Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Research article

Finite-in-time flocking of the thermodynamic Cucker–Smale model

  • We illustrate finite-in-time flocking in the thermodynamic Cucker–Smale (TCS) model. First, we extend the original TCS model to allow for a continuous vector field with a locally Lipschitz continuity. Then, within this system, we derive appropriate dissipative inequalities concerning the position-velocity-temperature using several preparatory estimates. Subsequently, based on initial data and system parameters, we formulate sufficient conditions to guarantee the desired finite-time flocking in each case where the communication weight conditions are divided into two scenarios: one with a positive lower bound and another with nonnegativity and monotonicity. Finally, we provide several numerical simulations and compare them with the analytical results.

    Citation: Hyunjin Ahn, Se Eun Noh. Finite-in-time flocking of the thermodynamic Cucker–Smale model[J]. Networks and Heterogeneous Media, 2024, 19(2): 526-546. doi: 10.3934/nhm.2024023

    Related Papers:

    [1] Miyoun Jung . A variational image denoising model under mixed Cauchy and Gaussian noise. AIMS Mathematics, 2022, 7(11): 19696-19726. doi: 10.3934/math.20221080
    [2] Donghong Zhao, Ruiying Huang, Li Feng . Proximity algorithms for the $ {\mathit{L}}^{1}{\mathit{L}}^{2}/{\mathit{T}\mathit{V}}^{\mathit{\alpha }} $ image denoising model. AIMS Mathematics, 2024, 9(6): 16643-16665. doi: 10.3934/math.2024807
    [3] Miyoun Jung . Group sparse representation and saturation-value total variation based color image denoising under multiplicative noise. AIMS Mathematics, 2024, 9(3): 6013-6040. doi: 10.3934/math.2024294
    [4] Abdelilah Hakim, Anouar Ben-Loghfyry . A total variable-order variation model for image denoising. AIMS Mathematics, 2019, 4(5): 1320-1335. doi: 10.3934/math.2019.5.1320
    [5] Lufeng Bai . A new approach for Cauchy noise removal. AIMS Mathematics, 2021, 6(9): 10296-10312. doi: 10.3934/math.2021596
    [6] Mingying Pan, Xiangchu Feng . Application of Fisher information to CMOS noise estimation. AIMS Mathematics, 2023, 8(6): 14522-14540. doi: 10.3934/math.2023742
    [7] Yating Zhu, Zixun Zeng, Zhong Chen, Deqiang Zhou, Jian Zou . Performance analysis of the convex non-convex total variation denoising model. AIMS Mathematics, 2024, 9(10): 29031-29052. doi: 10.3934/math.20241409
    [8] Hui Sun, Yangyang Lyu . Temporal Hölder continuity of the parabolic Anderson model driven by a class of time-independent Gaussian fields with rough initial conditions. AIMS Mathematics, 2024, 9(12): 34838-34862. doi: 10.3934/math.20241659
    [9] Yuzi Jin, Soobin Kwak, Seokjun Ham, Junseok Kim . A fast and efficient numerical algorithm for image segmentation and denoising. AIMS Mathematics, 2024, 9(2): 5015-5027. doi: 10.3934/math.2024243
    [10] Xiaodong Zhang, Junfeng Liu . Solving a class of high-order fractional stochastic heat equations with fractional noise. AIMS Mathematics, 2022, 7(6): 10625-10650. doi: 10.3934/math.2022593
  • We illustrate finite-in-time flocking in the thermodynamic Cucker–Smale (TCS) model. First, we extend the original TCS model to allow for a continuous vector field with a locally Lipschitz continuity. Then, within this system, we derive appropriate dissipative inequalities concerning the position-velocity-temperature using several preparatory estimates. Subsequently, based on initial data and system parameters, we formulate sufficient conditions to guarantee the desired finite-time flocking in each case where the communication weight conditions are divided into two scenarios: one with a positive lower bound and another with nonnegativity and monotonicity. Finally, we provide several numerical simulations and compare them with the analytical results.



    With the advancement of the world, the ambiguity and uncertainty in the life of human beings were increasing and an expert or decision-analyst couldn't handle such sort of ambiguities and uncertainties by employing the theory of crisp set. Thus, Zadeh [1] diagnosed the fuzzy set theory (FST) and its elementary results in 1965 to cope with such sort of ambiguities and uncertainties by changing the two-point set {0,1} to the unit interval [0,1]. The FST holds a supportive grade which contains in [0,1]. The FST attracted numerous scholars from almost every field of science and they did research and utilized the FST in their respective fields. Rosenfeld [2] firstly employed the FST in the environment of groups to structured fuzzy groups. Kuroki [3,4,5,6] interpreted fuzzy semigroups (FSG), bi-ideal in semigroups, and fuzzy ideal. The fuzzy ideals and bi-ideals in FSGs were also presented by Dib and Galhum [7]. The fuzzy identities with application to FSGs were established by Budimirovic et al. [8]. The generalized fuzzy interior ideals and fuzzy regular sub-semigroup were given in [9,10] respectively. The fuzzy bi-ideals, fuzzy radicals, and fuzzy prime ideals of ordered semigroups are presented in [11,12]. Kehayopulu and Tsingelis [13] and Xie and Tang [14] presented the concept of regular and intra-regular ordered semigroups. Khan et al. [15] explored certain characterizations of intra-regular semigroups. Jaradat and Al-Husban [16] investigated multi-fuzzy group spaces.

    The conception of bipolar fuzzy (BF) set is one of the generalizations of FST, as FST is unable to cover the negative opinion or negative supportive grade of human beings. Thus, Zhang [17] initiated the BF set theory (BFST) to cover both positive and negative opinions of human beings by enlarging the range of FST ([0,1]) to the BFST ([0,1],[1,0]). The BFST holds a positive supportive grade (PSG) which contains in [0,1] and negative supportive grade (NSG) which contains in [1,0]. Kim et al. [18] initiated BCFST in semigroups. Kang and Kang [19] explored BFST applied to sub-semigroups with the operations of semigroups. BFST in Γ-semigroups was interpreted by Majumder [20]. The certain properties of BF sub-semigroups of a semigroup are presented in [21,22]. Chinnadurai and Arulmozhi [23] described the characterization of BF ideals in ordered Γ-semigroups. BF abundant semigroups by Li et al. [24]. Ban et al. [25] initiated BF ideals with operation in semigroups. Gaketem and Khamrot [26] presented BF weakly interior ideals. The generalized BF interior ideals in ordered semigroups were interpreted by Ibrar et al. [27]. The BF graph was discussed in [28,29,30]. Mahmood [31] diagnosed a new approach to the bipolar soft set. Akram et al. [32] presented a characterization of BF soft Γ-semigroups. Deli and Karaaslan [33] defined bipolar FPSS theory. Various researchers expand the conception of BFS such as Deli et al. [34] investigated bipolar neutrosophic sets (BNS), Deli and Subas [35] introduced bipolar neutrosophic refined sets, Ali et al. [46] investigated bipolar neutrosophic soft sets.

    The FST and BFST merely cope with the ambiguities and uncertainties which are in one dimension but unable to cope with 2nd dimension which is the phase term. Thus, Ramot et al. [37] diagnosed the theory of complex FS (CFS) by transforming the range of FST ([0,1]) to the unit circle in a complex plane. In the CFS theory (CFST) Ramot et al. [37] added the phase term in the supportive grade. After that, Tamir et al. [38] diagnosed the CFST in the cartesian structure by transforming the range from the unit circle to the unit square of the complex plane. Al-Husban and Salleh [39] presented complex fuzzy (CF) groups that rely on CF space. Alolaiyan et al. [40] the conception of CF subgroups. The above-discussed theories have their drawbacks, for instance, FST can't cover the negative opinion, BFST can't cover the 2nd dimension and CFST can't cover the negative opinion. Thus to cover all these drawbacks Mahmood and Ur Rehman [41] introduced the theory of the BCF set. BCF set covers the PSG which contains in [0,1]+ι[0,1] (real part contains in [0,1] and unreal part contains in [0,1]) and NSG which contains in [1,0]+ι[1,0] (real part contains in [1,0] and unreal part contains in [1,0]). The theory of the BCF set has a great mathematical structure that generalizes the FST, BFST, and CFST, for example, a CEO of a company wants to install a new air conditioning system in a company's head office. For this he has to observe four aspects i.e., positive effect on the office's environment, the positive response of the employees, the extra burden on the company expenditures, and the negative response of the employees. No prevailing theories except the BCF set can model such kinds of information. A lot of researchers worked on the theory of BCF set for instance Al-Husban et al. [42] investigated the properties for BCFS. Mahmood et al. [43] diagnosed Hamacher aggregation operators (AOs), Mahmood and Ur Rehman [44] explored Dombi AOs, Mahmood et al. [45] AOs. The BCF soft set was diagnosed by Mahmood et al. [46].

    The conception of a semigroup is a prosperous area of modern algebra. It is obvious from the name that semigroup is the modification of the conception of the group, since a semigroup not requires to contain elements that have inverses. In the earlier stages, a lot of researchers work on semigroup from the perspective of ring and group. The conception of semigroup may be assumed as the effective offspring of ring theory because the ring theory provides some insight into how to create the notion of ideals in the semigroup. Moreover, the conception of a semigroup is an influential approach and has been utilized by numerous scholars and employed in various areas such as mathematical biology, control theory, nonlinear dynamical systems, stochastic processes, etc. Because of the importance of semigroup, various scholars modified this concept to introduce novel notions such as fuzzy semigroup [3,4,5,6], intuitionistic fuzzy semigroup [47], bipolar fuzzy semigroup [19], etc. The concept of fuzzy semigroup has various application such as fuzzy languages, theory fuzzy coding, etc., that shows the importance of fuzzy algebraic structure and their modifications. In recent years, numerous authors generalized the conception of fuzzy algebraic structures and employed genuine-life dilemmas in various areas of science. What would happen if someone working on automata theory and trying to solve a problem and for that he/she needs a BCF algebraic structure (i.e., BCF semigroup) but until now there is no such structure in the literature. Therefore inspired by this here in this analysis we employ the theory of the BCF set to the algebraic structures of semigroups:

    ● To describe BCF sub-semigroup, BCFLI, BCFRI, and BCFTSI.

    ● To introduce numerous classes of semigroups for instance, right regular, left regular, intra-regular, and semi-simple, by the features of the bipolar complex fuzzy ideals. In addition, these classes are interpreted in relation to BCFLIs, BCFRIs, and BCFTSIs.

    ● To show that, for a semigroup Ş and for each BCFLI М1=(λPМ1,λNМ1)=(λRPМ1+ιλIPМ1,λRNМ1+ιλINМ1) and BCFRI М2=(λPМ2,λNМ2)=(λRPМ2+ιλIPМ2,λRNМ2+ιλINМ2) over Ş, М1М2=М1М2 if and only if Ş is a regular semigroup.

    ● To interpret regular, intra-regular semigroups and show that М1М2М1М2 for each BCFLI М1=(λPМ1,λNМ1)=(λRPМ1+ιλIPМ1,λRNМ1+ιλINМ1) and for each BCFRI М2=(λPМ2,λNМ2)=(λRPМ2+ιλIPМ2,λRNМ2+ιλINМ2) over Ş if and only if a semigroup Ş is regular and intra-regular.

    The introduced conceptions are an advancement of the fuzzy set (FS), bipolar fuzzy set (BFS), and complex FS (CFS) in the environment of semigroups and from the introduced notions we can easily achieve these conceptions in the environment of FS, BFS, and CFS.

    The quick assessment of the composition of this analysis: In Section 2, we studied, the fundamental concepts such as FS, fuzzy sub-semigroup, BF set, BF set sub-semigroup, BCF set and its related concepts In Section 3, we introduced the BCF sub-semigroup, BCFLI, BCFRI, BCFTSI, bipolar complex characteristic function, positive (ω,η)-cut, negative (ϱ,σ)-cut, positive and ((ω,η),(ϱ,σ))-cut. Further, we also discuss their related theorems. In Section 4, we provided the characterizations of various categories of semigroups such as semi-simple, intra-regular, left, right ideals, and regular by the properties of BCF ideals (BCFIs). Additionally, we describe these in terms of BCFLIs, and BCFRIs. The conclusion is presented in Section 5.

    The fundamental concepts such as FS, fuzzy sub-semigroup, BF set, BF set sub-semigroup, BCF set, and its related concepts are reviewed in this section. we will take Ş as a semigroup in this analysis.

    Definition 1. [1] A mathematical shape

    М={(ҳ,λМ(ҳ))|ҳX}

    is known as FS on X. Seemingly, λМ(ҳ):X[0,1] called the supportive grade.

    Definition 2. [3] Suppose an FS М=λМ(ҳ) over Ş, then М is said to be a fuzzy sub-semigroup of Ş if ҳ,ɏŞ,

    λМ(ҳɏ)  min{λМ(ҳ),λМ(ɏ)}.

    Definition 3. [3] Suppose an FS М=λМ(ҳ) over Ş, then М is said to be fuzzy left (right) ideal of Ş if ҳ,ɏŞ,

    λМ(ҳɏ)λМ(ɏ)(λМ(ҳɏ)λМ(ҳ)).

    М is said to be a two-sided ideal if it is both fuzzy left ideal and fuzzy right ideal.

    Definition 4. [17] A mathematical shape

    М={(ҳ,λPМ(ҳ),λNМ(ҳ))|ҳX}

    is known as the BF set. Seemingly, λPМ(ҳ):X[0,1] and λNМ(ҳ):X[0,1], called the positive supportive grade and the negative supportive grade.

    Definition 5. [18] Suppose a BF set М=(λPМ,λNМ) over Ş, then М is said to be BF sub-semigroup of Ş if ҳ,ɏŞ,

    (1) λPМ(ҳɏ)  min{λPМ(ҳ),λPМ(ɏ)},

    (2) λNМ(ҳɏ)  max{λPМ(ҳ),λPМ(ɏ)}.

    Definition 6. [18] Suppose a BF set М=(λPМ,λNМ) over Ş, then М is said to be BF left (right) ideal of Ş if ҳ,ɏŞ,

    (1) λPМ(ҳɏ)λPМ(ɏ)(λPМ(ҳɏ)λPМ(ҳ)),

    (2) λNМ(ҳɏ)λNМ(ɏ)(λNМ(ҳɏ)λNМ(ҳ)).

    Definition 7. [41] A mathematical shape

    М={(ҳ,λPМ(ҳ),λNМ(ҳ))|ҳX}.

    BCF set on X is known as BCF set. Seemingly, λPМ(ҳ)=λRPМ(ҳ)+ιλIPМ(ҳ) and λNМ(ҳ)=λRNМ(ҳ)+ιλINМ(ҳ), called the positive supportive grade and negative supportive grade with λRPМ(ҳ),λIPМ(ҳ)[0,1] and λRNМ(ҳ),λINМ(ҳ)[1,0]. In this analysis, the structure of the BCF set will be considered as М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ).

    Definition 8. [41] For two BCF set М1=(λPМ1,λNМ1)=(λRPМ1+ιλIPМ1,λRNМ1+ιλINМ1) and М2=(λPМ2,λNМ2)=(λRPМ2+ιλIPМ2,λRNМ2+ιλINМ2), we have

    (1) МC1=(1λRPМ1+ι(1λRPМ1),1λRNМ1+ι(1λINМ1)),

    (2) М1М2=(  max(λRPМ1,λRPМ2)+ι  max(λIPМ1,λIPМ2),  min(λRNМ1,λRNМ2)+ι  min(λINМ1,λINМ2)),

    (3) М1М2=(  min(λRPМ1,λRPМ2)+ι  min(λIPМ1,λIPМ2),  max(λRNМ1,λRNМ2)+ι  max(λINМ1,λINМ2)).

    In this section, we are going to introduce the BCF sub-semigroup, BCFLI, BCFRI, BCFTSI, bipolar complex characteristic function, positive (ω,η)-cut, negative (ϱ,σ)-cut, positive and ((ω,η),(ϱ,σ))-cut. Further, we also discuss their related theorems. Throughout this analysis, for two BCF set М1=(λPМ1,λNМ1)=(λRPМ1+ιλIPМ1,λRNМ1+ιλINМ1) and М2=(λPМ2,λNМ2)=(λRPМ2+ιλIPМ2,λRNМ2+ιλINМ2), М1М2 if λPМ1λPМ2 and λNМ1λNМ2 that is, λRPМ1λRPМ2, λIPМ1λIPМ2 and λRNМ1λRNМ2, λINМ1λINМ2.

    Definition 8. Suppose a BCF set М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) over Ş, then М is known as BCF sub-semigroup of Ş if ҳ,ɏŞ,

    (1) λPМ(ҳɏ)  min{λPМ(ҳ),λPМ(ɏ)} λRPМ(ҳɏ)  min{λRPМ(ҳ),λRPМ(ɏ)} and λIPМ(ҳɏ)  min{λIPМ(ҳ),λIPМ(ɏ)},

    (2) λNМ(ҳɏ)  max{λPМ(ҳ),λPМ(ɏ)} λRNМ(ҳɏ)  max{λRNМ(ҳ),λRNМ(ɏ)} and λINМ(ҳɏ)  max{λINМ(ҳ),λINМ(ɏ)}.

    Example 1. Suppose a semigroup Ş={e,ҳ1,ҳ2,ҳ3,ҳ4} interpreted as Table 1:

    Table 1.  The Cayley table of Ş of Example 1.
    . e ҳ1 ҳ2 ҳ3 ҳ4
    e e e e e e
    ҳ1 e e e e e
    ҳ2 e e ҳ2 ҳ3 ҳ4
    ҳ3 e e ҳ2 ҳ3 ҳ4
    ҳ4 e e ҳ2 ҳ3 ҳ4

     | Show Table
    DownLoad: CSV

    Next, define a BCF subset М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) over Ş as

    М={(e,(0.9+ι0.87,0.23ι0.25)),(ҳ1,(0.7+ι0.75,0.33ι0.36)),(ҳ2,(0.5+ι0.62,0.6ι0.3)),(ҳ3,(0.5+ι0.62,0.6ι0.3)),(ҳ4,(0.5+ι0.62,0.6ι0.3)),}

    then, for e,ҳŞ we have

    (1) We have

    λRPМ(eҳ1)=λRPМ(e)=0.9 and   min{λRPМ(e),λRPМ(ҳ1)}=  min{0.9,0.7}=0.7 λRPМ(eҳ1)  min{λRPМ(e),λRPМ(ҳ1)},

    λIPМ(eҳ1)=λIPМ(e)=0.87 and   min{λIPМ(e),λIPМ(ҳ1)}=  min{0.87,0.75}=0.75 λIPМ(eҳ1)  min {λIPМ(e),λIPМ(ҳ1)} λPМ(eҳ1)  min{λPМ(e),λPМ(ҳ1)}.

    (2) Next,

    λRNМ(eҳ1)=λRNМ(e)=0.23 and   max{λRNМ(e),λRNМ(ҳ1)}=  max{0.23,0.33}=0.23

    λRNМ(eҳ1)  max{λRNМ(e),λRNМ(ҳ1)},

    λINМ(eҳ1)=λINМ(e)=0.25 and   max{λINМ(e),λINМ(ҳ1)}=  max{0.25,0.36}=0.25

    λINМ(eҳ1)  max{λINМ(e),λInМ(ҳ1)}λNМ(eҳ1)  max{λNМ(e),λNМ(ҳ1)}.

    The remaining elements of Ş can verify similarly. Thus М is a BCF sub-semigroup.

    Definition 9. Suppose two BCF sets М1=(λPМ1,λNМ1)=(λRPМ1+ιλIPМ1,λRNМ1+ιλINМ1) and М2=(λPМ2,λNМ2)=(λRPМ2+ιλIPМ2,λRNМ2+ιλINМ2) over Ş, then the product of М1М2 is described as

    М1М2=(λPМ1λPМ2,λNМ1λNМ2)
    =(λRPМ1λRPМ2+ιλIPМ1λIPМ2,λRNМ1λRNМ2+ιλINМ1λINМ2)

    where,

    (λRPМ1λRPМ2)(ҳ)={supҳ=ɏȥ{  min(λRPМ1(ɏ),λRPМ2(ȥ))}if  ҳ=ɏʑ  for  some  ɏ,ʑŞ0otherwise,
    (λIPМ1λIPМ2)(ҳ)={supҳ=ɏȥ{  min(λIPМ1(ɏ),λIPМ2(ȥ))}if  ҳ=ɏʑ  for  some  ɏ,ʑŞ0otherwise,
    (λRNМ1λRNМ2)(ҳ)={infҳ=ɏȥ{  max(λRNМ1(ɏ),λRNМ2(ȥ))}if  ҳ=ɏʑ  for  some  ɏ,ʑŞ0otherwise,
    (λINМ1λINМ2)(ҳ)={infҳ=ɏȥ{  max(λINМ1(ɏ),λINМ2(ȥ))}if  ҳ=ɏʑ  for  some  ɏ,ʑŞ0otherwise.

    Remark 1. Clearly, the operation " " is associative.

    Theorem 1. Suppose that М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCF set over Ş, then М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is said to be BCF sub-semigroup of Ş if and only if МММ.

    Proof. Suppose that М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCF sub-semigroup over Ş and ҳŞ, if λRPМλRPМ=0,λIPМλIPМ=0,λRNМλRNМ=0, and λINМλINМ=0, then clearly, МММ. Otherwise there are elements ɏ,ʑŞ s.t ҳ=ɏʑ, then

    (λRPМλRPМ)(ҳ)=supҳ=ɏȥ{  min(λRPМ(ɏ),λRPМ(ȥ))}
    supҳ=ɏȥ{λRPМ(ɏʑ)}=λRPМ(ҳ)

    and

    (λIPМλIPМ)(ҳ)=supҳ=ɏȥ{  min(λIPМ(ɏ),λIPМ(ȥ))}
    supҳ=ɏȥ{λIPМ(ɏʑ)}=λIPМ(ҳ).

    Next,

    (λRNМλRNМ)(ҳ)=infҳ=ɏȥ{  max(λRNМ(ɏ),λRNМ(ȥ))}
    infҳ=ɏȥ{λRNМ(ɏʑ)}=λRNМ(ҳ)

    and

    (λINМλINМ)(ҳ)=infҳ=ɏȥ{  max(λINМ(ɏ),λINМ(ȥ))}
    infҳ=ɏȥ{λINМ(ɏʑ)}=λINМ(ҳ).

    Thus, (λRPМλRPМ)(ҳ)λRPМ(ҳ), (λIPМλIPМ)(ҳ)λIPМ(ҳ)(λPМλPМ)(ҳ)λPМ(ҳ) and (λRNМλRNМ)(ҳ)λRNМ(ҳ), (λINМλINМ)(ҳ)λINМ(ҳ)(λNМλNМ)(ҳ)λNМ(ҳ). Consequently, МММ.

    Conversely, let М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCF set over Ş such that МММ and ҳ,ɏ,ʑŞ such that ҳ=ɏʑ. Then

    λPМ(ɏʑ)=λPМ(ҳ)=λRPМ(ҳ)+ιλIPМ(ҳ).

    Now take

    λRPМ(ҳ)(λRPМλRPМ)(ҳ)=supҳ=ɏȥ{  min(λRPМ(ɏ),λRPМ(ȥ))}
      min(λRPМ(ɏ),λRPМ(ȥ))

    and

    λIPМ(ҳ)(λIPМλIPМ)(ҳ)=supҳ=ɏȥ{  min(λIPМ(ɏ),λPМ(ȥ))}
      min(λIPМ(ɏ),λIPМ(ȥ))
    λPМ(ɏʑ)  min(λPМ(ɏ),λPМ(ȥ)),

    similarly,

    λNМ(ɏʑ)=λNМ(ҳ)=λRNМ(ҳ)+ιλINМ(ҳ).

    Now take

    λRNМ(ҳ)(λRNМλRMМ)(ҳ)=infҳ=ɏȥ{  max(λRNМ(ɏ),λRNМ(ȥ))}
      max(λRNМ(ɏ),λRNМ(ȥ)),

    and

    λINМ(ҳ)(λINМλRMМ)(ҳ)=infҳ=ɏȥ{  max(λINМ(ɏ),λINМ(ȥ))}
      max(λINМ(ɏ),λINМ(ȥ))
    λNМ(ɏʑ)  max(λNМ(ɏ),λNМ(ȥ)).

    This implies that М is a BCF sub-semigroup over Ş.

    Following we are going to describe the BCF left (right) ideal.

    Definition 10. Suppose a BCF set М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) over Ş, then

    (1) М is known as BCF left ideal (BCFLI) of Ş if ҳ,ɏŞ

    1) λPМ(ҳɏ)λPМ(ɏ) λRPМ(ҳɏ)λRPМ(ɏ) and λIPМ(ҳɏ)λIPМ(ɏ);

    2) λNМ(ҳɏ)λNМ(ɏ) λRNМ(ҳɏ)λRNМ(ɏ) and λINМ(ҳɏ)λINМ(ɏ).

    (2) М is known as the BCF right ideal (BCFRI) of Ş if ҳ,ɏŞ

    1) λPМ(ҳɏ)λPМ(ҳ) λRPМ(ҳɏ)λRPМ(ҳ) and λIPМ(ҳɏ)λIPМ(ҳ);

    2) λNМ(ҳɏ)λNМ(ҳ) λRNМ(ҳɏ)λRNМ(ҳ) and λINМ(ҳɏ)λINМ(ҳ).

    (3) М is known as BCF two-sided ideal (BCFTSI) (BCF ideal) if it is both BCFLI and BCFRI.

    Remark 2. It is evident that each BCFLI, BCFRI, and BCFTSI over Ş is a BCF sub-semigroup. But the converse is not valid.

    Example 2.

    (1) The BCF sub-semigroup М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) over Ş in Example 1 is not a BCFLI, because

    λRNМ(eҳ1)=λRNМ(e)=0.23 and λRNМ(ҳ1)=0.33,

    thus,

    λRNМ(eҳ1)λRNМ(ҳ1)λNМ(eҳ1)λNМ(ҳ1),

    and not BCFRI because

    λRNМ(ҳ1e)=λRNМ(e)=0.23 and λRNМ(ҳ1)=0.33,

    thus,

    λRNМ(ҳ1e)λRNМ(ҳ1)λNМ(ҳ1e)λNМ(ҳ1).

    Hence, М is also not a BCFTSI.

    (2) Consider the semigroup Ş of Example 1 and a BCF subset М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) over Ş as

    М={(e,(0.9+ι0.87,0.6ι0.3)),(ҳ1,(0.7+ι0.75,0.33ι0.36)),(ҳ2,(0.5+ι0.62,0.23ι0.25)),(ҳ3,(0.5+ι0.62,0.23ι0.25)),(ҳ4,(0.5+ι0.62,0.23ι0.25))}

    then, М is BCFLI, BCFRI, and BCFTSI over Ş.

    The below-given theorem explains that the BCF set М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) of Ş is a BCFLI (BCFRI) over Ş if and only if ŞММ (МŞМ).

    Theorem 2. Suppose that М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCF set over Ş, then

    (1) М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCFLI over Ş if and only if ŞММ;

    (2) М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCFRI over Ş if and only if МŞМ;

    (3) М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCFTSI over Ş if and only if ŞММ and МŞМ,

    holds.

    Proof. 1. Suppose that М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCFLI over Ş and ҳŞ, if λRPŞλRPМ=0,λIPŞλIPМ=0,λRNŞλRNМ=0, and λINŞλINМ=0, then clearly, ŞММ. Otherwise there are elements ɏ,ʑŞ s.t ҳ=ɏʑ, then

    (λRPŞλRPМ)(ҳ)=supҳ=ɏȥ{  min(λRPŞ(ɏ),λRPМ(ȥ))}=supҳ=ɏȥ{  min(1,λRPМ(ȥ))}
    =supҳ=ɏȥ{λRPМ(ȥ)}supҳ=ɏȥ{λRPМ(ɏȥ)}=λRPМ(ҳ),

    and

    (λIPŞλIPМ)(ҳ)=supҳ=ɏȥ{  min(λIPŞ(ɏ),λIPМ(ȥ))}=supҳ=ɏȥ{  min(1,λIPМ(ȥ))}
    =supҳ=ɏȥ{λIPМ(ȥ)}supҳ=ɏȥ{λIPМ(ɏȥ)}=λIPМ(ҳ).

    Next,

    (λRNŞλRNМ)(ҳ)=infҳ=ɏȥ{  max(λRNŞ(ɏ),λRNМ(ȥ))}=infҳ=ɏȥ{  max(1,λRNМ(ȥ))}
    =infҳ=ɏȥ{λRNМ(ȥ)}infҳ=ɏȥ{λRNМ(ɏȥ)}=λRNМ(ҳ),

    and

    (λINŞλINМ)(ҳ)=infҳ=ɏȥ{  max(λINŞ(ɏ),λINМ(ȥ))}=infҳ=ɏȥ{  max(1,λINМ(ȥ))}
    =infҳ=ɏȥ{λINМ(ȥ)}infҳ=ɏȥ{λINМ(ɏȥ)}=λINМ(ҳ).

    Thus,

    (λRPŞλRPМ)(ҳ)λRPМ(ҳ), (λIPŞλIPМ)(ҳ) λIPМ(ҳ)

    (λPŞλPМ)(ҳ)λPМ(ҳ)  and (λRNŞλRNМ)(ҳ) λRNМ(ҳ),(λINŞλINМ) (ҳ)λINМ(ҳ) (λNŞλNМ)(ҳ)λNМ(ҳ).  Consequently,ŞММ.

    Conversely, let М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCF set over Ş such that ŞММ and ҳ,ɏ,ʑŞ such that ҳ=ɏʑ. Then

    λPМ(ɏʑ)=λPМ(ҳ)=λRPМ(ҳ)+ιλIPМ(ҳ).

    Now take

    λRPМ(ҳ)(λRPŞλRPМ)(ҳ)=supҳ=ɏȥ{  min(λRPŞ(ɏ),λRPМ(ȥ))}
    =supҳ=ɏȥ{  min(1,λRPМ(ȥ))}  min(1,λRPМ(ȥ))=λRPМ(ȥ)
    λRPМ(ɏʑ)λRPМ(ȥ)

    and

    λIPМ(ҳ)(λIPŞλIPМ)(ҳ)=supҳ=ɏȥ{  min(λIPŞ(ɏ),λIPМ(ȥ))}
    =supҳ=ɏȥ{  min(1,λIPМ(ȥ))}  min(1,λIPМ(ȥ))=λIPМ(ȥ)
    λIPМ(ɏʑ)λiPМ(ȥ),

    similarly,

    λNМ(ɏʑ)=λNМ(ҳ)=λRNМ(ҳ)+ιλINМ(ҳ).

    Now take

    λRNМ(ҳ)(λRNŞλRNМ)(ҳ)=infҳ=ɏȥ{  max(λRNŞ(ɏ),λRNМ(ȥ))}
    =infҳ=ɏȥ{  max(1,λRNМ(ȥ))}  max(1,λRNМ(ȥ))=λRNМ(ȥ)
    λRNМ(ɏʑ)λRNМ(ȥ)

    and

    λINМ(ҳ)(λINŞλINМ)(ҳ)=infҳ=ɏȥ{  max(λINŞ(ɏ),λINМ(ȥ))}
    =infҳ=ɏȥ{  max(1,λINМ(ȥ))}  max(1,λINМ(ȥ))=λINМ(ȥ)
    λINМ(ɏʑ)λINМ(ȥ).

    This implies that М is a BCFLI over Ş.

    The proof of 2 and 3 is likewise the proof of 1, so we are omitting the proof here.

    Definition 11. Suppose a BCF set М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) over Ş, then

    (1) For each ω,η[0,1] the set P(λPМ,(ω,η))={ҳŞ:λRPМω and λIPМη} is known as positive (ω,η)-cut of М.

    (2) For each ϱ,σ[1,0] the set N(λNМ,(ϱ,σ))={ҳŞ:λRNМϱ and λINМσ} is known as negative (ϱ,σ)-cut of М.

    (3) The set PN(М,((ω,η),(ϱ,σ)))=P(λPМ,(ω,η))N(λNМ,(ϱ,σ)) is known as the ((ω,η),(ϱ,σ))-cut of М.

    Theorem 3. Suppose a BCF set М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) over Ş, then

    (1) For each ω,η[0,1], ϱ,σ[1,0], the non-empty set PN(М,((ω,η),(ϱ,σ))) is a sub-semigroup of Ş if and only if М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCF sub-semigroup over Ş;

    (2) For each ω,η[0,1], ϱ,σ[1,0], the non-empty set PN(М,((ω,η),(ϱ,σ))) is a left ideal of Ş if and only if М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCFLI over Ş;

    (3) For each ω,η[0,1], ϱ,σ[1,0], the non-empty set PN(М,((ω,η),(ϱ,σ))) is a right ideal of Ş if and only if М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCFRI over Ş;

    (4) For each ω,η[0,1], ϱ,σ[1,0], the non-empty set PN(М,((ω,η),(ϱ,σ))) is a two-sided ideal of Ş if and only if М=(λPМ,λNМ)=(λRPМ+ιλIPМ,λRNМ+ιλINМ) is a BCFTSI over Ş,

    holds.

    Proof. 1. Suppose that PN(М,((ω,η),(ϱ,σ))) is a sub-semigroup over Ş, ҳ,ɏŞ, and ω=  min(λRPМ(ҳ),λRPМ(ɏ)) and η=  min(λIPМ(ҳ),λIPМ(ɏ)). Evidently, λRPМ(ҳ)  min(λRPМ(ҳ),λRPМ(ɏ))=ω, λRPМ(ɏ)  min(λRPМ(ҳ),λRPМ(ɏ))=ω, λIPМ(ҳ)  min(λIPМ(ҳ),λIPМ(ɏ))=η and λIPМ(ɏ)  min(λIPМ(ҳ),λIPМ(ɏ))=η. Similarly, suppose ϱ=  max(λRNМ(ҳ),λRNМ(ɏ)) and σ=  max(λINМ(ҳ),λINМ(ɏ)). Evidently, λRNМ(ҳ)  max(λRNМ(ҳ),λRNМ(ɏ))=ϱ, λRNМ(ɏ)  max(λRNМ(ҳ),λRNМ(ɏ))=ϱ, λINМ(ҳ)  max(λINМ(ҳ),λINМ(ɏ))=σ and λINМ(ɏ)  max(λINМ(ҳ),λINМ(ɏ))=σ which implies that ҳ,ɏPN(М,((ω,η),(ϱ,σ))). As PN(М,((ω,η),(ϱ,σ))) is a sub-semigroup over Ş, so ҳɏPN(М,((ω,η),(ϱ,σ))). Thus, λRPМ(ҳɏ)ω=  min(λRPМ(ҳ),λRPМ(ɏ)), λIPМ(ҳɏ)η=  min(λIPМ(ҳ),λIPМ(ɏ)), λRNМ(ҳɏ)ϱ=  max(λRNМ(ҳ),λRNМ(ɏ)), λINМ(ҳɏ)σ=  max(λINМ(ҳ),λINМ(ɏ)). Consequently, М=(λPМ,λNМ) is a BCF sub-semigroup over Ş.

    Conversely, let М=(λPМ,λNМ) is a BCF sub-semigroup over Ş and ҳ,ɏŞ such that ҳ,ɏPN(М,((ω,η),(ϱ,σ)))ω,η[0,1], ϱ,σ[1,0]. Since λRPМ(ҳ)ω, λRPМ(ɏ)ω λIPМ(ҳ)η, λIPМ(ɏ)η, λRNМ(ҳ)ϱ, λRNМ(ɏ)ϱ, λINМ(ҳ)σ, and λINМ(ɏ)σ. Hence, λRPМ(ҳɏ)  min(λRPМ(ҳ),λRPМ(ɏ))ω, λIPМ(ҳɏ)  min(λIPМ(ҳ),λIPМ(ɏ))η, λRNМ(ҳɏ)  max(λRNМ(ҳ),λRNМ(ɏ))ϱ, and λINМ(ҳɏ)  max(λINМ(ҳ),λINМ(ɏ))σ. Thus, ҳɏPN(М,((ω,η),(ϱ,σ))) and PN(М,((ω,η),(ϱ,σ))) is a sub-semigroup of Ş.

    The rest are the same as 1.

    Definition 12. The bipolar complex characteristic function of a subset Q of Ş, is indicated by МQ=(λPМQ,λNМQ) and demonstrated as

    λPМQ(ҳ)={1+ι1if  ҳQ0+ι0,otherwise,
    λNМQ(ҳ)={1ι1if  ҳQ0+ι0,otherwise.

    Remark 3. We observe that Ş can be taken as a BCF set of itself and write λPМQ(ҳ)=λPŞ(ҳ) and λNМQ(ҳ)=λNŞ(ҳ).

    Theorem 4. Suppose that МQ=(λPМQ,λNМQ) is a bipolar complex characteristic function over Ş, then

    (1) МQ=(λPМQ,λNМQ) is a BCF sub-semigroup over Ş if and only if Q is a sub-semigroup of Ş;

    (2) МQ=(λPМQ,λNМQ) is a BCFLI over Ş if and only if Q is a left idea of Ş;

    (3) МQ=(λPМQ,λNМQ) is a BCFRI over Ş if and only if Q is a right ideal of Ş;

    (4) МQ=(λPМQ,λNМQ) is a BCFTSI over Ş if and only if Q is a two-sided ideal of Ş,

    holds.

    Proof. Suppose that Q is a sub-semigroup of Ş and let ҳ,ɏQ, then

    λPМQ(ҳ)=1+ι1=λPМQ(ɏ) and λNМQ(ҳ)=1ι1=λNМQ(ɏ)

    as ҳɏQ, thus,

    λPМQ(ҳɏ)=1+ι1=  min(1+ι1,1+ι1)=  min(λPМQ(ҳ),λPМQ(ɏ))

    and

    λNМQ(ҳɏ)=1ι1=  max(1ι1,1ι1)=  max(λNМQ(ҳ),λNМQ(ɏ)).

    Next if or then

    and

    Thus, is a BCF sub-semigroup over .

    Conversely, let is a BCF sub-semigroup over and such that . Thus we have

    and

    . Let such that . This shows that , and , , and so . Hence . By Theorem 3 we obtained that is a sub-semigroup of .

    Lemma 1. For two BCF set and over , then

    (1) ;

    (2) ,

    holds

    Proof. Omitted.

    Theorem 5. Suppose that and are two BCF sets over , then

    (1) Assume that and are two BCF sub-semigroup over , then is a BCF sub-semigroup over ;

    (2) Assume that and are two BCFLIs over , then is a BCFLI over ;

    (3) Assume that and are two BCFRIs over , then is a BCFRI over ;

    (4) Assume that and are two BCFTSIs over , then is a BCFTSI over ,

    holds.

    Proof. 1. For any , we have

    Now take

    and

    Similarly,

    Now take

    and

    Thus, is a BCF sub-semigroup over

    The proofs of parts 2–4 are likewise part 1.

    Theorem 6. Suppose a BCFRI over , then is a BCFTSI over .

    Proof. As is a BCFLI, so

    This shows that is a BCFLI over . Now

    This shows that is a BCFRI over . Thus is a BCFTSI over .

    Corollary 1. Suppose a BCFLI over , then is a BCFTSI over .

    Here, we provide the characterizations of various categories of semigroups such as semi-simple, intra-regular, left, right ideals, and regular by the properties of BCF ideals (BCFIs). We also describe these in terms of BCFLIs, and BCFRIs. For better understanding, remember that an element is known as regular if an element s.t . If each element of is regular then is known as regular semigroup. An element is known as idempotent if .

    Theorem 7. Each BCFI over a regular semigroup is idempotent.

    Proof. Assume that is a BCFI over regular semigroup , then by employing Theorem (2 part (3)), we get

    Now let . Then as is a regular semigroup, an element s.t , hence

    and

    This means that . Next,

    and

    This means that . Hence, , thus is idempotent.

    Theorem 8. For a semigroup ,

    (1) is a regular semigroup;

    (2) For each BCFLI and BCFRI over , ,

    are equivalent.

    Proof. . Suppose that and are BCFLI and BCFRI over respectively, then by employing Theorem (2 part (3)), we have that

    so,

    Next, assume that and as is regular semigroup, s.t . Therefore we have

    and

    This means that . Next,

    and

    Thus, and consequently, .

    . Suppose that is any left ideal of and is any right ideal of , then by employing Theorem 4, we get that be a BCFRI and be a BCFLI over . Now by employing Lemma 1, we get

    Thus, and hence . Consequently, .

    Before going to the next result, we recall that is known as left (right) zero if = ɏ .

    Theorem 9. Suppose that is a regular semigroup, then

    (1) The family of all idempotents of makes a left (right) zero sub-semigroup of ,

    (2) For each BCFLI (BCFRI) over , and , and and .

    are equivalent.

    Proof. . Suppose that is a BCFLI on and such that , then as 1 holds so we have that and and

    and,

    Next, we have

    and,

    This implies that . Likewise one can show that .

    . As is a regular semigroup and is non-empty. Hence by utilizing Theorem (4 part (2)) we get that bipolar complex characteristic function of the left ideal is a BCFLI on . Consequently, and so . Therefore, for some , . Consequently, is a left zero sub-semigroup on . Likewise one can prove for right zero.

    Before going to the next result, we recall that, if for every such that then is known as right (left) regular.

    Theorem 10. Suppose a semigroup , then

    (1) is left (right) regular;

    (2) For each BCFRI (BCFLI) over , and , and and ,

    are equivalent.

    Proof. . Assume that is a BCFLI over and , then as we know that is left regular, so such that . Thus,

    and,

    Next, we have

    and,

    This implies that . Likewise one can show that .

    . Suppose , then by Theorem (4 part (2)), we have that bipolar complex characteristic function of left ideal of is a BCFLI over . As , so and so, is left-regular. One can prove likewise for right regular.

    Before discussing the next definition we recall that a subset of is known as semiprime if .

    Definition 13. A BCF set over is known as BCF semiprime if and , and and .

    Theorem 11. Suppose is a subset of , then

    (1) is semiprime;

    (2) The bipolar complex characteristic function of is a BCF semiprime set,

    are equivalent.

    Proof. . Let . If , . Then, and . If , then and . Consequently, is a BCFSP set.

    . Suppose such that . As is a BCFSP set, so and , i.e. . Therefore, is a semiprime.

    Theorem 12. For a BCF sub-semigroup over the following

    (1) is BCFSP set on .

    (2) For each , and , and and .

    Proof. . Suppose that is a BCF semiprime set on and , then we get that

    and

    thus,

    and

    Consequently, 2 holds. is obvious.

    Before going to describe the next theorem, we recall the definition of intra-regular. If for every such that .

    Theorem 13. For , the following

    (1) is intra-regular;

    (2) Each BCFTSI over is BCF semiprime,

    are equivalent.

    Proof. . Assume that is a BCFTSI over and . As is intra-regular, so such that . Thus, we get

    and

    And thus

    It follows that and .

    . As 1 holds, so by Theorem (4 part (4)), we have that bipolar complex characteristic function of principal ideal of is a BCFTSI over . As , so . is intra-regular. This completes the proof.

    Theorem 14. For , the following

    (1) is intra-regular;

    (2) for each BCFLI and for each BCFRI over ,

    are equivalent.

    Proof. . Suppose that is a BCFLI and is a BCFRI over and , then as is intra-regular so such that . Thus,

    and

    Next,

    and

    Thus, we have .

    . Suppose that is any left ideal of and is any right ideal of , and such that , then and , by Theorem 4 is a BCFLI and is a BCFRI over . Now by Lemma 1, we obtain

    Thus, we have and we get that . Consequently, is intra-regular.

    Theorem 15. For k, the following

    (1) is regular and intra-regular;

    (2) for each BCFRI and BCFRI over ,

    are equivalent.

    Proof. Suppose that is a BCFRI and is a BCFLI over , then by employing Theorems 8 and 14 we have that

    Thus,

    . Suppose that is a BCFRI and is a BCFLI over , then

    Therefore, by employing Theorem 14 we get that is intra-regular. Next,

    which implies that and it always holds that . Consequently, is a regular semigroup.

    Now we recall the conception of semi-simple before discussing the next theorem. If every two-sided ideal of is idempotent then is known as semi-simple.

    Theorem 16. For k, the following

    (1) is semi-simple,

    (2) Each BCFTSI on is idempotent,

    (3) for each BCFTSIs and over ,

    are equivalent.

    Proof. . Suppose that and are two BCFTSIs over , by assumption

    which implies that . Next, let and as is semi-simple so such that , thus

    and

    Thus, . Next,

    and

    Thus, and so .

    is obvious.

    . Suppose that , then by employing Theorem (4 part (4)), we have that bipolar complex characteristic function of principal ideal of is a BCFTSI over . By Lemma 1 we obtain

    Since, , we have

    Therefore, is semi-simple.

    The conception of a semigroup is an influential approach and has been utilized by numerous scholars and employed in various areas. Due to the great significance of semigroup, numerous authors modified this concept to introduce novel notions such as fuzzy semigroup, bipolar fuzzy semigroup, etc. The concept of fuzzy semigroup has various applications such as fuzzy languages, theory fuzzy coding, etc. In recent years, numerous authors generalized the conception of fuzzy algebraic structures and employed genuine-life dilemmas in various areas of science. To keep in mind all this, and the research gap, in this analysis we investigated the algebraic structure of semigroups by employing the BCF set. Firstly, we established BCF sub-semigroup, BCFLI, BCFRI, and BCFTSI over and then initiated their related theorem with proof. Further, we diagnosed bipolar complex characteristic function, positive -cut, negative -cut, positive and -cut and their associated results with proof. Secondly, we established various classes of semigroups such as intra-regular, left regular, right regular, and semi-simple, by the features of the BCF ideals and proved their related results. Also, these classes are interpreted in terms of BCFLIs, BCFRIs, and BCFTSIs. In this regard, we showed that, for a semigroup , is a regular semigroup if and only if for each BCFLI and BCFRI over , . Furthermore, we construed regular, intra-regular semigroup and showed that a semigroup is regular and intra-regular iff for each BCFLI and for each BCFRI over . The introduced combination of BCFS and semigroup is the generalization of the fuzzy set (FS), bipolar fuzzy set (BFS), and complex FS (CFS) in the environment of semigroups and from the introduced notions we can easily achieve these conceptions.

    In the future, we want to expand this research to BCF bi-ideals, BCF quasi-ideals, and BCF interior ideals. Further, we would like to review numerous notions like BCF soft sets [46], interval-valued neutrosophic SSs [48], and bipolar complex intuitionistic FS [49] and would try to fuse them with the notion of the semigroup.

    The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work under grand code: 22UQU4310396DSR36.

    About the publication of this manuscript the authors declare that they have no conflict of interest.



    [1] H. Ahn, Emergent behaviors of thermodynamic Cucker–Smale ensemble with a unit-speed constraint, Discrete Continuous Dyn Syst Ser B, 28 (2023), 4800–4825. https://doi.org/10.3934/dcdsb.2023042 doi: 10.3934/dcdsb.2023042
    [2] H. Ahn, Uniform stability of Cucker–Smale and thermodynamic Cucker–Smale ensembles with singular kernels, Netw. Heterog. Media, 17 (2022), 753–782. https://doi.org/10.3934/nhm.2022025 doi: 10.3934/nhm.2022025
    [3] H. Ahn, S. Y. Ha, W. Shim, Emergent behaviors of the discrete thermodynamic Cucker–Smale model on Riemannian manifolds, J. Math. Phys., 62 (2021), 122701. https://doi.org/10.1063/5.0058616 doi: 10.1063/5.0058616
    [4] H. Ahn, S. Y. Ha, W. Shim, Emergent dynamics of a thermodynamic Cucker–Smale ensemble on complete Riemannian manifolds, Kinet. Relat. Models., 14 (2021), 323–351. https://doi.org/10.3934/krm.2021007 doi: 10.3934/krm.2021007
    [5] J. A. Carrillo, Y. P. Choi, P. B. Muncha, J. Peszek, Sharp conditions to avoid collisions in singular Cucker–Smale interactions, Nonlinear Anal Real World Appl, 37 (2017), 317–328. https://doi.org/10.1016/j.nonrwa.2017.02.017 doi: 10.1016/j.nonrwa.2017.02.017
    [6] J. A. Carrillo, M. Fornasier, J. Rosado, G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker–Smale model, SIAM. J. Math. Anal., 42 (2010), 218–236. https://doi.org/https://doi.org/10.1137/090757290 doi: 10.1137/090757290
    [7] P. Cattiaux, F. Delebecque, L. Pedeches, Stochastic Cucker–Smale models: old and new, Ann. Appl. Probab., 28 (2018), 3239–3286. https://doi.org/10.1214/18-AAP1400 doi: 10.1214/18-AAP1400
    [8] H. Cho, J. G. Dong, S. Y. Ha, Emergent behaviors of a thermodynamic Cucker–Smale flock with a time-delay on a general digraph, Math. Methods Appl. Sci., 45 (2021), 164–196. https://doi.org/https://doi.org/10.1002/mma.7771 doi: 10.1002/mma.7771
    [9] S. H. Choi, S. Y. Ha, Emergence of flocking for a multi-agent system moving with constant speed, Commun. Math. Sci., 14 (2016), 953–972. https://doi.org/10.4310/CMS.2016.v14.n4.a4 doi: 10.4310/CMS.2016.v14.n4.a4
    [10] Y. P. Choi, S. Y. Ha, J. Kim, Propagation of regularity and finite-time collisions for the thermomechanical Cucker–Smale model with a singular communication, Netw. Heterog. Media, 13 (2018), 379–407. https://doi.org/10.3934/nhm.2018017 doi: 10.3934/nhm.2018017
    [11] Y. P. Choi, D. Kalise, J. Peszek, A. A Peters, A collisionless singular Cucker–Smale model with decentralized formation control, SIAM J. Appl. Dyn. Syst., 18 (2019), 1954–1981. https://doi.org/10.1137/19M1241799 doi: 10.1137/19M1241799
    [12] J. Cho, S. Y. Ha, F. Huang, C. Jin, D. Ko, Emergence of bi-cluster flocking for the Cucker–Smale model, Math. Models Methods Appl. Sci., 26 (2016), 1191–1218. https://doi.org/10.1142/S0218202516500287 doi: 10.1142/S0218202516500287
    [13] F. Cucker, J. G. Dong, A conditional, collision-avoiding, model for swarming, Discrete Contin. Dyn. Syst., 34 (2014), 1009–1020. https://doi.org/10.3934/dcds.2014.34.1009
    [14] F. Cucker, S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852–862. https://doi.org/10.1109/TAC.2007.895842
    [15] J. G. Dong, S. Y. Ha, D. Kim, From discrete Cucker–Smale model to continuous Cucker–Smale model in a temperature field, J. Math. Phys., 60 (2019), 072705. https://doi.org/10.1063/1.5084770 doi: 10.1063/1.5084770
    [16] J. G. Dong, S. Y. Ha, D. Kim, Emergent behaviors of continuous and discrete thermomechanical Cucker–Smale models on general digraphs, Math. Models Methods Appl. Sci., 29 (2019), 589–632. https://doi.org/10.1142/S0218202519400013 doi: 10.1142/S0218202519400013
    [17] A. Figalli, M. J. Kang, A rigorous derivation from the kinetic Cucker–Smale model to the pressureless Euler system with nonlocal alignment, Anal. PDE., 12 (2019), 843–866. https://doi.org/10.2140/apde.2019.12.843 doi: 10.2140/apde.2019.12.843
    [18] S. Y. Ha, J. Jeong, S. E. Noh, Q. Xiao, X. Zhang, Emergent dynamics of Cucker–Smale flocking particles in a random environment, J. Differ. Equ., 262 (2017), 2554–2591. https://doi.org/10.1016/j.jde.2016.11.017 doi: 10.1016/j.jde.2016.11.017
    [19] S. Y. Ha, M. J. Kang, J. Kim, W. Shim, Hydrodynamic limit of the kinetic thermomechanical Cucker–Smale model in a strong local alignment regime, Commun. Pure Appl. Anal., 19 (2020), 1233–1256. https://doi.org/10.3934/cpaa.2020057 doi: 10.3934/cpaa.2020057
    [20] S. Y. Ha, D. Kim, J. Lee, S. E. Noh, Emergent dynamics of an orientation flocking model for multi-agent system, Discrete Contin. Dyn. Syst., 40 (2020), 2037–2060. https://doi.org/10.3934/dcds.2020105 doi: 10.3934/dcds.2020105
    [21] S. Y. Ha, J. Kim, C. Min, T. Ruggeri, X. Zhang, Uniform stability and mean-field limit of a thermodynamic Cucker–Smale model, Quart. Appl. Math., 77 (2019), 131–176. https://doi.org/10.1090/qam/1517 doi: 10.1090/qam/1517
    [22] S. Y. Ha, J. Kim, T. Ruggeri, Emergent behaviors of thermodynamic Cucker–Smale particles, SIAM J. Math. Anal., 50 (2019), 3092–3121. https://doi.org/10.1137/17M111064 doi: 10.1137/17M111064
    [23] S. Y. Ha, J. G. Liu, A simple proof of Cucker–Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297–325. https://doi.org/10.4310/CMS.2009.v7.n2.a2 doi: 10.4310/CMS.2009.v7.n2.a2
    [24] S. Y. Ha, T. Ruggeri, Emergent dynamics of a thermodynamically consistent particle model, Arch. Ration. Mech. Anal., 223 (2017), 1397–1425. https://doi.org/10.1007/s00205-016-1062-3 doi: 10.1007/s00205-016-1062-3
    [25] S. Y. Ha, E. Tadmor, From particle to kinetic and hydrodynamic description of flocking, Kinet. Relat. Models., 1 (2008), 415–435. https://doi.org/10.3934/krm.2008.1.415 doi: 10.3934/krm.2008.1.415
    [26] H. Gayathri, P. M. Aparna, A. Verma, A review of studies on understanding crowd dynamics in the context of crowd safety in mass religious gatherings, Int. J. Disaster Risk Sci., 25 (2017), 82–91. https://doi.org/10.1016/j.ijdrr.2017.07.017 doi: 10.1016/j.ijdrr.2017.07.017
    [27] T. K. Karper, A. Mellet, K. Trivisa, Hydrodynamic limit of the kinetic Cucker–Smale flocking model, Math. Models Methods Appl. Sci., 25 (2015), 131–163. https://doi.org/10.1142/S0218202515500050 doi: 10.1142/S0218202515500050
    [28] T. K. Karper, A. Mellet, K. Trivisa, Existence of weak solutions to kinetic flocking models, SIAM. J. Math. Anal., 45 (2013), 215–243. https://doi.org/10.1137/12086682 doi: 10.1137/12086682
    [29] Z. Li, X. Xue, Cucker–Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156–3174. https://doi.org/10.1137/100791774 doi: 10.1137/100791774
    [30] P. B. Mucha, J. Peszek, The Cucker–Smale equation: singular communication weight, measure-valued solutions and weak-atomic uniqueness, Arch. Rational Mech. Anal., 227 (2018), 273–308. https://doi.org/10.1007/s00205-017-1160-x doi: 10.1007/s00205-017-1160-x
    [31] J. Park, H. J. Kim, S. Y. Ha, Cucker–Smale flocking with inter-particle bonding forces, IEEE Trans. Automat. Control, 55 (2010), 2617–2623. https://doi.org/10.1109/TAC.2010.2061070 doi: 10.1109/TAC.2010.2061070
    [32] L. Perea, G. Gomez, P. Elosegui, Extension of the Cucker–Smale control law to space flight formations, J. Guid. Control, 32 (2009), 527–537. https://doi.org/10.2514/1.36269 doi: 10.2514/1.36269
    [33] J. Peszek, Discrete Cucker–Smale flocking model with a weakly singular kernel, SIAM J. Math. Anal., 47 (2015), 3671–3686. https://doi.org/10.1137/15M1009299 doi: 10.1137/15M1009299
    [34] B. Piccoli, F. Rossi, E. Trélat, Control to flocking of the kinetic Cucker–Smale model, SIAM J. Math. Anal., 47 (2014), 4685–4719. https://doi.org/10.1137/140996501 doi: 10.1137/140996501
    [35] L. Ru, X. Li, Y. Liu, X. Wang, Finite-time flocking of Cucker–Smale model with unknown intrinsic dynamics, Discrete Continuous Dyn Syst Ser B, 28 (2023), 3680–3696. https://doi.org/10.3934/dcdsb.2022237 doi: 10.3934/dcdsb.2022237
    [36] C. M. Topaz, A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65 (2004), 152–174. https://doi.org/10.1137/S0036139903437424 doi: 10.1137/S0036139903437424
    [37] Y. Z. Sun, F. Liu, W. Li, H. J. Shi, Finite-time flocking of Cucker–Smale systems, 34th Chinese Control Conference (CCC), (2015), 7016–7020. https://doi.org/10.1109/ChiCC.2015.7260749
  • This article has been cited by:

    1. Yating Zhu, Zixun Zeng, Zhong Chen, Deqiang Zhou, Jian Zou, Performance analysis of the convex non-convex total variation denoising model, 2024, 9, 2473-6988, 29031, 10.3934/math.20241409
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1293) PDF downloads(129) Cited by(0)

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog