Loading [Contrib]/a11y/accessibility-menu.js
Review Special Issues

Gene x environment interactions as dynamical systems: clinical implications

  • The etiology and progression of the chronic diseases that account for the highest rates of mortality in the US, namely, cardiovascular diseases and cancers, involve complex gene x environment interactions. Yet despite the general agreement in the medical community given to this concept, there is a widespread lack of clarity as to what the term ‘interaction’ actually means. The consequence is the use of linear statistical methods to describe processes that are biologically nonlinear, resulting in clinical applications that are often not optimal. Gene x environment interactions are characterized by dynamic, nonlinear molecular networks that change and evolve over time; and by emergent properties that cannot be deduced from the characteristics of their individual subcomponents. Given the nature of these systemic properties, reductionist methods are insufficient for fully providing the information relevant to improving therapeutic outcomes. The purpose of this article is to provide an overview of these concepts and their relevance to prevention and interventions.

    Citation: Sarah S. Knox. Gene x environment interactions as dynamical systems: clinical implications[J]. AIMS Molecular Science, 2016, 3(1): 1-11. doi: 10.3934/molsci.2016.1.1

    Related Papers:

    [1] Longxing Qi, Shoujing Tian, Jing-an Cui, Tianping Wang . Multiple infection leads to backward bifurcation for a schistosomiasis model. Mathematical Biosciences and Engineering, 2019, 16(2): 701-712. doi: 10.3934/mbe.2019033
    [2] A. K. Misra, Jyoti Maurya, Mohammad Sajid . Modeling the effect of time delay in the increment of number of hospital beds to control an infectious disease. Mathematical Biosciences and Engineering, 2022, 19(11): 11628-11656. doi: 10.3934/mbe.2022541
    [3] Wahyudin Nur, Trisilowati, Agus Suryanto, Wuryansari Muharini Kusumawinahyu . Schistosomiasis model with treatment, habitat modification and biological control. Mathematical Biosciences and Engineering, 2022, 19(12): 13799-13828. doi: 10.3934/mbe.2022643
    [4] Jinhu Xu, Yicang Zhou . Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences and Engineering, 2016, 13(2): 343-367. doi: 10.3934/mbe.2015006
    [5] Shishi Wang, Yuting Ding, Hongfan Lu, Silin Gong . Stability and bifurcation analysis of $ SIQR $ for the COVID-19 epidemic model with time delay. Mathematical Biosciences and Engineering, 2021, 18(5): 5505-5524. doi: 10.3934/mbe.2021278
    [6] Yu Yang, Gang Huang, Yueping Dong . Stability and Hopf bifurcation of an HIV infection model with two time delays. Mathematical Biosciences and Engineering, 2023, 20(2): 1938-1959. doi: 10.3934/mbe.2023089
    [7] Shunyi Li . Hopf bifurcation, stability switches and chaos in a prey-predator system with three stage structure and two time delays. Mathematical Biosciences and Engineering, 2019, 16(6): 6934-6961. doi: 10.3934/mbe.2019348
    [8] Hui Cao, Yicang Zhou, Zhien Ma . Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1399-1417. doi: 10.3934/mbe.2013.10.1399
    [9] Kazeem Oare Okosun, Robert Smith? . Optimal control analysis of malaria-schistosomiasis co-infection dynamics. Mathematical Biosciences and Engineering, 2017, 14(2): 377-405. doi: 10.3934/mbe.2017024
    [10] Sarita Bugalia, Jai Prakash Tripathi, Hao Wang . Mathematical modeling of intervention and low medical resource availability with delays: Applications to COVID-19 outbreaks in Spain and Italy. Mathematical Biosciences and Engineering, 2021, 18(5): 5865-5920. doi: 10.3934/mbe.2021295
  • The etiology and progression of the chronic diseases that account for the highest rates of mortality in the US, namely, cardiovascular diseases and cancers, involve complex gene x environment interactions. Yet despite the general agreement in the medical community given to this concept, there is a widespread lack of clarity as to what the term ‘interaction’ actually means. The consequence is the use of linear statistical methods to describe processes that are biologically nonlinear, resulting in clinical applications that are often not optimal. Gene x environment interactions are characterized by dynamic, nonlinear molecular networks that change and evolve over time; and by emergent properties that cannot be deduced from the characteristics of their individual subcomponents. Given the nature of these systemic properties, reductionist methods are insufficient for fully providing the information relevant to improving therapeutic outcomes. The purpose of this article is to provide an overview of these concepts and their relevance to prevention and interventions.


    1. Introduction

    The involvement of the cerebellum in affective brain activity has been demonstrated by various approaches including clinical and behavioral studies and brain imaging, but it is still difficult to identify precisely the role that the cerebellum plays in emotional processing and behavior. In two papers [1,2] in this special issue, many examples showing the likely involvement of the cerebellum in emotion regulation are reviewed, but in most cases, the exact role of the cerebellum is difficult to explain. To proceed further toward answering the question posed in the title, I suggest the following two directions that should be explored.

    2. Two directions toward answering the question

    2.1. To clarify which area of the cerebellum specifically represents emotion

    The functional structure of the cerebellum devoted to motor function is hierarchically organized according to longitudinal zonal structures of the cerebellum [3]. Zones A (vermis) and B (paravermis) are devoted to the adaptive control of somatic reflexes, and zones C1-C3 (the intermediate parts of the cerebellar hemisphere) to the internal-model-assisted control of voluntary movements. Between zones D1 and D2 (the lateral parts of the cerebellar hemisphere), D1 is considered to be devoted to the control of motor actions (e.g., dancing, tool uses), whereas zone D2 (the most lateral part of the cerebellar hemisphere) is allocated to cognitive functions [4]. The thought process is a typical cognitive function, in which the prefrontal cortex manipulates ideas expressed in the cerebral parietal cortex. Zone D2 may support the thought process by providing an internal model of ideas, but how ideas are represented in the neural circuit is still unknown. With this longitudinal zonal organization map, one can comprehend that cerebellar lesions lead to not only motor control dysfunction but also cognitive syndromes; however, where is emotion represented likewise?

    Functional localization related to emotion has been shown for autonomic reflexes. In the vermis and flocculonodular lobe (parts of zones C1-C3), there are areas controlling cardiovascular homeostasis via the sympathetic nervous system [5]. In the first paper of this special issue [6], it is described that a discrete area of the cerebellar flocculus controls arterial blood flow associated with defense reactions. Lesions of the cerebellum at the flocculus, nodulus, and uvula impair these autonomic reflexes and their integrated functions, which will lead to impairment of physiological expressions of affective processes. The role of the cerebellum can be defined as the adaptive control of autonomic functions that support emotion regulation by a mechanism common to the adaptive control of motor functions.

    2.2. Neuropeptide-containing cerebellar afferents mediate mood control

    Mood impairment is a major clinical symptom associated with cerebellar diseases [7]. One may recall that some neuropeptides play a modulatory role in mood. For example, neuropeptide Y is involved in mood and anxiety disorders [8] and a decrease in its level is associated with an increased risk of suicide [9]. Corticotropin-releasing factor and galanin may also be involved in mood control as their antagonists exert antidepressant-like effects [10]. Recently, a number of neuropeptides have been shown to be substantially expressed in the cerebellum [11]. These neuropeptides are contained in beaded fibers, which project to the cerebellum diffusely and dispersedly [12]. This form of innervation is typical in neuromodulation [13], in which dispersed fibers do not convey information specific to individual fibers, but they govern the general activity of their target neurons as a whole. Thus, beaded fibers would switch the operational mode of their target neuronal circuit as a whole by neuromodulation.

    As explained in the first paper of this special issue [6], the orexinergic system functions in the organization of neural circuits for anger and defense behavior; this case may provide a prototype mechanism for selecting an emotional behavioral repertoire via neuromodulation. Each neuropeptide may activate a certain unique set of neuronal circuits selected through the spinal cord, brainstem, and cerebellum, which jointly represent a specific emotion and behavior. The selected cerebellar portion is expected to control selected autonomic reflexes and their integrated functions in the spinal cord and brainstem. This mechanism could be an answer to the question posed in the title of this special issue.

    Conflict of Interest

    The author declares to have no conflict of interest.

    [1] Knox SS, Guo X, Zhang Y, et al. (2010) AGT M235T genotype /anxiety interaction and gender in the HyperGEN Study.PLoS One 5: E13353. doi: 10.1371/journal.pone.0013353
    [2] Colhoun HM, McKeigue PM, Smith GD (2003) Problems of reporting genetic associations with complex outcomes. Lancet 361: 865-872. doi: 10.1016/S0140-6736(03)12715-8
    [3] Munafo MR, Flint J (2004) Meta-analysis of genetic association studies.Trends Genet 20: 439-444. doi: 10.1016/j.tig.2004.06.014
    [4] Bissel MJ, LaBarge MA (2005) Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell 7: 17-23.
    [5] Pedersen NL (1994) The nature and nurture of personality. In De Raad, Hofstee WKB, Van Heck GL (Eds.) Personality Psychology in Europe Tilburg University Press, 110-132.
    [6] Knox SS (2010) From ‘omics’ to complex disease: a systems biology approach to gene-environment interactions in cancer. Cancer Cell Int 10: 11.
    [7] Robbins CL, Hutchings Y, Dietz PM (2014) History of preterm birth and subsequent cardiovascular disease: a systematic review.AJOG 210: 285-297.
    [8] Plomin R (2011) Commentary: Why are children in the same family so different? Non-shared environment three decades later. Int J Epi 40: 582-592.
    [9] Burt CH (2015) Heritability studies: methodological flaws, invalidated dogmas, and changing paradigms. In Perry BL (ed.) Genetics, Health and Soc (Adv in Med Sociol), 1-44. Emerald Group Publishing Limited.
    [10] Burt CH, Simons RL (2015) Hertitability studies in the postgenomic era: the fatal flaw is conceptual.Criminology 53: 103-112.
    [11] Joseph J (2013) The use of the classical twin method in the social and behavioral sciences: the fallacy continues.J Mind Behav34: 1-40.
    [12] Stenberg A (2013) Interpreting estimates of heritability – A note on the twin decomposition.Econ Hum Biol 11: 201-205. doi: 10.1016/j.ehb.2012.05.002
    [13] Knox SS, Wilk JB, Zhang Y (2004) A genome scan for hostility: the national heart, lung, and blood institute family heart study. Mol Psychiatry 9: 124-127. doi: 10.1038/sj.mp.4001447
    [14] Hofseth LJ, Hussain SP, Harris CC (2004) P53: 25 years after its discovery. Trends Pharmacol Sci 25: 177-181. doi: 10.1016/j.tips.2004.02.009
    [15] Hainaut P, Wiman KG (2009) 30 years and a long way into p53 research. Lancet Oncol 10: 913-919.
    [16] Parihar A, Eubank TD,Doseff A (2010) Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death.J Innate Immun 2: 204-215. doi: 10.1159/000296507
    [17] Cohen IR, Harel D (2007) Explaining a complex living system: dynamics, multi-scaling and emergence.JR Soc Interface 4: 175-182. doi: 10.1098/rsif.2006.0173
    [18] Gibson DG, Glass JI, Lartigue C, et al. (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329: 38-39. doi: 10.1126/science.1193749
    [19] MacNeil LT, Walhout AJM (2011) Gene regulatory networks and the role of robustness in stochasticity in the control of gene expression. Genome Res 21: 645-657. doi: 10.1101/gr.097378.109
    [20] Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286: 509-512.
    [21] Albert R (2005) Scale-free networks in cell biology. J Cell Sci 118: 4947-4957.
    [22] Kruse J, Gu W (2009) Modes of p53 regulation. Cell 137: 609-622. doi: 10.1016/j.cell.2009.04.050
    [23] Riley T, Sontag E, Chen P, et al. (2008) Transcriptional control of human p53 regulated genes.Nat Rev Mol Cell Biol 9: 402-412. doi: 10.1038/nrm2395
    [24] Hein O, Schwind M, Konig W (2006) Scale-free networks. The impact of fat tailed degree distribution on diffusion and communication processes.Wirschftsinformatik 48: 267-275.
    [25] Zhou L, Aon MA, Almas T, et al. (2010) A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network. PLOS Comp Biol 6: e1000657. doi: 10.1371/journal.pcbi.1000657
    [26] Larremore, DB, Shew WL, Restrepo JG (2011) Predicting criticality and dynamic range in complex networks: effects of topology. Phys Rev Let 106: 1580101.
    [27] Nykter M, Price ND, Aldana M, et al. (2008) Gene expression dynamics in macrophage exhibit criticality. Proc Natl Acad Sci U S A 105: 1897-1900. doi: 10.1073/pnas.0711525105
    [28] Ito K, Gunji YP (1994) Self-organization of living systems towards criticality at the edge of chaos. Biosystems 33: 17-24. doi: 10.1016/0303-2647(94)90057-4
    [29] MacArthur BD, Sanchez-Garcia RJ, Ma’ayan A (2010) Microdynamics and criticality of adaptive regulatory networks. Phys Rev Let 104: 168701. doi: 10.1103/PhysRevLett.104.168701
    [30] Seeman TE, Singer BH, Rowe JW (1997) Price of adaption-allostatic load and its health consequences. MacArthur Studies of Successful Aging. Arch Intern Med 157: 2259-2268.
    [31] McEwen BS (1998) Stress, adaption, and disease: Allostasis and allostatic load. Ann NY Acad Sci 840: 33-44. doi: 10.1111/j.1749-6632.1998.tb09546.x
    [32] Picard M, Juster RP, McEwen BS (2014) Mitochondrial allostatic load puts the ‘gluc’ back in glucocorticoids. Nat Rev Endocrinol 10: 303-310. doi: 10.1038/nrendo.2014.22
    [33] Zalli A, Carvalho LA, Lin J, et al. (2014) Shorter telomeres with high telomerase activity are associated with raised allostatic load and impoverished psychosocial resources. Proc Natl Acad Sci U S A 111: 4519-4524. doi: 10.1073/pnas.1322145111
    [34] Dich N, Doan SN, Kivimaki M, et al. (2014) A non-linear association between self-reported negative emotional response to stress and subsequent allostatic load; Prospective results from the Whitehall II cohort study.Psychoneuroendocrinology 49: 54-61.
    [35] Knox SS, Basu S, Remick S (2014) A systems approach to cancer health disparities in Appalachia.Austin J Pub Health 1: 10.
    [36] Greaves M (2006) Infection, immune responses and the aetiology of childhood leukaemia. Nat RevCancer 6: 193-203. doi: 10.1038/nrc1816
    [37] Perez-Andreu V, Roberts KG, Harvey RC, et al. (2013) Inherited GATA3 variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse. Nat Genet 12: 1491-1498.
    [38] Chaturvedi MM, Sung B, Yadav VR, et al. (2011) NF-κβ addiction and its role in cancer: ‘one size does not fit all’. Oncogene 30: 1615-1630. doi: 10.1038/onc.2010.566
    [39] Gudmundsdottir K, Tryggvadottir L, Eyfjord JE (2011) GSTM1, GSTT1, and GSTP1 genotypes in relation breast cancer risk and frequency of mutations in the p53 gene. Cancer Epi Biomark Prev 10: 1169-1173.
    [40] Joseph MA, Moysich KB, Freudenheim JL, et al. (2004) Cruciferous vegetables, genetic polymorphisms in glutathione S-transferases M1 and T1, and prostate cancer risk.Nutr Cancer 50: 206-213. doi: 10.1207/s15327914nc5002_11
    [41] Kamb A, Wee S, Lengauer C (2007) Why is cancer drug discovery so Difficult? Nat Rev/Drug Discov 6: 115-120. doi: 10.1038/nrd2155
    [42] Kerkela R, Grazette L, Yacobi R, et al. (2006) Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med 12: 908-916. doi: 10.1038/nm1446
    [43] Ferber D (2006) Wonder drug may not be so wonderful.Science July 24.
    [44] Landier W, Bhatia S, Eshelman DA, et al. (2004) Development of risk-based guidelines for pediatric cancer survivors: The children’s oncology group long-term follow-up guidelines from the children’s oncology group late effects committee and nursing discipline. J Clin Oncol 22: 4979-4990. doi: 10.1200/JCO.2004.11.032
    [45] Global Burden of Disease: 2004 Update. World Health Organization 2008. ISBN 978 92 4 156371 0. Part 2, p. 10.
  • This article has been cited by:

    1. Ashrafi M. Niger, Abba B. Gumel, Mathematical analysis of the role of repeated exposure on malaria transmission dynamics, 2008, 16, 0971-3514, 251, 10.1007/s12591-008-0015-1
    2. Gamaliel Blé, Luis Miguel Valenzuela, Manuel Falconi, Coexistence of populations in a Leslie-Gower tritrophic model with Holling-type functional responses, 2024, 10, 24058440, e38207, 10.1016/j.heliyon.2024.e38207
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4608) PDF downloads(1059) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog