Reaction-diffusion equations are a trusted modeling framework for the dynamics of biological populations in space and time, and their traveling wave solutions are interpreted as the density of an invasive species that spreads at constant speed. Even though certain species can significantly alter their abiotic environment for their benefit, and even though some of these so-called "ecosystem engineers" are among the most destructive invasive species, most models neglect this feedback. Here, we extended earlier work that studied traveling waves of ecosystem engineers with a logistic growth function to study the existence of traveling waves in the presence of a strong Allee effect. Our model consisted of suitable and unsuitable habitat, each a semi-infinite interval, separated by a moving interface. The speed of this boundary depended on the engineering activity of the species. On each of the intervals, we had a reaction–diffusion equation for the population density, and at the interface, we had matching conditions for density and flux. We used phase-plane analysis to detect and classify several qualitatively different types of traveling waves, most of which have previously not been described. We gave conditions for their existence for different biological scenarios of how individuals alter their abiotic environment. As an intermediate step, we studied the existence of traveling waves in a so-called "moving habitat model", which can be interpreted as a model for the effects of climate change on the spatial dynamics of populations.
Citation: Maryam Basiri, Frithjof Lutscher, Abbas Moameni. Traveling waves in a free boundary problem for the spread of ecosystem engineers[J]. Mathematical Biosciences and Engineering, 2025, 22(1): 152-184. doi: 10.3934/mbe.2025008
[1] | Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, Magda Lopes Texeira, José Manuel Nieto-Villar . The dynamics of tumor growth and cells pattern morphology. Mathematical Biosciences and Engineering, 2009, 6(3): 547-559. doi: 10.3934/mbe.2009.6.547 |
[2] | Elena Izquierdo-Kulich, José Manuel Nieto-Villar . Morphogenesis of the tumor patterns. Mathematical Biosciences and Engineering, 2008, 5(2): 299-313. doi: 10.3934/mbe.2008.5.299 |
[3] | Avner Friedman, Yangjin Kim . Tumor cells proliferation and migration under the influence of their microenvironment. Mathematical Biosciences and Engineering, 2011, 8(2): 371-383. doi: 10.3934/mbe.2011.8.371 |
[4] | H. J. Alsakaji, F. A. Rihan, K. Udhayakumar, F. El Ktaibi . Stochastic tumor-immune interaction model with external treatments and time delays: An optimal control problem. Mathematical Biosciences and Engineering, 2023, 20(11): 19270-19299. doi: 10.3934/mbe.2023852 |
[5] | Rafael Martínez-Fonseca, Cruz Vargas-De-León, Ramón Reyes-Carreto, Flaviano Godínez-Jaimes . Bayesian analysis of the effect of exosomes in a mouse xenograft model of chronic myeloid leukemia. Mathematical Biosciences and Engineering, 2023, 20(11): 19504-19526. doi: 10.3934/mbe.2023864 |
[6] | Yuyang Xiao, Juan Shen, Xiufen Zou . Mathematical modeling and dynamical analysis of anti-tumor drug dose-response. Mathematical Biosciences and Engineering, 2022, 19(4): 4120-4144. doi: 10.3934/mbe.2022190 |
[7] | Hsiu-Chuan Wei . Mathematical modeling of tumor growth: the MCF-7 breast cancer cell line. Mathematical Biosciences and Engineering, 2019, 16(6): 6512-6535. doi: 10.3934/mbe.2019325 |
[8] | Marcelo E. de Oliveira, Luiz M. G. Neto . Directional entropy based model for diffusivity-driven tumor growth. Mathematical Biosciences and Engineering, 2016, 13(2): 333-341. doi: 10.3934/mbe.2015005 |
[9] | Mohammad A. Tabatabai, Wayne M. Eby, Karan P. Singh, Sejong Bae . T model of growth and its application in systems of tumor-immunedynamics. Mathematical Biosciences and Engineering, 2013, 10(3): 925-938. doi: 10.3934/mbe.2013.10.925 |
[10] | Tuan Anh Phan, Jianjun Paul Tian . Basic stochastic model for tumor virotherapy. Mathematical Biosciences and Engineering, 2020, 17(4): 4271-4294. doi: 10.3934/mbe.2020236 |
Reaction-diffusion equations are a trusted modeling framework for the dynamics of biological populations in space and time, and their traveling wave solutions are interpreted as the density of an invasive species that spreads at constant speed. Even though certain species can significantly alter their abiotic environment for their benefit, and even though some of these so-called "ecosystem engineers" are among the most destructive invasive species, most models neglect this feedback. Here, we extended earlier work that studied traveling waves of ecosystem engineers with a logistic growth function to study the existence of traveling waves in the presence of a strong Allee effect. Our model consisted of suitable and unsuitable habitat, each a semi-infinite interval, separated by a moving interface. The speed of this boundary depended on the engineering activity of the species. On each of the intervals, we had a reaction–diffusion equation for the population density, and at the interface, we had matching conditions for density and flux. We used phase-plane analysis to detect and classify several qualitatively different types of traveling waves, most of which have previously not been described. We gave conditions for their existence for different biological scenarios of how individuals alter their abiotic environment. As an intermediate step, we studied the existence of traveling waves in a so-called "moving habitat model", which can be interpreted as a model for the effects of climate change on the spatial dynamics of populations.
[1] | A. N. Kolmogorov, I. G. Petrovsky, N. S. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un probléme biologique, Bull. Univ. Moskov. Ser. Internat., 1 (1937), 1–25. |
[2] |
R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugen., 7 (1937), 355–369. https://doi.org/10.1111/j.1469-1809.1937.tb02153.x doi: 10.1111/j.1469-1809.1937.tb02153.x
![]() |
[3] | M. Lewis, S. Petrovskii, J. Potts, The Mathematics Behind Biological Invasions, Springer, New York, (2016). https://doi.org/10.1007/978-3-319-32043-4 |
[4] |
K. Cuddington, A. Hastings, Invasive engineers, Ecol. Model., 178 (2004), 335–347. https://doi.org/10.1016/j.ecolmodel.2004.03.010 doi: 10.1016/j.ecolmodel.2004.03.010
![]() |
[5] |
C. G. Jones, J. H. Lawton, M. Shachak, Organisms as ecosystem engineers, Oikos, 69 (1994), 373–386. https://doi.org/10.1007/978-1-4612-4018-1_14 doi: 10.1007/978-1-4612-4018-1_14
![]() |
[6] |
C. G. Jones, J. H. Lawton, M. Shachak, Positive and negative effects of organisms as physical ecosystem engineers, Ecology, 78 (1997), 1946–1957. https://doi.org/10.1890/0012-9658(1997)078[1946:PANEOO]2.0.CO;2 doi: 10.1890/0012-9658(1997)078[1946:PANEOO]2.0.CO;2
![]() |
[7] |
A. Hasting, J. E. Byers, J. A. Crooks, K. Cuddington, C. G. Jones, J. G. Lambrinos, et al., Ecosystem engineering in space and time, Ecol. Lett., 10 (2007), 153–164. https://doi.org/10.1111/j.1461-0248.2006.00997.x doi: 10.1111/j.1461-0248.2006.00997.x
![]() |
[8] |
W. Ziebis, S. Forster, M. Huettel, B. Jørgensen, Complex burrows of the mud shrimp Callianassa truncata and their geochemical impact in the sea bed, Nature, 382 (1996), 619–622. https://doi.org/10.1038/382619a0 doi: 10.1038/382619a0
![]() |
[9] |
K. Cuddington, W. G. Wilson, A. Hastings, Ecosystem engineers: Feedback and population dynamics, Am. Nat., 173 (2009), 488–498. https://doi.org/10.1086/597216 doi: 10.1086/597216
![]() |
[10] |
F. Lutscher, J. Fink, Y. Zhu, Pushing the boundaries: Models for the spatial spread of ecosystem engineers, Bull. Math. Biol., 82 (2020), 138. https://doi.org/10.1007/s11538-020-00818-8 doi: 10.1007/s11538-020-00818-8
![]() |
[11] | F. Courchamp, L. Berec, J. Gascoigne, Allee effects in ecology and conservation, Oxford University Press, Oxford, UK (2008). https://doi.org/10.1093/acprof: oso/9780198570301.001.0001 |
[12] |
K. P. Hadeler, F. Rothe, Travelling fronts in nonlinear diffusion equations, J. Math. Biol., 2 (1975), 251–263. https://doi.org/10.1007/BF00277154 doi: 10.1007/BF00277154
![]() |
[13] |
Y. Du, Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377–405. https://doi.org/10.1137/090771089 doi: 10.1137/090771089
![]() |
[14] | J. Stefan, Über die Theorie der Eisbildung insbesondere über die Eisbildung im Polarmeere, S. B. Wien Adak. Mat. Natur., 98 (1889), 965–983. |
[15] | L. Rubinstein, The Stefan Problem, American Mathematical Society, 1971. |
[16] |
G. Bunting, Y. Du, K. Krakowski, Spreading speed revisited: Analysis of a free boundary model, Netw. Heterog. Media, 7 (2012), 583–603. https://doi.org/10.3934/nhm.2012.7.583 doi: 10.3934/nhm.2012.7.583
![]() |
[17] |
Y. Du, Z. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary II, J. Diff. Equations, 250 (2011), 4336–4366. https://doi.org/10.1016/j.jde.2011.02.011 doi: 10.1016/j.jde.2011.02.011
![]() |
[18] |
Y. Du, Z. Guo, The Stefan problem for the Fisher-KPP equation, J. Diff. Equations, 253 (2012), 996–1035. http://dx.doi.org/10.1016/j.jde.2012.04.014 doi: 10.1016/j.jde.2012.04.014
![]() |
[19] |
Y. Du, A. G. Lin, The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor, Discr. Cont. Dyn. Sys. B, 19 (2014), 3105–3132. https://doi.org/10.48550/arXiv.1303.0454 doi: 10.48550/arXiv.1303.0454
![]() |
[20] |
Y. Du, L. Wei, L. Zhou, Spreading in a shifting environment modeled by the diffusive logistic equation with a free boundary, J. Dyn. Diff. Equations, 30 (2018), 1389–1426. https://doi.org/10.1007/s10884-017-9614-2 doi: 10.1007/s10884-017-9614-2
![]() |
[21] |
Y. Du, J. Fang, N. Sun, A delay induced nonlocal free boundary problem, Math. Ann., 386 (2024), 2061–2106. https://doi.org/10.1007/s00208-022-02451-3 doi: 10.1007/s00208-022-02451-3
![]() |
[22] |
N. T. Fadai, Semi-infinite travelling waves arising in a general reaction-diffusion Stefan model, Nonlinearity, 34 (2021), 725–743. https://doi.org/10.1088/1361-6544/abd07b doi: 10.1088/1361-6544/abd07b
![]() |
[23] |
N. T. Fadai, Exact smooth and sharp-fronted traveling waves of reaction-diffusion equations with weak Allee effects, Appl. Math. Lett., 135 (2023), 108433. https://doi.org/10.1016/j.aml.2022.108433 doi: 10.1016/j.aml.2022.108433
![]() |
[24] |
C. Feng, M. A. Lewis, C. Wang, H. Wang, A Fisher-KPP model with a nonlocal weighted free boundary: Analysis of how habitat boundaries expand, balance or shrink, Bull. Math. Biol., 84 (2022), 34. https://doi.org/10.1007/s11538-022-00995-8 doi: 10.1007/s11538-022-00995-8
![]() |
[25] |
S. W. McCue, M. El-Hachem, M. J. Simpson, Traveling waves, blow-up, and extinction in the Fisher-Stefan model, Stud. Appl. Math., 148 (2022), 964–986. https://doi.org/10.1111/sapm.12465 doi: 10.1111/sapm.12465
![]() |
[26] | Y. Du, Propagation dynamics of the monostable reaction-diffusion equation with a new free boundary condition, Discr. Cont. Dyn. Sys. B, 44 (2024), 2524–2563. |
[27] |
G. Maciel, F. Lutscher, How individual movement response to habitat edges affects population persistence and spatial spread, Am. Nat., 182 (2013), 42–52. https://doi.org/10.1086/670661 doi: 10.1086/670661
![]() |
[28] |
J. S. MacDonald, F. Lutscher, Individual behavior at habitat edges may help populations persist in moving habitats, J. Math. Biol., 77 (2018), 2049–2077. https://doi.org/10.1007/s00285-018-1244-8 doi: 10.1007/s00285-018-1244-8
![]() |
[29] | M. Basiri, A Free Boundary Problem Modeling the Spread of Ecosystem Engineers, PhD thesis, University of Ottawa, 2023. http://dx.doi.org/10.20381/ruor-29166 |
[30] |
E. E. Crone, L. M. Brown, J. A. Hodgson, F. Lutscher, C. B. Schultz, Faster movement in habitat matrix promotes range shifts in heterogeneous landscapes, Ecology, 100 (2019), e02701. https://doi.org/10.1002/ecy.2701 doi: 10.1002/ecy.2701
![]() |
[31] |
M. Basiri, F. Lutscher, A. Moameni, Existence of solutions for a free boundary problem modeling the spread of ecosystem engineers, J. Nonlinear Sci., 31 (2021), 72. https://doi.org/10.1007/s00332-021-09725-1 doi: 10.1007/s00332-021-09725-1
![]() |
[32] |
H. Berestycki, L. Rossi, Reaction-diffusion equations for population dynamics with forced speed Ⅰ-The case of the whole space, Discr. Cont. Dyn. Sys. B, 21 (2008), 41–67. https://doi.org/10.3934/dcds.2008.21.41 doi: 10.3934/dcds.2008.21.41
![]() |
[33] |
J. S. MacDonald, Y. Bourgault, F. Lutscher, Moving habitat models: A numerical approach, Math. Biosci., 341 (2021), 108711. https://doi.org/10.1016/j.mbs.2021.108711 doi: 10.1016/j.mbs.2021.108711
![]() |
[34] |
B. Li, S. Bewick, J. Shang, W. F. Fagan, Persistence and spread of a species with a shifting habitat edge, SIAM J. Appl. Math., 74 (2014), 1397–1417. https://doi.org/10.1137/130938463 doi: 10.1137/130938463
![]() |
[35] |
J. B. Wang, W. T. Li, G. D. Dong, S. X. Qiao, Recent developments on spatial propagation for diffusion equations in shifting environments, Discr. Cont. Dyn. Sys. B, 27 (2022), 5101–5127. https://doi.org/10.3934/dcdsb.2021266 doi: 10.3934/dcdsb.2021266
![]() |
[36] | J. Bouhours, T. Giletti, Extinction and spreading of a species under the joint influence of climate change and a weak Allee effect: A two-patch model, preprint, arXiv: 1601.06589. |
[37] |
A. B. Potapov, M. A. Lewis, Climate and competition: The effect of moving range boundaries on habitat invasibility, Bull. Math. Biol., 66 (2004), 975–1008. https://doi.org/10.1016/j.bulm.2003.10.010 doi: 10.1016/j.bulm.2003.10.010
![]() |
[38] |
B. Li, G. Otto, Forced traveling waves in a reaction–diffusion equation with strong Allee effect and shifting habitat, Bull. Math. Biol., 85 (2023), 1–26. https://doi.org/10.1007/s11538-023-01221-9 doi: 10.1007/s11538-023-01221-9
![]() |
[39] | A. I. Volpert, V. A. Volpert, V. A. Volpert, Traveling wave solutions of parabolic systems, in Translations of Mathematical Monographs, American Mathematical Society, (1994), 448. |
[40] |
A. Hastings, K. Cuddington, K. F. Davies, C. J. Dugaw, S. Elmendorf, A. Freestone, et al., The spatial spread of invasions: new developments in theory and evidence, Ecol. Lett., 8 (2005), 91–101. https://doi.org/10.1111/j.1461-0248.2004.00687.x doi: 10.1111/j.1461-0248.2004.00687.x
![]() |
1. | Bruno Buonomo, Deborah Lacitignola, Cruz Vargas-De-León, Qualitative analysis and optimal control of an epidemic model with vaccination and treatment, 2014, 100, 03784754, 88, 10.1016/j.matcom.2013.11.005 | |
2. | Yunhu Zhang, Yanni Xiao, Modeling and analyzing the effects of fixed‐time intervention on transmission dynamics of echinococcosis in Qinghai province, 2021, 44, 0170-4214, 4276, 10.1002/mma.7029 | |
3. | Kai Wang, Zhidong Teng, Xueliang Zhang, Dynamical behaviors of an Echinococcosis epidemic model with distributed delays, 2017, 14, 1551-0018, 1425, 10.3934/mbe.2017074 | |
4. | David J. Gerberry, Practical aspects of backward bifurcation in a mathematical model for tuberculosis, 2016, 388, 00225193, 15, 10.1016/j.jtbi.2015.10.003 | |
5. | Matthew A. Dixon, Uffe C. Braae, Peter Winskill, Martin Walker, Brecht Devleesschauwer, Sarah Gabriël, Maria-Gloria Basáñez, Justin V. Remais, Strategies for tackling Taenia solium taeniosis/cysticercosis: A systematic review and comparison of transmission models, including an assessment of the wider Taeniidae family transmission models, 2019, 13, 1935-2735, e0007301, 10.1371/journal.pntd.0007301 | |
6. | Joshua A. Mwasunda, Jacob I. Irunde, Damian Kajunguri, Dmitry Kuznetsov, Modeling and analysis of taeniasis and cysticercosis transmission dynamics in humans, pigs and cattle, 2021, 2021, 1687-1847, 10.1186/s13662-021-03341-9 | |
7. | Joshua A. Mwasunda, Chacha S. Chacha, Mussa A. Stephano, Jacob I. Irunde, Modelling cystic echinococcosis and bovine cysticercosis co-infections with optimal control, 2022, 41, 2238-3603, 10.1007/s40314-022-02034-7 | |
8. | LEI WANG, KAI WANG, XIAOMEI FENG, YU ZHAO, DAQING JIANG, THE EFFECT OF STOCHASTIC VARIABILITY ON TRANSMISSION DYNAMICS OF ECHINOCOCCOSIS, 2021, 29, 0218-3390, 895, 10.1142/S0218339021500224 | |
9. | Run Yang, Jianglin Zhao, Yong Yan, Andrei Korobeinikov, Stability Analysis and Optimal Control Strategies of an Echinococcosis Transmission Model, 2022, 2022, 1748-6718, 1, 10.1155/2022/6154866 | |
10. | Jianguo Sun, Huina Zhang, Daqing Jiang, Mustafa R. S. Kulenovic, On the Dynamics Behaviors of a Stochastic Echinococcosis Infection Model with Environmental Noise, 2021, 2021, 1607-887X, 1, 10.1155/2021/8204043 | |
11. | Jianglin Zhao, Run Yang, A dynamical model of echinococcosis with optimal control and cost-effectiveness, 2021, 62, 14681218, 103388, 10.1016/j.nonrwa.2021.103388 | |
12. | Birhan Getachew Bitew, Justin Manango W. Munganga, Adamu Shitu Hassan, Mathematical modelling of echinococcosis in human, dogs and sheep with intervention, 2022, 16, 1751-3758, 439, 10.1080/17513758.2022.2081368 | |
13. | Joshua A. Mwasunda, Jacob I. Irunde, Damian Kajunguri, Dmitry Kuznetsov, Optimal control analysis of Taenia saginata bovine cysticercosis and human taeniasis, 2022, 16, 24056731, e00236, 10.1016/j.parepi.2021.e00236 | |
14. | Marshall W. Lightowlers, Robin B. Gasser, Andrew Hemphill, Thomas Romig, Francesca Tamarozzi, Peter Deplazes, Paul R. Torgerson, Hector H. Garcia, Peter Kern, Advances in the treatment, diagnosis, control and scientific understanding of taeniid cestode parasite infections over the past 50 years, 2021, 51, 00207519, 1167, 10.1016/j.ijpara.2021.10.003 | |
15. | Juan Li, Zhen Jin, Youming Wang, Xiangdong Sun, Quangang Xu, Jingli Kang, Baoxu Huang, Huaiping Zhu, Data‐driven dynamical modelling of the transmission of African swine fever in a few places in China, 2022, 69, 1865-1674, 10.1111/tbed.14345 | |
16. | Chacha S. Chacha, Mussa A. Stephano, Jacob I. Irunde, Joshua A. Mwasunda, Cystic echinococcosis dynamics in dogs, humans and cattle: Deterministic and stochastic modeling, 2023, 51, 22113797, 106697, 10.1016/j.rinp.2023.106697 | |
17. | Joshua A. Mwasunda, Jacob I. Irunde, Stability and bifurcation analysis of a Taenia saginata model with control measures, 2023, 13, 26667207, 100311, 10.1016/j.rico.2023.100311 | |
18. | Weixin Chen, Xinzhong Xu, Qimin Zhang, Hopf bifurcation and fixed-time stability of a reaction–diffusion echinococcosis model with mixed delays, 2024, 03784754, 10.1016/j.matcom.2024.04.002 | |
19. | Richard Lagos, Juan Pablo Gutiérrez-Jara, Beatriz Cancino-Faure, Leidy Yissedt Lara-Díaz, Ignacio Barradas, Andrei González-Galeano, Breaking the Cycle of Echinococcosis: A Mathematical Modeling Approach, 2025, 10, 2414-6366, 101, 10.3390/tropicalmed10040101 | |
20. | Richard Lagos, Juan Pablo Gutiérrez-Jara, Beatriz Cancino-Faure, Leidy Yissedt Lara-Díaz, Aníbal Coronel, Mar Siles-Lucas, The role of host mobility in the transmission and spread of Echinococcus granulosus: A Chile-based mathematical modeling approach, 2025, 19, 1935-2735, e0012948, 10.1371/journal.pntd.0012948 |