1 promotes prostate cancer cell proliferation through cMyc. Neoplasia 16: 900-908. doi: 10.1016/j.neo.2014.09.001
    [65] He JH, Zhang JZ, Han ZP, et al. (2014) Reciprocal regulation of PCGEM1 and miR-145 promote proliferation of LNCaP prostate cancer cells. J Exp Clin Cancer Res 33: 72. doi: 10.1186/s13046-014-0072-y
    [66] Zhu M, Chen Q, Liu X, et al. (2014) lncRNA H19/miR-675 axis represses prostate cancer metastasis by targeting TGFBI. FEBS J 281: 3766-3775. doi: 10.1111/febs.12902
    [67] Chiyomaru T, Yamamura S, Fukuhara S, et al. (2013) Genistein inhibits prostate cancer cell growth by targeting miR-34a and oncogenic HOTAIR. PLoS One 8: e70372. doi: 10.1371/journal.pone.0070372
    [68] Martinez-Fernandez M, Rubio C, Segovia C, et al. (2015) EZH2 in Bladder Cancer, a Promising Therapeutic Target. Int J Mol Sci 16: 27107-27132. doi: 10.3390/ijms161126000
    [69] Luo M, Li Z, Wang W, et al. (2013) Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett 333: 213-221. doi: 10.1016/j.canlet.2013.01.033
    [70] Martinez-Fernandez M, Feber A, Duenas M, et al. (2015) Analysis of the Polycomb-related lncRNAs HOTAIR and ANRIL in bladder cancer. Clin Epigenetics 7: 109. doi: 10.1186/s13148-015-0141-x
    [71] He W, Cai Q, Sun F, et al. (2013) linc-UBC1 physically associates with polycomb repressive complex 2 (PRC2) and acts as a negative prognostic factor for lymph node metastasis and survival in bladder cancer. Biochim Biophys Acta 1832: 1528-1537. doi: 10.1016/j.bbadis.2013.05.010
    [72] Eissa S, Matboli M, Essawy NO, et al. (2015) Integrative functional genetic-epigenetic approach for selecting genes as urine biomarkers for bladder cancer diagnosis. Tumour Biol 36: 9545-9552. doi: 10.1007/s13277-015-3722-6
    [73] Fu X, Liu Y, Zhuang C, et al. (2015) Synthetic artificial microRNAs targeting UCA1-MALAT1 or c-Myc inhibit malignant phenotypes of bladder cancer cells T24 and 5637. Mol Biosyst 11: 1285-1289. doi: 10.1039/C5MB00127G
    [74] Wang T, Yuan J, Feng N, et al. (2014) Hsa-miR-1 downregulates long non-coding RNA urothelial cancer associated 1 in bladder cancer. Tumour Biol 35: 10075-10084. doi: 10.1007/s13277-014-2321-2
    [75] Li Z, Li X, Wu S, et al. (2014) Long non-coding RNA UCA1 promotes glycolysis by upregulating hexokinase 2 through the mTOR-STAT3/microRNA143 pathway. Cancer Sci 105: 951-955. doi: 10.1111/cas.12461
    [76] Han Y, Liu Y, Zhang H, et al. (2013) Hsa-miR-125b suppresses bladder cancer development by down-regulating oncogene SIRT7 and oncogenic long noncoding RNA MALAT1. FEBS Lett 587: 3875-3882. doi: 10.1016/j.febslet.2013.10.023
    [77] Andrew AS, Marsit CJ, Schned AR, et al. (2015) Expression of tumor suppressive microRNA-34a is associated with a reduced risk of bladder cancer recurrence. Int J Cancer 137: 1158-1166. doi: 10.1002/ijc.29413
    [78] Wang J, Lei ZJ, Guo Y, et al. (2015) miRNA-regulated delivery of lincRNA-p21 suppresses beta-catenin signaling and tumorigenicity of colorectal cancer stem cells. Oncotarget 6: 37852-37870.
    [79] Hunten S, Kaller M, Drepper F, et al. (2015) p53-Regulated Networks of Protein, mRNA, miRNA, and lncRNA Expression Revealed by Integrated Pulsed Stable Isotope Labeling With Amino Acids in Cell Culture (pSILAC) and Next Generation Sequencing (NGS) Analyses. Mol Cell Proteom 14: 2609-2629. doi: 10.1074/mcp.M115.050237
    [80] Liang WC, Fu WM, Wong CW, et al. (2015) The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer. Oncotarget 6: 22513-22525. doi: 10.18632/oncotarget.4154
    [81] Tsang WP, Ng EK, Ng SS, et al. (2010) Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis 31: 350-358. doi: 10.1093/carcin/bgp181
    [82] Franklin JL, Rankin CR, Levy S, et al. (2013) Malignant transformation of colonic epithelial cells by a colon-derived long noncoding RNA. Biochem Biophys Res Commun 440: 99-104. doi: 10.1016/j.bbrc.2013.09.040
    [83] Ling H, Spizzo R, Atlasi Y, et al. (2013) CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res 23: 1446-1461. doi: 10.1101/gr.152942.112
    [84] Guo G, Kang Q, Zhu X, et al. (2015) A long noncoding RNA critically regulates Bcr-Abl-mediated cellular transformation by acting as a competitive endogenous RNA. Oncogene 34: 1768-1779. doi: 10.1038/onc.2014.131
    [85] Emmrich S, Streltsov A, Schmidt F, et al. (2014) LincRNAs MONC and MIR100HG act as oncogenes in acute megakaryoblastic leukemia. Mol Cancer 13: 171. doi: 10.1186/1476-4598-13-171
    [86] Xing CY, Hu XQ, Xie FY, et al. (2015) Long non-coding RNA HOTAIR modulates c-KIT expression through sponging miR-193a in acute myeloid leukemia. FEBS Lett 589: 1981-1987. doi: 10.1016/j.febslet.2015.04.061
    [87] Iosue I, Quaranta R, Masciarelli S, et al. (2013) Argonaute 2 sustains the gene expression program driving human monocytic differentiation of acute myeloid leukemia cells. Cell Death Dis 4: e926. doi: 10.1038/cddis.2013.452
    [88] Yao Y, Ma J, Xue Y, et al. (2015) Knockdown of long non-coding RNA XIST exerts tumor-suppressive functions in human glioblastoma stem cells by up-regulating miR-152. Cancer Lett 359: 75-86. doi: 10.1016/j.canlet.2014.12.051
    [89] Cui H, Mu Y, Yu L, et al. (2015) Methylation of the miR-126 gene associated with glioma progression. Fam Cancer 15: 317-324.
    [90] Shi Y, Wang Y, Luan W, et al. (2014) Long non-coding RNA H19 promotes glioma cell invasion by deriving miR-675. PLoS One 9: e86295. doi: 10.1371/journal.pone.0086295
    [91] Bian EB, Li J, Xie YS, et al. (2015) LncRNAs: new players in gliomas, with special emphasis on the interaction of lncRNAs With EZH2. J Cell Physiol 230: 496-503. doi: 10.1002/jcp.24549
    [92] Shi L, Zhang J, Pan T, et al. (2010) MiR-125b is critical for the suppression of human U251 glioma stem cell proliferation. Brain Res 1312: 120-126. doi: 10.1016/j.brainres.2009.11.056
    [93] Wang P, Liu YH, Yao YL, et al. (2015) Long non-coding RNA CASC2 suppresses malignancy in human gliomas by miR-21. Cell Signal 27: 275-282. doi: 10.1016/j.cellsig.2014.11.011
    [94] Zeng Q, Wang Q, Chen X, et al. (2016) Analysis of lncRNAs expression in UVB-induced stress responses of melanocytes. J Dermatol Sci 81: 53-60. doi: 10.1016/j.jdermsci.2015.10.019
    [95] Soares MR, Huber J, Rios AF, et al. (2010) Investigation of IGF2/ApaI and H19/RsaI polymorphisms in patients with cutaneous melanoma. Growth Horm IGF Res 20: 295-297. doi: 10.1016/j.ghir.2010.03.006
    [96] Chiyomaru T, Fukuhara S, Saini S, et al. (2014) Long non-coding RNA HOTAIR is targeted and regulated by miR-141 in human cancer cells. J Biol Chem 289: 12550-12565. doi: 10.1074/jbc.M113.488593
    [97] Slaby O, Jancovicova J, Lakomy R, et al. (2010) Expression of miRNA-106b in conventional renal cell carcinoma is a potential marker for prediction of early metastasis after nephrectomy. J Exp Clin Cancer Res 29: 90. doi: 10.1186/1756-9966-29-90
    [98] Liu S, Song L, Zeng S, et al. (2015) MALAT1-miR-124-RBG2 axis is involved in growth and invasion of HR-HPV-positive cervical cancer cells. Tumour Biol in press.
    [99] Kwanhian W, Lenze D, Alles J, et al. (2012) MicroRNA-142 is mutated in about 20% of diffuse large B-cell lymphoma. Cancer Med 1: 141-155. doi: 10.1002/cam4.29
    [100] Wang J, Zhou Y, Lu J, et al. (2014) Combined detection of serum exosomal miR-21 and HOTAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma. Med Oncol 31: 148. doi: 10.1007/s12032-014-0148-8
    [101] Ma MZ, Chu BF, Zhang Y, et al. (2015) Long non-coding RNA CCAT1 promotes gallbladder cancer development via negative modulation of miRNA-218-5p. Cell Death Dis 6: e1583. doi: 10.1038/cddis.2014.541
    [102] Fang D, Yang H, Lin J, et al. (2015) 17beta-estradiol regulates cell proliferation, colony formation, migration, invasion and promotes apoptosis by upregulating miR-9 and thus degrades MALAT-1 in osteosarcoma cell MG-63 in an estrogen receptor-independent manner. Biochem Biophys Res Commun 457: 500-506. doi: 10.1016/j.bbrc.2014.12.114
    [103] Malouf G, Zhang J, Tannir M, et al. (2015) Charting DNA methylation of long non-coding RNA in clear-cell renal cell carcinoma. ASCO Annual Meeting. Abstract Number 432: May 2015. Available at http://meetinglibrary.asco.org/content/141955-141159.
    [104] Wang H, Guo R, Hoffmann A, et al. (2015) Effect of long noncoding RNA RUNXOR on the epigenetic regulation of RUNX1 in acute myelocytic leukemia. ASCO Annual Meeting. Abstract Number 7018: May 2015. Available at http://meetinglibrary.asco.org/content/146827-146156.
    [105] Hatziapostolou M, Koutsioumpa M, Kottakis F, et al. (2015) Targeting colon cancer metabolism through a long noncoding RNA. ASCO Annual Meeting. Abstract Number 604: May 2015. Available at http://meetinglibrary.asco.org/content/140661-140158.
    [106] Crea F, Parolia A, Xue H, et al. (2015) Identification and functional characterization of a long non-coding RNA driving hormone-independent prostate cancer progression. ASCO Annual Meeting. Abstract Number 11087: May 2015. Available at http://meetinglibrary.asco.org/content/150625-150156.
    [107] Broto J, Fernandez-Serra A, Duran J, et al. (2015) Prognostic relevance of miRNA let-7e in localized intestinal GIST: A Spanish Group for Research on Sarcoma (GEIS) Study. ASCO Annual Meeting. Abstract Number 10524: May 2015. Available at http://meetinglibrary.asco.org/content/147760-147156.
    [108] Ordonez J, Serrano M, García-Puche J, et al. (2015) miRNA21 as a specific marker for the detection of circulating tumor cell. ASCO Annual Meeting. Abstract Number e22025: May 2015. Available at http://meetinglibrary.asco.org/content/150328-150156.
    [109] Ling Z, Mao W (2015) Circulating miRNAs as a potential marker for gefitinib sensitivity and correlation with EGFR mutational status in human lung cancers. ASCO Annual Meeting. Abstract Number e18500: May 2015. Available at http://meetinglibrary.asco.org/content/153292-153156.
    [110] Mullane S, Werner L, Zhou C, et al. (2015) Predicting outcome in metastatic urothelial cancer (UC) receiving docetaxel (DT): miRNA profiling in pre and post therapy. ASCO Annual Meeting. Abstract Number e15518: May 2015. Available at http://meetinglibrary.asco.org/content/150309-150156.
    [111] Yue L, Yao Y, Qiu W, et al. (2015) MiR-141 to confer the docetaxel chemoresistance of breast cancer cells via regulating EIF4E expression. ASCO Annual Meeting. Abstract Number e12007: May 2015. Available at http://meetinglibrary.asco.org/content/149427-149156.
    [112] Espin E, Perez-Fidalgo J, Tormo E, et al. (2015) Effect of trastuzumab on the antiproliferative effects of PI3K inhibitors in HER2+ breast cancer cells with de novo resistance to trastuzumab. ASCO Annual Meeting. Abstract Number e11592: May 2015. Available at http://meetinglibrary.asco.org/content/144338-144156.
    [113] Nair S, Liew C, Khor TO, et al. (2014) Differential signaling regulatory networks governing hormone refractory prostate cancers. J Chin Pharm Sci 23: 511-524.
    [114] Nair S, Liew C, Khor TO, et al. (2015) Elucidation of regulatory interaction networks underlying human prostate adenocarcinoma. J Chin Pharm Sci 24: 12-27.
    [115] Wang F, Lu J, Peng X, et al. (2016) Integrated analysis of microRNA regulatory network in nasopharyngeal carcinoma with deep sequencing. J Exp Clin Cancer Res 35: 17. doi: 10.1186/s13046-016-0292-4
    [116] Nair S, Kong AN (2015) Architecture of signature miRNA regulatory networks in cancer chemoprevention. Curr Pharmacol Rep 1: 89-101. doi: 10.1007/s40495-014-0014-6
    [117] Liu Y, Zhao M (2016) lnCaNet: pan-cancer co-expression network for human lncRNA and cancer genes. Bioinformatics pii: 017.
    [118] Cao L, Xiao PF, Tao YF, et al. (2016) Microarray profiling of bone marrow long non-coding RNA expression in Chinese pediatric acute myeloid leukemia patients. Oncol Rep 35: 757-770.
    [119] Shannon P, Markiel A, Ozier O, et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13: 2498-2504. doi: 10.1101/gr.1239303
    [120] Nair S (2016) Pharmacometrics and systems pharmacology of immune checkpoint inhibitor nivolumab in cancer translational medicine. Adv Mod Oncol Res 2: 18-31.
    [121] Elling R, Chan J, Fitzgerald KA (2016) Emerging role of long noncoding RNAs as regulators of innate immune cell development and inflammatory gene expression. Eur J Immunol 46: 504-512. doi: 10.1002/eji.201444558
  • This article has been cited by:

    1. Driss Bouggar, Mohamed El Fatini, Bouchra Nasri, Roger Petersson, Idriss Sekkak, Stochastic near-optimal controls for treatment and vaccination in a COVID-19 model with transmission incorporating Lévy jumps, 2024, 96, 1744-2508, 887, 10.1080/17442508.2024.2320846
    2. Shuangyan Yang, Qimin Zhang, Exponential stability and fixed-time control of a stochastic avian influenza model with spatial diffusion and nonlocal delay, 2024, 34, 1054-1500, 10.1063/5.0225874
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(9554) PDF downloads(1502) Cited by(11)

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog