In today's economic world, due to the growth of the capital market, the importance for people to invest has increased. The most important concern for investors is choosing the best portfolio for investment. For complex decisions in which the decision maker is ambiguous, such as portfolio selection, using the multi-criteria decision making (MCDM) technique to prioritize options and decide on the optimal choice is the best solution. In this research, a generalization of this method utilizing the intuitionistic fuzzy analytic hierarchy process (IFAHP) was discussed. Considering the importance of this topic in today's economy, the purpose of this research was to describe and apply the new integrated technique of IFAHP for ranking the portfolio of companies admitted to the Tehran Stock Exchange. For this purpose, using the statistics published by the Tehran Stock Exchange, six companies including Jabra Ben Hayyan, Kaghazsazi Kaveh, Laabiran, Daro Luqman, Pashme Shishe Iran, and Bourse Kala Iran were examined. These companies were the best options for investment according to the charts and indices of the stock exchange at the time of our research. Finally, using the technique mentioned above, we described the evaluation and ranking of portfolios for confident and efficient decision -making.
Citation: Soheila Senfi, Reza Sheikh, Shib Sankar Sana. A portfolio selection using the intuitionistic fuzzy analytic hierarchy process: A case study of the Tehran Stock Exchange[J]. Green Finance, 2024, 6(2): 219-248. doi: 10.3934/GF.2024009
[1] | Hiroshi Nishiura . Joint quantification of transmission dynamics and diagnostic accuracy applied to influenza. Mathematical Biosciences and Engineering, 2011, 8(1): 49-64. doi: 10.3934/mbe.2011.8.49 |
[2] | Qingling Zeng, Kamran Khan, Jianhong Wu, Huaiping Zhu . The utility of preemptive mass influenza vaccination in controlling a SARS outbreak during flu season. Mathematical Biosciences and Engineering, 2007, 4(4): 739-754. doi: 10.3934/mbe.2007.4.739 |
[3] | Kasia A. Pawelek, Anne Oeldorf-Hirsch, Libin Rong . Modeling the impact of twitter on influenza epidemics. Mathematical Biosciences and Engineering, 2014, 11(6): 1337-1356. doi: 10.3934/mbe.2014.11.1337 |
[4] | Xiaomeng Wang, Xue Wang, Xinzhu Guan, Yun Xu, Kangwei Xu, Qiang Gao, Rong Cai, Yongli Cai . The impact of ambient air pollution on an influenza model with partial immunity and vaccination. Mathematical Biosciences and Engineering, 2023, 20(6): 10284-10303. doi: 10.3934/mbe.2023451 |
[5] | Boqiang Chen, Zhizhou Zhu, Qiong Li, Daihai He . Resurgence of different influenza types in China and the US in 2021. Mathematical Biosciences and Engineering, 2023, 20(4): 6327-6333. doi: 10.3934/mbe.2023273 |
[6] | Eunha Shim . Prioritization of delayed vaccination for pandemic influenza. Mathematical Biosciences and Engineering, 2011, 8(1): 95-112. doi: 10.3934/mbe.2011.8.95 |
[7] | Fangyuan Chen, Rong Yuan . Dynamic behavior of swine influenza transmission during the breed-slaughter process. Mathematical Biosciences and Engineering, 2020, 17(5): 5849-5863. doi: 10.3934/mbe.2020312 |
[8] | Dennis L. Chao, Dobromir T. Dimitrov . Seasonality and the effectiveness of mass vaccination. Mathematical Biosciences and Engineering, 2016, 13(2): 249-259. doi: 10.3934/mbe.2015001 |
[9] | Junyuan Yang, Guoqiang Wang, Shuo Zhang . Impact of household quarantine on SARS-Cov-2 infection in mainland China: A mean-field modelling approach. Mathematical Biosciences and Engineering, 2020, 17(5): 4500-4512. doi: 10.3934/mbe.2020248 |
[10] | Sherry Towers, Katia Vogt Geisse, Chia-Chun Tsai, Qing Han, Zhilan Feng . The impact of school closures on pandemic influenza: Assessing potential repercussions using a seasonal SIR model. Mathematical Biosciences and Engineering, 2012, 9(2): 413-430. doi: 10.3934/mbe.2012.9.413 |
In today's economic world, due to the growth of the capital market, the importance for people to invest has increased. The most important concern for investors is choosing the best portfolio for investment. For complex decisions in which the decision maker is ambiguous, such as portfolio selection, using the multi-criteria decision making (MCDM) technique to prioritize options and decide on the optimal choice is the best solution. In this research, a generalization of this method utilizing the intuitionistic fuzzy analytic hierarchy process (IFAHP) was discussed. Considering the importance of this topic in today's economy, the purpose of this research was to describe and apply the new integrated technique of IFAHP for ranking the portfolio of companies admitted to the Tehran Stock Exchange. For this purpose, using the statistics published by the Tehran Stock Exchange, six companies including Jabra Ben Hayyan, Kaghazsazi Kaveh, Laabiran, Daro Luqman, Pashme Shishe Iran, and Bourse Kala Iran were examined. These companies were the best options for investment according to the charts and indices of the stock exchange at the time of our research. Finally, using the technique mentioned above, we described the evaluation and ranking of portfolios for confident and efficient decision -making.
Stochastic homogenization is a subject broadly studied starting from '80 since the seminal papers by Kozlov [11] and Papanicolaou-Varadhan [18] who studied boundary value problems for second order linear PDEs. We prove here an abstract homogenization result for the graph of a random maximal monotone operator
v(x,ω)∈αε(x,ω,u(x,ω)), |
where
αε(x,ω,⋅):=α(Tx/εω,⋅). | (1) |
The aim of this paper is to extend existing results where
The outline of the proof is the following: Let
Under which assumptions can we conclude that y=Ax? |
A classical answer (see, e.g., [3]) is: If we can produce an auxiliary sequence of points on the graph of
(ξn,ηn)∈X×X′ such that ηn=Anξn, (ξn,ηn)⇀(ξ,η) and η=Aξ, | (2) |
then, denoting by
⟨yn−ηn,xn−ξn⟩≥0. |
In order to pass to the limit as
lim supn→∞⟨gn,fn⟩≤⟨g,f⟩∀(fn,gn)⇀(f,g) in X×X′, | (3) |
which, together with the weak convergence of
⟨y−η,x−ξ⟩≥0. |
By maximal monotonicity of
1. Existence and weak compactness of solutions
2. A condition for the convergence of the duality pairing (3);
3. Existence of a recovery sequence (2) for all points in the limit graph.
The first step depends on the well-posedness of the application; the second step is ensured, e.g., by compensated compactness (in the sense of Murat-Tartar [15,23]), and, like the first one, it depends on the character of the differential operators that appear in the application, rather than on the homogenization procedure. In the present paper we focus on the third step: in the context of stochastic homogenization, we prove that the scale integration/disintegration idea introduced by Visintin [25], combined with Birkhoff's ergodic theorem (Theorem 2.4) yields the desired recovery sequence. We obtain an explicit formula for the limit operator
α a)⟶ f b)⟶ f0 c)⟶ α0, |
where a) the random operator
In Section 2.1 we review the properties of maximal monotone operators and their variational formulation due to Fitzpatrick. In Section 2.2 we recall the basis of ergodic theory that we need in order to state our first main tool: Birkhoff's Ergodic Theorem. Section 3 is devoted to the translation to the stochastic setting of Visintin's scale integration-disintegration theory, which paves the way to our main result, Theorem 3.8. The applications we provide in the last section are: Ohmic electric conduction with Hall effect (Section 4.1), and nonlinear elasticity, (Section 4.2).
We use the notation
In this section we summarize the variational representation of maximal monotone operators introduced in [8]. Further details and proofs of the statements can be found, e.g., in [27]. Let
Gα:={(x,y)∈B×B′:y∈α(x)} |
be its graph. (We will equivalently write
(x,y)∈Gα⇒⟨y−y0,x−x0⟩≥0,∀(x0,y0)∈Gα | (4) |
and strictly monotone if there is
(x,y)∈Gα⇒⟨y−y0,x−x0⟩≥θ‖ | (5) |
We denote by
x \in \alpha^{-1}(y)\;\;\;\;\; \Leftrightarrow \;\;\;\;\;y\in \alpha(x). |
The monotone operator
\langle y-y_0, x-x_0\rangle \ge 0 \;\;\;\;\; \forall (x_0, y_0)\in \mathcal{G}_\alpha \;\;\;\;\; \Leftrightarrow \;\;\;\;\; (x, y) \in \mathcal{G}_\alpha. |
An operator
\begin{align*} f_{\alpha}(x, y):& = \langle y, x \rangle + \sup\{\langle y-y_0, x_0-x \rangle :(x_0, y_0)\in\mathcal{G}_\alpha\}\\ & = \sup\left\{\langle y, x_0 \rangle + \langle y_0, x \rangle - \langle y_0, x_0 \rangle :(x_0, y_0)\in\mathcal{G}_\alpha\right\}. \end{align*} |
As a supremum of a family of linear functions, the Fitzpatrick function
Lemma 2.1. An operator
(x, y) \in \mathcal{G}_\alpha \;\;\;\;\;\Rightarrow \;\;\;\;\; f_{\alpha}(x, y) = \langle y, x \rangle, |
while
\left\{ \begin{array}{ll} f_{\alpha}(x, y) \ge \langle y, x \rangle\ \;\;\;\;\;\forall (x, y)\in B\times B'\\ f_{\alpha}(x, y) = \langle y, x \rangle \;\;\;\;\;\iff (x, y) \in \mathcal{G}_\alpha. \end{array} \right. |
In the case
1. Let
f_\alpha(x, y) = \frac{(y-b+ax)^2}{4a} +bx. |
2. Let
\alpha(x) = \left\{ \begin{array}{cl} 1&\text{if }x > 0, \\ {[0, 1]}&\text{if }x = 0, \\ -1&\text{if }x < 0. \end{array} \right. |
Then
f_\alpha(x, y) = \left\{ \begin{array}{cl} |x|&\;\;\;\;\;\text{if } |y| \leq 1, \\ +\infty&\;\;\;\;\;\text{if }|y| > 1. \end{array} \right. |
and in both cases
We define
f(x, y)\ge \langle y, x \rangle \;\;\;\;\;\forall (x, y)\in B\times B'. |
We call
\label{def:graph} (x, y) \in \mathcal G_{\alpha_f} \Leftrightarrow f(x, y) = \langle y, x \rangle. | (6) |
A crucial point is whether
Lemma 2.2. Let
(i) the operator
(ii) the class of maximal monotone operators is strictly contained in the class of operators representable by functions in
Proof. (ⅰ) If
\begin{align*} g\left( \frac{P_1+P_2}{2}\right) - \frac{g(P_1) +g(P_2)}{2} & = \frac14 \big( \langle y_1 +y_2, x_1+x_2\rangle \big) - \frac12 \big( \langle y_1, x_1\rangle + \langle y_2, x_2\rangle \big) \\ & = \frac14 \big( \langle y_1, x_2\rangle + \langle y_2, x_1\rangle - \langle y_1, x_1\rangle -\langle y_2, x_2\rangle\big) \\ & = -\frac14 \big( \langle y_2 -y_1, x_2 - x_1\rangle \big) > 0. \end{align*} |
Since
f\left( \frac{P_1+P_2}{2}\right) > \frac{f(P_1) +f(P_2)}{2}, |
which contradicts the convexity of
(ⅱ) Maximal monotone operators are representable by Lemma 2.1. To see that the inclusion is strict, assume that
h(x, y) = \max\{c, f(x, y)\} |
clearly belongs to
h(x_0, y_0) \geq c > f(x_0, y_0) = \langle y_0, x_0 \rangle, |
and thus
Remark 1. When
\varphi(x) + \varphi^*(y) \geq \langle y, x \rangle \;\;\;\;\;\forall\, (x, y)\in B \times B', |
y \in \alpha(x)\;\;\;\;\; \Leftrightarrow \;\;\;\;\; \varphi(x) + \varphi^*(y) = \langle y, x \rangle. |
Thus, Fitzpatrick's representative function
f_\alpha(x, y) = \frac{(x+y)^2}{4} \neq \frac{x^2}{2}+\frac{y^2}{2} = \varphi(x)+\varphi^*(y). |
We need to introduce also parameter-dependent operators. For any measurable space
g^{-1}(R) : = \{ x \in X : g(x) \cap R \neq \emptyset \} |
is measurable.
Let
\alpha \ \ \text{is }\ \mathcal{B}(\text{B})\otimes \mathcal{A}\text{-measurable}, | (7) |
\alpha (x,\omega )\ \ \text{is}\ \ \text{closed}\ \ \text{for}\ \ \text{any }x\in B\ \ \text{and}\ \ \text{for }\mu \text{-a}.\text{e}.\ \ \omega \in \Omega , | (8) |
\alpha (\cdot ,\omega )\ \ \text{is}\ (\text{maximal})\ \text{monotone}\ \ \text{for }\mu \text{-a}.\text{e}.\ \ \omega \in \Omega . | (9) |
If
(a)
(b)
(c)
As above,
\label{eq:represent} y \in \alpha(x, \omega)\ \Leftrightarrow \ f(x, y, \omega) = \langle y, x\rangle \;\;\;\;\; \forall (x, y) \in B\times B', \, \text{for $\mu$-a.e. }\omega \in \Omega. | (10) |
Precisely, any measurable representative function
In this subsection we review the basic notions and results of stochastic analysis that we need in Section 3. For more details see [10,Chapter 7]. Let
(a)
(b) for every
\mu(T_xE) = \mu(E) | (11) |
(c) for any measurable function
\tilde f(x, \omega) = f(T_x\omega) |
is measurable.
Given an
{\mathbb E}(f): = \int_\Omega f\, d\mu. |
In the context of stochastic homogenization, it is useful to provide an orthogonal decomposition of
\int \bigg( v^{i}\frac{\partial\varphi}{\partial x_{j}}-v^{j}\frac{\partial \varphi}{\partial x_{i}}\bigg)\, dx = 0, \ \ \ \ \forall i, j = 1, \dots, n, \, \;\;\;\;\;\forall \varphi \in \mathcal {D}(\mathbb{R}^{n}) |
and we say that
\sum\limits_{i = 1}^{n}\int v^{i}\frac{\partial\varphi}{\partial x_{i}}\, dx = 0, \ \ \ \forall \varphi \in \mathcal {D}(\mathbb{R}^{n}). |
Next we consider a vector field on
Lemma 2.3. Define the spaces
\begin{align*} \mathcal{V}^{p}_{\rm pot}(\Omega;{{\mathbb{R}}^{n}})&: = \{ f\in L_{\rm pot}^{p}(\Omega;{{\mathbb{R}}^{n}}) : \mathbb E(f) = 0\}, \\ \mathcal{V}^{p}_{\rm sol}(\Omega;{{\mathbb{R}}^{n}})&: = \{ f\in L_{\rm sol}^{p}(\Omega;{{\mathbb{R}}^{n}}) : \mathbb E(f) = 0\}. \end{align*} |
The spaces
\label{ort} \mathbb E(u \cdot v) = \mathbb E(u) \cdot \mathbb E(v) | (12) |
and the relations
(\mathcal{V}^{p}_{\rm sol}(\Omega;{{\mathbb{R}}^{n}}))^\perp = \mathcal{V}^{p'}_{\rm pot}(\Omega;{{\mathbb{R}}^{n}}) \oplus {{\mathbb{R}}^{n}}, \;\;\;\;\;(\mathcal{V}^{p}_{\rm pot}(\Omega;{{\mathbb{R}}^{n}}))^\perp = \mathcal{V}^{p'}_{\rm sol}(\Omega;{{\mathbb{R}}^{n}}) \oplus {{\mathbb{R}}^{n}} |
hold in the sense of duality pairing between the spaces
One of the most important results regarding stochastic homogenization is Birk-hoff's Ergodic Theorem. We report the statement given in [10,Theorem 7.2].
Theorem 2.4. (Birkhoff's Ergodic Theorem) Let
\mathbb E(f) = \lim\limits_{\varepsilon \to 0}\frac{1}{|K|}\int_K f\big(T_{x/\varepsilon }\omega\big)\, dx |
for
Remark 2. Birkhoff's theorem implies that
\lim\limits_{\varepsilon \to 0} \frac{1}{|K|}\int_K \tilde f_\varepsilon (x, \omega)\, dx = \mathbb{E}(f). |
Since this holds for every measurable bounded set
{{\tilde{f}}_{\varepsilon }}\rightharpoonup \mathbb{E}(f)\ \ \text{weakly}\ \ \text{in }L_{\text{loc}}^{p}({{\mathbb{R}}^{\text{n}}};{{\mathbb{R}}^{\text{m}}})\ \text{for }\mu \text{-a}.\text{e}.\text{ }\ \ \omega \in \Omega . | (13) |
In what follows, the dynamical system
Let be given a probability space
We rephrase here Visintin's scale integration/disintegration [25,26] to the stochastic homogenization setting.
Remark 3. While most of this subsection's statements are Visintin's results written in a different notation, some others contain a small, but original contribution. Namely: Lemma 3.1 can be found in [26,Lemma 4.1], where the assumption of boundedness for
For every fixed
f(\xi, \eta, \omega) \ge c\left(|\xi |^p+|\eta |^{p'}\right)+k(\omega). | (14) |
We define the homogenised representation
f_0(\xi, \eta): = \inf \bigg\{ \int_\Omega f(\xi+v(\omega), \eta+u(\omega), \omega) \, d\mu :u \in \mathcal V^p_{\rm pot}(\Omega;{{\mathbb{R}}^{n}}), v\in \mathcal V^{p'}_{\rm sol}(\Omega;{{\mathbb{R}}^{n}}) \bigg\}. | (15) |
Lemma 3.1. Let
1i.e., for all
h(x): = \inf\limits_{y\in K}g(x, y) |
is weakly lower semicontinuous and coercive. Moreover, if
Proof. Let
\label{eq2} \liminf\limits_{j \to +\infty} h(x_j) \geq h(x). | (16) |
Let
\ell: = \liminf\limits_{j \to +\infty} h(x_j). |
If
\label{eq3} h(x_j) = \inf\limits_{y \in K} g(x_j, y) \geq g(x_j, y_j)-\varepsilon . | (17) |
Therefore
g(x_j, y_j) \leq 2\ell +\varepsilon \;\;\;\;\;\forall\, j\in \mathbb N. |
By the coercivity assumption on
\label{eq:4} \liminf\limits_{k \to +\infty} h(x_{j_k}) \geq \liminf\limits_{k \to +\infty} g(x_{j_k}, y_{j_k})-\varepsilon \geq g(x, y) -\varepsilon \geq h(x)-\varepsilon . | (18) |
By arbitrariness of
h(\lambda x_1+(1-\lambda)x_2)\le g(\lambda x_1+(1-\lambda)x_2, \lambda y_1+(1-\lambda)y_2)\le \lambda g(x_1, y_1) +(1-\lambda)g(x_2, y_2). |
Passing to the infimum with respect to
h(\lambda x_1+(1-\lambda)x_2)\le \lambda h(x_1) +(1-\lambda)h(x_2). |
Regarding the coercivity of
B_t: = \{x \in X : h(x) \leq t\}, \;\;\;\;\;A_t: = \{x\in X : g(x, y)\leq t, \text{ for some }y\in K\}. |
Let
In the proof of Proposition 1 we need the following estimate
Lemma 3.2. For all
\int_\Omega |\xi + u(\omega)|^p\, d\mu \geq C \int_\Omega |\xi|^p + |u(\omega)|^p\, d\mu |
for all
Proof. Consider the operator
\begin{align*} \Phi &:L^p(\Omega;{{\mathbb{R}}^{n}}) \to L^p(\Omega;{{\mathbb{R}}^{n}}) \times L^p(\Omega;{{\mathbb{R}}^{n}}) \\ & u \;\;\;\;\;\mapsto \left(\mathbb E(u), u-\mathbb E(u)\right). \end{align*} |
Clearly,
\begin{align*} \int_\Omega |\mathbb E(u)|^p d\mu +\int_\Omega |u(\omega)- \mathbb E(u)|^p\, d\mu &\leq \left(\|\mathbb E(u)\|_{L^p} + \|u-\mathbb E(u)\|_{L^p}\right)^p\\ &\leq 2^{p/2}\left(\|\mathbb E(u)\|^2_{L^p} + \|u-\mathbb E(u)\|^2_{L^p}\right)^{p/2}\\ & = 2^{p/2}\|\Phi(u)\|^p_{L^p \times L^p} \leq C\|u\|^p_{L^p}\\ & = C\int_\Omega |u(\omega)|^p\, d\mu. \end{align*} |
Apply now the last inequality to
\int_\Omega |\xi|^p + |\tilde u(\omega)|^p\, d\mu \leq C\int_\Omega |\xi +\tilde u(\omega)|^p\, d\mu. |
Proposition 1. For all
\label{ineq:f0} f_0(\xi, \eta)\ge \xi\cdot \eta \;\;\;\;\; \forall (\xi, \eta)\in {{\mathbb{R}}^{n}}\times {{\mathbb{R}}^{n}}. | (19) |
Proof. Let
F_{\xi, \eta}(u, v): = \int_\Omega f(\xi+v(\omega), \eta+u(\omega), \omega) \, d\mu. |
We prove that the problem
F_{\xi, \eta}(u, v)\leq \liminf\limits_{h \to \infty}F_{\xi, \eta}(u_h, v_h) = \inf\limits_K F_{\xi, \eta}. |
This concludes the first part of the statement. We now want to show that
\begin{align*} F_{\xi, \eta}(u, v)&\geq c\int_\Omega |\xi +v(\omega)|^p + |\eta +u(\omega)|^{p'} +k(\omega)\, d\mu \\ & \geq C\int_\Omega |\xi|^p +|u(\omega)|^p + |\eta|^{p'} +|v(\omega)|^{p'} d\mu+\mathbb E(k) \\ &\geq C\left( |\xi|^p + {\|u\|}^p_{L^p(\Omega)} + |\eta|^{p'} + {\|v\|}^{p'}_{L^{p'}(\Omega)} \right)-{\|k\|}_{L^1(\Omega)}. \end{align*} |
Thus, for any
\left\{(\xi, \eta, (u, v))\in R^n\times {{\mathbb{R}}^{n}} \times K : F_{\xi, \eta}(u, v) \leq M\right\} |
is bounded in
\begin{aligned} f_0(\xi, \eta)& = \int_\Omega f(\xi+\widetilde{u}(\omega), \eta+\widetilde{v}(\omega), \omega) \, d\mu\\ &\ge \int_\Omega (\xi+\widetilde{u}(\omega))\cdot (\eta+\widetilde{v}(\omega)) \, d\mu\\ & = \mathbb E(\xi+\widetilde{u}) \cdot \mathbb E(\eta + \widetilde{v})\\ & = \xi\cdot\eta, \end{aligned} |
which yields the conclusion.
We denote by
\eta \in \alpha_0(\xi) \;\;\;\;\; \Leftrightarrow\;\;\;\;\; f_0(\xi, \eta) = \xi \cdot \eta. |
We refer to
Lemma 3.3. Let
\label{auxiliary} v(\omega)\in \alpha(u(\omega), \omega), \;\;\;\;\; for \;\;\;\;\; \mu -a.e. \omega\in\Omega. | (20) |
Moreover,
\mathbb E( v) \in \alpha_0(\mathbb E( u)). | (21) |
Proof. Since
\label{eq:f0repr} f_0(\xi, \eta) = \xi \cdot \eta. | (22) |
Take now
\label{eq:hyp1} f_0(\xi, \eta) = \int_\Omega f(\xi+\widetilde{u}(\omega), \eta+\widetilde{v}(\omega), \omega) \, d\mu. | (23) |
Since
\begin{align*} \xi \cdot \eta& = \mathbb E(\xi+\widetilde{u}) \cdot \mathbb E(\eta+\widetilde{v})\\ & \stackrel{(12)}{ = }\int_\Omega (\xi+\widetilde{u}(\omega))\cdot (\eta+\widetilde{v}(\omega))\, d\mu\\ &\stackrel{f \in \mathcal F({{\mathbb{R}}^{n}})}{\le} \int_\Omega f(\xi+\widetilde{u}(\omega), \eta+\widetilde{v}(\omega), \omega) \, d\mu\\ & \stackrel{(23)}{ = } f_0(\xi, \eta)\\ & \stackrel{(22)}{ = }\xi \cdot \eta \end{align*} |
from which we obtain
\label{eq:312} (\xi+\widetilde{u}(\omega))\cdot (\eta+\widetilde{v}(\omega)) = f(\xi+\widetilde{u}(\omega), \eta+\widetilde{v}(\omega), \omega), \;\;\;\;\; \text{$\mu$-a.e. }\omega\in\Omega. | (24) |
Let
Lemma 3.3 is also referred to as scale disintegration (see [26,Theorem 4.4]), as it shows that given a solution
Lemma 3.4. Let
\label{auxiliary:int} v(\omega)\in \alpha(u(\omega), \omega), \;\;\;\;\;for\;\;\;\;\; \mu-a.e. \omega\in\Omega, | (25) |
then
\label{eq:integrated} \mathbb E(v) \in \alpha_0(\mathbb E(u)). | (26) |
Proof. By (25) and (12)
\int_\Omega f(u(\omega), v(\omega), \omega)\, d\mu = \int_\Omega u(\omega)\cdot v(\omega)\, d\mu = \mathbb E(u)\cdot \mathbb E(v). |
On the other hand, by definition of
\int_\Omega f(u(\omega), v(\omega), \omega)\, d\mu \geq f_0(\mathbb E(u), \mathbb E(v)) \geq \mathbb E(u)\cdot \mathbb E(v). |
We conclude that
How the properties of
Theorem 3.5. If
\int_\Omega f(u(\omega), v(\omega), \omega)\, d\mu < +\infty, |
In order to obtain strict monotonicity of
Lemma 3.6. Let
Proof. For all
\label{smon1} v_i(\omega)\in \alpha(u_i(\omega), \omega), \;\;\;\;\; \text{for $\mu$-a.e. }\omega\in\Omega | (27) |
and
\begin{align*} (\eta_2-\eta_1)\cdot(\xi_2-\xi_1) & = \int_\Omega (v_2(\omega)-v_1(\omega))\cdot(u_2(\omega)-u_1(\omega)) d\mu \\ & \geq \theta \int_\Omega |u_2(\omega)-u_1(\omega)|^2d\mu \\ & \geq \theta \left|\int_\Omega u_2(\omega)-u_1(\omega)d\mu \right|^2\\ & = \theta \left| \xi_2 -\xi_1 \right|^2. \end{align*} |
Let
Lemma 3.7 (Div-Curl lemma, [15]). Let
v^n \rightharpoonup v \;\;\;\;\;weakly\;\;\;\;\; in L^{p'}(D;{\mathbb{R}}^m), \;\;\;\;\; u^n \rightharpoonup u \;\;\;\;\;weakly\;\;\;\;\; in \;\;\;\;\;L^p(D;{\mathbb{R}}^m). |
In addition, assume that
\{\text{curl}{{v}^{n}}\}\text{ }is\text{ }compact\text{ }in\text{ }{{W}^{-1,{p}'}}(D;{{\mathbb{R}}^{m\times m}}),\ \ \ \ \ \{\text{div}\ {{u}^{n}}\}\text{ }is\text{ }compact\text{ }in\text{ }{{W}^{-1,p}}(D). |
Then
v^n \cdot u^n \stackrel{*}{\rightharpoonup} v \cdot u \;\;\;\;\;\mbox{in }\mathcal D'(D). |
We are now ready to prove our main result concerning the stochastic homogenization of a maximal monotone relation.
Theorem 3.8. Let
Let
(J_\omega^\varepsilon, E_\omega^\varepsilon)\in L^p(D;{{\mathbb{R}}^{n}})\times L^{p'}(D;{{\mathbb{R}}^{n}}) |
such that
{{\{\text{div}J_{\omega }^{\varepsilon }\}}_{\varepsilon \ge 0}}\text{ }is\text{ }compact\text{ }in\text{ }{{W}^{-1,p}}(D),{{\{\text{curl}E_{\omega }^{\varepsilon }\}}_{\varepsilon \ge 0}}\text{ }is\text{ }compact\text{ }in\text{ }{{W}^{-1,{p}'}}(D;{{\mathbb{R}}^{n\times n}}), | (28a) |
\label{e:convergence} \lim\limits_{\varepsilon \to 0} J_\omega^\varepsilon = J_\omega^0 \;\;\;\;\; weakly \;\;\;\;\;in \;\;\;\;\;L^p(D;{{\mathbb{R}}^{n}}), \;\;\;\;\; \lim\limits_{\varepsilon \to 0} E_\omega^\varepsilon = E_\omega^0 \;\;\;\;\; weakly \;\;\;\;\;in \;\;\;\;\;L^{p'}(D;{{\mathbb{R}}^{n}}), | (28b) |
\label{e:inclusion} E_\omega^\varepsilon(x) \in \alpha(J_\omega^\varepsilon(x), T_{x/\varepsilon }\omega) \;\;\;\;\; a.e. \;\;\;in \;\;\;\;\;D. | (28c) |
Then, for
\label{hom1} E_\omega^0(x) \in \alpha_0(J_\omega^0(x)) \;\;\;\;\; a.e. \;\;\;in \;\;\;\;\;D, | (29) |
where
f_0(\xi, \eta): = \inf \bigg\{ \int_\Omega f(\xi+u(\omega), \eta+v(\omega), \omega) \, d\mu :u \in \mathcal V^p_{\rm sol}(\Omega;{{\mathbb{R}}^{n}}), v\in \mathcal V^{p'}_{\rm pot}(\Omega;{{\mathbb{R}}^{n}}) \bigg\}. |
Proof. By Lemma 3.3 for all
\label{auxiliary2} v(\omega)\in \alpha(u(\omega), \omega), \;\;\;\;\; \text{for $\mu$-a.e. }\omega\in\Omega. | (30) |
Define the stationary random fields
u_\varepsilon(x, \omega): = u(T_{x/\varepsilon }\omega), \;\;\;\;\; v_\varepsilon(x, \omega): = v(T_{x/\varepsilon }\omega). |
For
x \mapsto u_\varepsilon(x, \omega) \in L^p_{\rm loc}({{\mathbb{R}}^{n}};{{\mathbb{R}}^{n}}), \;\;\;\;\; x \mapsto v_\varepsilon(x, \omega) \in L^{p'}_{\rm loc}({{\mathbb{R}}^{n}};{{\mathbb{R}}^{n}}). |
Equation (30) implies
\label{eq:318} v_\varepsilon(x, \omega) \in \alpha(u_\varepsilon(x, \omega), T_{x/\varepsilon }\omega), \;\;\;\;\; \textrm{for a.e. }x\in D, \ \mu\textrm{-a.e. }\omega\in \Omega. | (31) |
By Birkhoff's Theorem (and (13), in particular), for
\label{weak} u_\varepsilon(\cdot, \omega) \rightharpoonup \mathbb E(u) \;\;\;\;\;\textrm{weakly in }L^p(D;{{\mathbb{R}}^{n}}), \;\;\;\;\;v_\varepsilon(\cdot, \omega) \rightharpoonup \mathbb E(v) \;\;\;\;\; \textrm{weakly in }L^{p'}(D;{{\mathbb{R}}^{n}}). | (32) |
Since
\label{ineq} \int_D (E_\omega^\varepsilon(x)- v_\varepsilon(x, \omega))\cdot (J_\omega^\varepsilon(x)- u_\varepsilon(x, \omega))\phi(x)\, dx \ge 0, | (33) |
for any
\begin{align} & {{\{\text{curl}(E_{\omega }^{\varepsilon }-{{v}_{\varepsilon }}(\cdot ,\omega ))\}}_{\varepsilon }}\text{ is compact in }{{W}^{-1,{p}'}}(D;{{\mathbb{R}}^{n\times n}}), \\ & {{\{\text{div}(J_{\omega }^{\varepsilon }-{{u}_{\varepsilon }}(\cdot ,\omega ))\}}_{\varepsilon }}\text{ is compact in }{{W}^{-1,p}}(D). \\ \end{align} |
By (28b), (32), and Lemma 3.7, we can thus pass to the limit as
\int_D (E_\omega^0(x) -\mathbb E( v))\cdot (J_\omega^0(x) -\mathbb E( u))\phi(x)\, dx \ge 0, \;\;\;\;\; \textrm{for $\mu$-a.e. }\omega \in \Omega. |
Since the last inequality holds for all nonnegative
(E_\omega^0(x) -\mathbb E( v))\cdot (J_\omega^0(x) -\mathbb E( u)) \ge 0, \;\;\;\;\;\textrm{for $\mu$-a.e. }\omega \in \Omega. |
To conclude, since
E_\omega^0(x) \in \alpha_0(J_\omega^0(x)) |
for a.e.
Remark 4. In this section's results, the function spaces
\mathcal U\subset L^p(\Omega;{{\mathbb{R}}^{n}}), \;\;\;\;\; \mathcal V\subset L^{p'}(\Omega;{{\mathbb{R}}^{n}}) |
such that
\mathbb E(u \cdot v) = \mathbb E(u)\cdot \mathbb E(v), \;\;\;\;\; \forall (u, v)\in \mathcal U \times \mathcal V. |
Furthermore, Proposition 1 and Lemma 3.3 remain valid if the previous equality is replaced by the inequality
\mathbb E(u \cdot v) \geq \mathbb E(u)\cdot \mathbb E(v), \;\;\;\;\; \forall (u, v)\in \mathcal U \times \mathcal V. |
In this subsection we address the homogenization problem for the Ohm-Hall model for an electric conductor. For further information about the Ohm-Hall effect we refer the reader to [1,pp. 11-15], [12,Section 22] and we also follow [26] for the suitable mathematical formulation in terms of maximal monotone operators. We consider a non-homogeneous electric conductor, that occupies a bounded Lipschitz domain
\label{eq:ohmhall} E(x) \in \alpha(J(x), x) +h(x)J(x) \times B(x) + E_a(x) \;\;\;\;\; \textrm{in }D, | (34) |
where
\begin{align} & \text{curl}E=g, \\ & \text{div}J=0, \\ \end{align} |
where the vector field
\beta(J, x): = \alpha(J, x) +h(x)J \times B(x) + E_a(x). |
A single-valued parameter-dependent operator
\label{eq:smon} (\beta(v_1, x) - \beta(v_2, x))\cdot (v_1-v_2) \geq \theta{\| v_1-v_2\|}^2 \;\;\;\;\;\forall\, v_1, v_2\in {\mathbb{R}}^3. | (35) |
The following existence and uniqueness result is a classical consequence of the maximal monotonicity of
Theorem 4.1. Let
\begin{align} |\beta(x, v)| &\leq c(1+|v|), \label{eq:bounded} \end{align} | (36) |
\begin{align} \beta(x, v)\cdot v &\geq a|v|^2 -b. \label{eq:coercivity} \end{align} | (37) |
Let
\label{eq:estimates} {\|E\|}_{L^2} +{\|J\|}_{L^2}\leq C\left(1+{\|g\|}_{L^2}\right) | (38) |
and, denoting by
\begin{align} E(x) & = \beta(J(x), x) \;\;\;\;\; \ in\;\; D, \label{P:incl}\end{align} | (39) |
\begin{align} curl\, E(x) & = g(x) \;\;\;\;\;\ in \;\;D, \label{P:ele}\end{align} | (40) |
\begin{align} div\, J(x)& = 0 \;\;\;\;\; \ in\;\; D, \label{P:magn}\end{align} | (41) |
\begin{align} E(x) \times \nu(x) & = 0 \;\;\;\;\;\ on\;\; \partial D. \label{P:bound} \end{align} | (42) |
Moreover, if
Remark 5. Conditions (40)-(41) have to be intended in the weak sense -see below -while (42) holds in
Let
\label{hyp:data} h \in L^\infty(\Omega), \;\;\;\;\; B \in L^\infty(\Omega;{\mathbb{R}}^3), \;\;\;\;\; E_a\in L^2(\Omega;{\mathbb{R}}^3). | (43) |
For any
\label{hyp:beta} \beta(J, \omega): = \alpha(J, \omega)+h(\omega)J \times B(\omega)+E_a(\omega). | (44) |
In order to apply the scale integration procedure, we assume that
\label{hyp:fsc} \text{the representative function $f$ of $\beta$ is coercive, in the sense of (14), } | (45) |
moreover, to ensure uniqueness of a solution
\label{hyp:smon} \beta\text{ and }\beta^{-1} \text{ are strictly monotone, uniformly with respect to }x\in D. | (46) |
As in the previous section
\beta_\varepsilon (\cdot, x, \omega): = \beta(\cdot, T_{x/\varepsilon }\omega). |
Then
\label{hyp:divge} div\, g_\varepsilon = 0, \;\;\;\;\; \text{in }\mathcal D'(D), \text{ for $\mu$-a.e. }\omega\in\Omega. | (47) |
We are ready to state and prove the homogenization result for the Ohm-Hall model.
Theorem 4.2. Assume that (43)-(47) are fulfilled. Then
1. For
\begin{align} & E_\omega^\varepsilon(x) = \beta_\varepsilon (J_\omega^\varepsilon(x), x, \omega) & &in\;\;\;D, \label{P:incl-eps}\end{align} | (48) |
\begin{align}& {\rm{curl}}\, E_\omega^\varepsilon(x) = g_\varepsilon (x, \omega) & &in\;\;\;D, \label{P:ele-eps}\end{align} | (49) |
\begin{align}& {\rm{div}}\, J_\omega^\varepsilon(x) = 0 & &in\;\;\;D, \label{P:magn-eps}\end{align} | (50) |
\begin{align}&E_\omega^\varepsilon(x) \times \nu(x) = 0 & &on \;\;\;\partial D. \label{P:bound-eps} \end{align} | (51) |
2. There exists
\label{eq:conv} E_\omega^\varepsilon \rightharpoonup E \;\;\;\;\;and\;\;\;\;\; J_\omega^\varepsilon \rightharpoonup J | (52) |
as
3. The limit couple
\begin{align} & E(x) = \beta_0(J(x)) \;\;\;\;\; & &in\;\;\; D, \label{P:incl-hom} \end{align} | (53) |
\begin{align}& {\rm{curl}}\, E(x) = g(x)\;\;\;\;\; & &in\;\;\; D, \label{P:ele-hom} \end{align} | (54) |
\begin{align}& {\rm{div}}\, J(x) = 0 \;\;\;\;\; & &in \;\;\; D, \label{P:magn-hom} \end{align} | (55) |
\begin{align}& E(x) \times \nu(x) = 0 \;\;\;\;\; & &on\;\;\; \partial D. \label{P:bound-hom} \end{align} | (56) |
Proof. 1. Assumption (46) implies that
2. Let
3. The weak formulation of (49)-(51) is:
\label{eq:weak} \int_D E_\omega^\varepsilon \cdot \text{curl}\, \phi + J_\omega^\varepsilon \cdot \nabla \psi\, dx = \int_D g_\varepsilon \cdot \phi\, dx, | (57) |
for all
\int_D E_\omega \cdot \text{curl}\, \phi + J_\omega \cdot \nabla \psi\, dx = \int_D g \cdot \phi\, dx, |
which is exactly the weak formulation of (54)-(56). Equations (49) and (50) imply that
E_\omega(x) = \beta_0(J_\omega(x)). |
We have thus proved that
4. By Lemma 3.6 and assumption (46),
Another straightforward application of the homogenization theorem 3.8 is given in the framework of deformations in continuum mechanics (see, e.g., [4,Chapter 3]). Elastic materials are usually described through the deformation vector
\label{eq:nlelastic} \sigma(x, t) = \beta(\nabla u(x, t), x), | (58) |
where
\rho \partial _{t}^{2}u-\text{div}\sigma =F, |
where
The following existence and uniqueness result is a classical consequence of the maximal monotonicity of
Theorem 4.3. Let
\label{Q:estimates} {\|u\|}_{H^1} +{\|\sigma\|}_{L^2}\leq C\left(1+{\|F\|}_{L^2}\right) | (59) |
and, denoting by
\begin{align} \sigma(x) & = \beta(\nabla u(x), x)\;\;\;\;\; in\;\;\; D, \label{Q:incl}\end{align} | (60) |
\begin{align} -div\, \sigma(x) & = F(x) \;\;\;\;\; in\;\;\; D, \label{Q:ele}\end{align} | (61) |
\begin{align} u(x) & = 0 \;\;\;\;\; on\;\;\; \partial D. \label{Q:bound} \end{align} | (62) |
Moreover, if
As above, we consider a family of maximal monotone operators
\beta_\varepsilon (\cdot, x, \omega): = \beta(\cdot, T_{x/\varepsilon }\omega) |
defines a family of maximal monotone operators on
Theorem 4.4. Assume that (45) and (46) are fulfilled. Then
1. For
\begin{align} & \sigma_\omega^\varepsilon(x) = \beta_\varepsilon (\nabla u_\omega^\varepsilon(x), x, \omega) & &in\;\;\; D, \label{Q:incl-eps}\end{align} | (63) |
\begin{align}& -{\rm{div}}\, \sigma_\omega^\varepsilon(x) = F_\varepsilon (x, \omega) & &in \;\;\;D, \label{Q:ele-eps}\end{align} | (64) |
\begin{align}&u_\omega^\varepsilon(x) = 0 & &on\;\;\; \partial D. \label{Q:bound-eps} \end{align} | (65) |
2. There exist
\label{Q:conv} u_\omega^\varepsilon \rightharpoonup u \;\;\;\;\;and\;\;\;\;\; \sigma_\omega^\varepsilon \rightharpoonup \sigma | (66) |
as
3. The limit couple
\begin{align} & \sigma(x) = \beta_0(\nabla u(x)) & &in\;\;\; D, \label{Q:incl-hom}\end{align} | (67) |
\begin{align}& -{\rm{div}}\, \sigma(x) = F(x) & &in \;\;D, \label{Q:ele-hom}\end{align} | (68) |
\begin{align}& u(x) = 0 & &on\;\;\; \partial D. \label{Q:bound-hom} \end{align} | (69) |
Proof. Steps 1. and 2. follow exactly as in the proof of Theorem 4.2.
3. The weak formulation of (64)-(65) is the following:
\label{Q:weak} \int_D \sigma_\omega^\varepsilon \cdot \nabla \phi\, dx = \int_D F_\varepsilon \phi\, dx, | (70) |
for all
\int_D \sigma_\omega \cdot \nabla \phi\, dx = \int_D F \phi\, dx, |
which is exactly the weak formulation of (68)-(69). Equation (64) and estimate (59) imply that
{{\{\text{div}\sigma _{\omega }^{\varepsilon }\}}_{\varepsilon \ge 0}}\text{ is compact in }{{W}^{-1,2}}(D;{{\mathbb{R}}^{3}}), |
{{\{\text{curl}\nabla u_{\omega }^{\varepsilon }\}}_{\varepsilon \ge 0}}\text{ is compact in }{{W}^{-1,2}}(D;{{\mathbb{R}}^{3\times 3}}). |
Therefore, we can apply the abstract stochastic homogenization Theorem 3.8, (with
\sigma_\omega(x) = \beta_0(\nabla u_\omega(x)). |
Finally, the strict monotonicity of the limit operators
We would like to thank the anonymous referees for their valuable comments and remarks.
[1] |
Ayyildiz E, TaskinGumus A (2021) Interval-valued pythagorean fuzzy AHP method-based supply chain performance evaluation by a new extension of SCOR model: SCOR 4.0. Complex Intell Syst 7: 559–576. https://doi.org/10.1007/s40747-020-00221-9 doi: 10.1007/s40747-020-00221-9
![]() |
[2] |
Bektur G (2021) A hybrid fuzzy MCDM approach for sustainable project portfolio selection problem and an application for a construction company. Afyon Kocatepe University J Econ Admin Sci 23: 182–194. https://doi.org/10.33707/akuiibfd.911236 doi: 10.33707/akuiibfd.911236
![]() |
[3] |
Bernal M, Anselmo Alvarez P, Munoz M, et al. (2021) A multicriteria hierarchical approach for portfolio selection in a stock exchange. J Intell Fuzzy Syst 40: 1945–1955. https://doi.org/10.3233/JIFS-189198 doi: 10.3233/JIFS-189198
![]() |
[4] |
Chen A, Lu Y, Wang B (2017) Customers' purchase decision-making process in social commerce: A social learning perspective. Int J Inf Manag 37: 627–638. https://doi.org/10.1016/j.ijinfomgt.2017.05.001 doi: 10.1016/j.ijinfomgt.2017.05.001
![]() |
[5] |
Cheng KC, Huang MJ, Fu CK, et al. (2021) Establishing a multiple-criteria decision-making model for stock investment decisions using data mining techniques. Sustainability 13. https://doi.org/10.3390/su13063100 doi: 10.3390/su13063100
![]() |
[6] | Cohon JL (2004) Multiobjective programming and planning. Mathematics in Science and Engineering, 140, The Johns Hopkins University, Baltimore, Maryland. |
[7] |
DeMiguel V, Garlappi L, Nogales FJ, et al. (2009) A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms. Manag Sci 55: 798–812. https://doi.org/10.1287/mnsc.1080.0986 doi: 10.1287/mnsc.1080.0986
![]() |
[8] |
Deng X (2022) Application research and analysis of management accounting in enterprise strategy based on FAHP Model. Adv Econ Bus Manag Res 217: 14. https://doi.org/10.2991/aebmr.k.220502.003 doi: 10.2991/aebmr.k.220502.003
![]() |
[9] | Elton EJ, Gruber MJ (1995) Modern portfolio theory and invesment analysis (5th ed.). New York: John Wiley and Sons Inc. |
[10] |
Gupta S, Bandyopadhyay G, Biswas S, et al. (2023) An integrated framework for classification and selection of stocks for portfolio construction: Evidence from NSE, India. Decis Mak Appl Manag Eng 6: 774–803.https://doi.org/10.31181/dmame0318062021g doi: 10.31181/dmame0318062021g
![]() |
[11] |
Haseli G, Sheikh R, Sana SS (2019) Base-criterion on multi-criteria decision-making method and its applications. Int J Manag Sci Engi Manag 15: 79-88. https://doi.org/10.1080/17509653.2019.1633964 doi: 10.1080/17509653.2019.1633964
![]() |
[12] |
Ilbahar E, Kahraman C, Cebi S (2022) Risk assessment of renewable energy investments: A modified failure mode and effect analysis based on prospect theory and intuitionistic fuzzy AHP. Int J Energy 239: 121907. https://doi.org/10.1016/j.energy.2021.121907 doi: 10.1016/j.energy.2021.121907
![]() |
[13] |
Javaherian N, Hamzehee A, SayyadiTooranloo H (2021) Designing an intuitionistic fuzzy network data envelopment analysis model for efficiency evaluation of decision-making units with two-stage structures. Adv Fuzzy Syst 2021: 1–15. https://doi.org/10.1155/2021/8860634 doi: 10.1155/2021/8860634
![]() |
[14] |
Jin M, Li Z, Yuan S (2021) Research and analysis on Markowitz model and Index Model of portfolio selection. Adv Econ Bus Manag Res 203: 1142–1150. https://doi.org/10.2991/assehr.k.211209.186 doi: 10.2991/assehr.k.211209.186
![]() |
[15] |
Leung MF, Wang J (2020) Minimax and biobjective portfolio selection based on collaborative neurodynamic optimization. Ieee T Neur Net Lear Syst 32: 2825–2836. https://doi.org/10.1109/TNNLS.2019.2957105 doi: 10.1109/TNNLS.2019.2957105
![]() |
[16] |
Leung MF, Wang J, Li D (2021) Decentralized robust portfolio optimization based on cooperative-competitive multiagent systems. Ieee T Cybernetics 52: 12785–12794. https://doi.org/10.1109/TCYB.2021.3088884 doi: 10.1109/TCYB.2021.3088884
![]() |
[17] |
Li B, Wang J, Huang D, et al. (2018) Transaction cost optimization for online portfolio selection. Quant Financ 18: 1411–1424. https://doi.org/10.1080/14697688.2017.1357831 doi: 10.1080/14697688.2017.1357831
![]() |
[18] |
Marasović B, Babić Z (2011) Two-step multi-criteria model for selecting optimal portfolio. Int J Product Econ 134: 58–66. https://doi.org/10.1016/j.ijpe.2011.04.026 doi: 10.1016/j.ijpe.2011.04.026
![]() |
[19] | Markowitz HM (1952) Portfolio selection. J Financ 7: 77–91. |
[20] |
Marqués AI, García V, Sánchez JS (2020) Ranking-based MCDM models in financial management applications: Analysis and emerging challenges. J Prog Artif Intell 9: 171–193. https://doi.org/10.1007/s13748-020-00207-1 doi: 10.1007/s13748-020-00207-1
![]() |
[21] |
Narang M, Chandra Joshi M, Bisht K, et al. (2022) Stock portfolio selection using a new decision-making approach based on the integration of fuzzy CoCoSo with Heronian mean operator. Decis Mak Appl Manag Eng 5: 90–112. https://doi.org/10.31181/dmame0310022022n doi: 10.31181/dmame0310022022n
![]() |
[22] | Paur HA (2020) A fuzzy MCDM model for post-COVID portfolio selection. http://dx.doi.org/10.2139/ssrn.3888568 |
[23] |
Peng HG, Xiao Z, Wang JQ, et al. (2021) Stock selection multicriteria decision‐making method based on elimination and choice translating reality I with Z‐numbers. Int J Intell Syst 3: 6440–6470. https://doi.org/10.1002/int.22556 doi: 10.1002/int.22556
![]() |
[24] |
Rajaprakash S, Ponnusamy R, Pandurangan J (2015) Intuitionistic fuzzy analytical hierarchy process with fuzzy delphi method. Glob J Pure Appl Math 11: 1677–1697. https://doi.org/10.1109/TFUZZ.2013.2272585 doi: 10.1109/TFUZZ.2013.2272585
![]() |
[25] |
Rasoulzadeh M, Edalatpanah SA, Fallah M, et al. (2022) A multi-objective approach based on Markowitz and DEA cross-efficiency models for the intuitionistic fuzzy portfolio selection problem. Decis Mak Appl Manag Eng 5: 241–259. https://doi.org/10.1016/j.asoc.2015.09.018 doi: 10.1016/j.asoc.2015.09.018
![]() |
[26] |
Ren F, Lu YN, Li SP, et al. (2017) Dynamic portfolio strategy using clustering approach. PloS One 12: e0169299. https://doi.org/10.1371/journal.pone.0169299 doi: 10.1371/journal.pone.0169299
![]() |
[27] | Saaty T L (1980) The analytic hierarchy process. MCGraw-Hill, New York. |
[28] |
Saaty TL (1986) Axiomatic foundation of the analytic hierarchy process. Manag Sci 32: 841-855. https://doi.org/10.1287/mnsc.32.7.841 doi: 10.1287/mnsc.32.7.841
![]() |
[29] |
Sepehrian Z, Khoshfetrat S, Ebadi S (2021) An Approach for generating weights using the pairwise comparison matrix. J Math 2021: 3217120. https://doi.org/10.1155/2021/3217120 doi: 10.1155/2021/3217120
![]() |
[30] |
Sheikh R, Senfi S (2024) A novel opportunity losses-based polar coordinate distance (OPLO-POCOD) approach to multiple criteria decision-making. J Math 2024: 8845886. https://doi.org/10.1155/2024/8845886 doi: 10.1155/2024/8845886
![]() |
[31] |
Shroff RH, Deneen CC and Ng EM (2011) Analysis of the technology acceptance model in examining students' behavioural intention to use an e-portfolio system. Australas J Educ Technl 27: 600–618. https://doi.org/10.14742/ajet.940 doi: 10.14742/ajet.940
![]() |
[32] |
Souza DGB, Santos EA, Soma NY, et al. (2021) MCDM-based R & D project selection: A systematic literature review. Sustainability 13: 34. https://doi.org/10.3390/su132111626 doi: 10.3390/su132111626
![]() |
[33] | Souza GM, Santos EA, Silva CES, et al. (2022) Integrating fuzzy-MCDM methods to select project portfolios under uncertainty: The case of a pharmaceutical company. J Oper Prod Manag 19: 1–19. https://orcid.org/0000-0002-3872-0594 |
[34] |
Stanitsas M, Kirytopoulos K, Aretoulis G (2021) Evaluating organizational sustainability: A multi-criteria based-approach to sustainable project management indicators. Systems 9: 58. https://doi.org/10.3390/systems9030058 doi: 10.3390/systems9030058
![]() |
[35] | Szmidt E, Kacprzyk J (2009) Amount of information and its reliability in the ranking of Atanassov's intuitionistic fuzzy alternatives. In Recent advances in decision making, 222: 7–19. Berlin, Heidelberg: Springer Berlin Heidelberg. https://link.springer.com/chapter/10.1007/978-3-642-02187-9_2 |
[36] |
Tandon A, Sharma H, Aggarwal AG (2019) Assessing travel websites based on service quality attributes under intuitionistic environment. Int J Knowl-Based Org 9: 66–75. https://doi.org/10.4018/IJKBO.2019010106 doi: 10.4018/IJKBO.2019010106
![]() |
[37] |
Tumsekcali E, Ayyildiz E, Taskin A (2021) Interval valued intuitionistic fuzzy AHP-WASPAS based public transportation service quality evaluation by a new extension of SERVQUAL Model: P-SERVQUAL 4.0. Expert Syst Appl 186: ID115757. https://doi.org/10.1016/j.eswa.2021.115757 doi: 10.1016/j.eswa.2021.115757
![]() |
[38] |
Van Laarhoven PJ, Pedrycz W (1983) A fuzzy extension of Saaty's priority theory. Fuzzy Sets Syst 11: 229–241. https://doi.org/10.1016/S0165-0114(83)80082-7 doi: 10.1016/S0165-0114(83)80082-7
![]() |
[39] |
Xu Z, Liao H (2014) Intuitionistic fuzzy analytic hierarchy process. Ieee T Fuzzy Syst 22: 749–761. https://doi.org/10.1109/TFUZZ.2013.2272585 doi: 10.1109/TFUZZ.2013.2272585
![]() |
[40] |
Yu GF, Li DF, Liang DC, et al. (2021) An intuitionistic fuzzy multi-objective goal programming approach to portfolio selection. Int J Inf Technl Decis Mak 20: 1477–1497. https://doi.org/10.1142/S0219622021500395 doi: 10.1142/S0219622021500395
![]() |
[41] | Zadeh LA (1965) Fuzzy sets. Inf Contr 8: 338–353. |
[42] |
Zavadskas EK, Antucheviciene J, Vilutiene T, et al. (2018) Sustainable decision-making in civil engineering, construction and building technology. Sustainability 10: 14. https://doi.org/10.3390/su10010014 doi: 10.3390/su10010014
![]() |
[43] | Zeleny M, Cochrane JL (1973) A priori and a posteriori goals in macroeconomic policy making. Mult Criteria Decis Mak 373–391. https://link.springer.com/chapter/10.1007/978-3-642-46464-5_17 |
[44] |
Zhang H, Sekhari A, Ouzrout Y, et al. (2014) Deriving consistent pairwise comparison matrices in decision making methodologies based on linear programming method. J Intell Fuzzy Syst 27: 1977–1989. https://doi.org/10.3233/IFS-141164 doi: 10.3233/IFS-141164
![]() |
[45] |
Zhao K, Dai Y, Ji Y, et al. (2021) Decision making model to portfolio selection using analytic hierarchy process (AHP) with expert knowledge. Ieee 9: 76875–76893. https://doi.org/10.1109/ACCESS.2021.3082529 doi: 10.1109/ACCESS.2021.3082529
![]() |