Research article Special Issues

Optimal wind farm sitting using high-resolution digital elevation models and randomized optimization

  • Received: 15 September 2015 Accepted: 23 September 2015 Published: 23 September 2015
  • We investigate the problem of wind farm design in isolated mountainous areas. We first describe a remote sensing approach for the terrain reconstruction of complex terrains. We then employ a well--known evolutionary optimization algorithm to find the optimal wind farm layout. Although the algorithm has been efficiently used for off--shore or smooth on--shore areas, we show that its performance is significantly affected by the complex topography. Moreover, we illustrate how a priori information can be exploited to improve both the computational time and efficiency of the optimization algorithm.

    Citation: John Koutroumpas, Konstantinos Koutroumpas. Optimal wind farm sitting using high-resolution digital elevation models and randomized optimization[J]. AIMS Energy, 2015, 3(4): 505-524. doi: 10.3934/energy.2015.4.505

    Related Papers:

    [1] Eunha Shim, Beth Kochin, Alison Galvani . Insights from epidemiological game theory into gender-specific vaccination against rubella. Mathematical Biosciences and Engineering, 2009, 6(4): 839-854. doi: 10.3934/mbe.2009.6.839
    [2] Hyun Mo Yang, André Ricardo Ribas Freitas . Biological view of vaccination described by mathematical modellings: from rubella to dengue vaccines. Mathematical Biosciences and Engineering, 2019, 16(4): 3195-3214. doi: 10.3934/mbe.2019159
    [3] Lili Liu, Xi Wang, Yazhi Li . Mathematical analysis and optimal control of an epidemic model with vaccination and different infectivity. Mathematical Biosciences and Engineering, 2023, 20(12): 20914-20938. doi: 10.3934/mbe.2023925
    [4] Pannathon Kreabkhontho, Watchara Teparos, Thitiya Theparod . Potential for eliminating COVID-19 in Thailand through third-dose vaccination: A modeling approach. Mathematical Biosciences and Engineering, 2024, 21(8): 6807-6828. doi: 10.3934/mbe.2024298
    [5] Eunha Shim . Optimal strategies of social distancing and vaccination against seasonal influenza. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1615-1634. doi: 10.3934/mbe.2013.10.1615
    [6] Majid Jaberi-Douraki, Seyed M. Moghadas . Optimal control of vaccination dynamics during an influenza epidemic. Mathematical Biosciences and Engineering, 2014, 11(5): 1045-1063. doi: 10.3934/mbe.2014.11.1045
    [7] Xunyang Wang, Canyun Huang, Yuanjie Liu . A vertically transmitted epidemic model with two state-dependent pulse controls. Mathematical Biosciences and Engineering, 2022, 19(12): 13967-13987. doi: 10.3934/mbe.2022651
    [8] Hamed Karami, Pejman Sanaei, Alexandra Smirnova . Balancing mitigation strategies for viral outbreaks. Mathematical Biosciences and Engineering, 2024, 21(12): 7650-7687. doi: 10.3934/mbe.2024337
    [9] Lan Zou, Jing Chen, Shigui Ruan . Modeling and analyzing the transmission dynamics of visceral leishmaniasis. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1585-1604. doi: 10.3934/mbe.2017082
    [10] Hai-Feng Huo, Tian Fu, Hong Xiang . Dynamics and optimal control of a Zika model with sexual and vertical transmissions. Mathematical Biosciences and Engineering, 2023, 20(5): 8279-8304. doi: 10.3934/mbe.2023361
  • We investigate the problem of wind farm design in isolated mountainous areas. We first describe a remote sensing approach for the terrain reconstruction of complex terrains. We then employ a well--known evolutionary optimization algorithm to find the optimal wind farm layout. Although the algorithm has been efficiently used for off--shore or smooth on--shore areas, we show that its performance is significantly affected by the complex topography. Moreover, we illustrate how a priori information can be exploited to improve both the computational time and efficiency of the optimization algorithm.


    [1] S. CHOWDHURY, J. Z HANG, A. M ESSAC, AND L. CASTILLO, Exploring key factors influencing optimal farm design using mixed-discrete particle swarm optimization, in 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, 2010.
    [2] S. CHOWDHURY, J. Z HANG, A. M ESSAC, AND L. CASTILLO, Unrestricted wind farm layout optimization (uwflo): Investigating key factors influencing the maximum power generation, Renewable Energy, 38 (2012), pp. 16–30.
    [3] C.-R. CHU AND P.-H. C HIANG, Turbulence effects on the wake flow and power production of a horizontal-axis wind turbine, Journal of Wind Engineering and Industrial Aerodynamics, 124(2014), pp. 82–89.
    [4] J. F ENG AND W. Z. SHEN, Wind farm layout optimization in complex terrain: A preliminary study on a gaussian hill, in Journal of Physics: Conference Series, vol. 524, IOP Publishing, 2014, p. 012146.
    [5] J. S. G ONZÁLEZ, M. B URGOS PAYAN, AND J. M. R IQUELME -S ANTOS, Optimization of wind farm turbine layout including decision making under risk, Systems Journal, IEEE, 6 (2012), pp. 94–102.
    [6] J. S. G ONZÁLEZ, A. G. G. R ODRIGUEZ, J. C. M ORA, J. R. S ANTOS, AND M. B. PAYAN, Optimization of wind farm turbines layout using an evolutive algorithm, Renewable Energy, 35 (2010), pp. 1671–1681.
    [7] S. GRADY, M. H USSAINI, AND M. M. ABDULLAH, Placement of wind turbines using genetic algorithms, Renewable energy, 30 (2005), pp. 259–270.
    [8] H. GU AND J. WANG, Irregular-shape wind farm micro-siting optimization, Energy, 57 (2013), pp. 535–544.
    [9] N. HANSEN, The cma evolution strategy: a comparing review, in Towards a new evolutionary computation, Springer, 2006, pp. 75–102.
    [10] H.-S. HUANG, Distributed genetic algorithm for optimization of wind farm annual profits, in Intelligent Systems Applications to Power Systems, 2007. ISAP 2007. International Conference on, IEEE, 2007, pp. 1–6.
    [11] T. JÄGER, R. M CKENNA, AND W. FICHTNER, Onshore wind energy in baden-württemberg: a bottom-up economic assessment of the socio-technical potential.
    [12] N. O. JENSEN, A note on wind generator interaction, 1983.
    [13] I. K ATIC, J. H ØJSTRUP , AND N. JENSEN, A simple model for cluster efficiency, in European Wind Energy Association Conference and Exhibition, 1986, pp. 407–410.
    [14] K. KOUTROUMPAS, E. C INQUEMANI , P. KOURETAS, AND J. LYGEROS, Parameter identification for stochastic hybrid systems using randomized optimization: A case study on subtilin production by bacillus subtilis, Nonlinear Analysis: Hybrid Systems, 2 (2008), pp. 786–802.
    [15] K. KOUTROUMPAS, E. C INQUEMANI , AND J. LYGEROS, Randomized optimization methods in parameter identification for biochemical network models, Proceedings of FOSBE 2007, (2007).
    [16] X. LI , J. WANG, AND X. ZHANG, Equilateral-triangle mesh for optimal micrositing of wind farms, in Proceedings of the 14th WSEAS international conference on Computers, Corfu Island, Greece, 2010, pp. 23–25.
    [17] J. E. G. M ARTÍNEZ, Layout optimisation of offshore wind farms with realistic constraints and options, Master’s thesis, Delft University of Technology, 2014. Available:http://www.lr.tudelft.nl/fileadmin/Faculteit/LR/Organisatie/Afdelingen_en_Leerstoelen/Afdeling_AEWE/Wind_Energy/Education/Masters_Projects/Finished_Master_projects/doc/Julian_Gonzalez_r.pdf.
    [18] J. C. M ORA, J. M. C. B ARÓN, J. M. R. S ANTOS, AND M. B. PAYÁN, An evolutive algorithm for wind farm optimal design, Neurocomputing, 70 (2007), pp. 2651–2658.
    [19] G. MOSETTI, C. P OLONI, AND B. DIVIACCO, Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm, Journal of Wind Engineering and Industrial Aerodynamics, 51 (1994), pp. 105–116.
    [20] B. PÉREZ, R. M ÍNGUEZ , AND R. GUANCHE, Offshore wind farm layout optimization using mathematical programming techniques, Renewable Energy, 53 (2013), pp. 389–399.
    [21] E. S. POLITIS, J. P ROSPATHOPOULOS, D. C ABEZON, K. S. H ANSEN, P. C HAVIAROPOULOS, AND R. J. BARTHELMIE, Modeling wake effects in large wind farms in complex terrain: the problem, the methods and the issues, Wind Energy, 15 (2012), pp. 161–182.
    [22] P.-E. R ÉTHORÉ, P. F UGLSANG, G. C. L ARSEN, T. B UHL, T. J. L ARSEN, H. A. M ADSEN, ET AL., Topfarm: Multi-fidelity optimization of offshore wind farm, Proceedings of the Twenty-first, (2011), pp. 516–524.
    [23] R. A. RIVAS , J. C LAUSEN, K. S. H ANSEN, AND L. E. JENSEN, Solving the turbine positioning problem for large offshore wind farms by simulated annealing, Wind Engineering, 33 (2009), pp. 287–297.
    [24] S. M. F. RODRIGUES, P. B AUER, AND J. P IERIK, Modular approach for the optimal wind turbine micro siting problem through cma-es algorithm, in Proceedings of the 15th annual conference companion on Genetic and evolutionary computation, ACM, 2013, pp. 1561–1568.
    [25] B. SAAVEDRA-M ORENO, S. S ALCEDO-S ANZ, A. PANIAGUA-T INEO, L. P RIETO, AND A. PORTILLAFIGUERAS, Seeding evolutionary algorithms with heuristics for optimal wind turbines positioning in wind farms, Renewable Energy, 36 (2011), pp. 2838–2844.
    [26] M. SAMORANI, The wind farm layout optimization problem, in Handbook of Wind Power Systems, Springer, 2013, pp. 21–38.
    [27] S. ¸SI ¸SBOT , Ö. T URGUT, M. T UNÇ, AND Ü. ÇAMDALI, Optimal positioning of wind turbines on gökçeada using multi-objective genetic algorithm, Wind Energy, 13 (2010), pp. 297–306.
    [28] M. SONG, K. C HEN, Z. H E, AND X. ZHANG, Wake flow model of wind turbine using particle simulation, Renewable energy, 41 (2012), pp. 185–190.
    [29] M. SONG, K. C HEN, Z. H E, AND X. ZHANG, Bionic optimization for micro-siting of wind farm on complex terrain, Renewable Energy, 50 (2013), pp. 551–557.
    [30] M. SONG, K. C HEN, Z. H E, AND X. ZHANG, Optimization of wind farm micro-siting for complex terrain using greedy algorithm, Energy, 67 (2014), pp. 454–459.
    [31] J. T ZANOS, K. M ARGELLOS, AND J. LYGEROS, Optimal wind turbine placement via randomized optimization techniques, in Proceedings of the 17th Power Systems Computation Conference, Stockholm, Sweden, 2011, pp. 22–26.
    [32] M. WAGNER, K. V EERAMACHANENI, F. N EUMANN, AND U.-M. OÂÂZREILLY, Optimizing the layout of 1000 wind turbines, European Wind Energy Association Annual Event, (2011), pp. 205–209.
    [33] C. A. WALFORD, Wind turbine reliability: understanding and minimizing wind turbine operation and maintenance costs, United States. Department of Energy, 2006.
    [34] C. WAN, J. WANG, G. YANG, X. L I , AND X. ZHANG, Optimal micro-siting of wind turbines by genetic algorithms based on improved wind and turbine models, in Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on, IEEE, 2009, pp. 5092–5096.
    [35] C. WAN, J. WANG, G. YANG, AND X. ZHANG, Optimal micro-siting of wind farms by particle swarm optimization, in Advances in swarm intelligence, Springer, 2010, pp. 198–205.
    [36] J. WANG, X. L I , AND X. ZHANG, Genetic optimal micrositing of wind farms by equilateraltriangle mesh, INTECH Open Access Publisher, 2011.
    [37] V. YAKHOT, S. O RSZAG, S. T HANGAM, T. G ATSKI, AND C. SPEZIALE, Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids A: Fluid Dynamics (1989-1993), 4 (1992), pp. 1510–1520.
    [38] M. H. ZHANG, Wind Resource Assessment and Micro-siting: Science and Engineering, Wiley, 2015.
  • This article has been cited by:

    1. Impact of vaccine arrival on the optimal control of a newly emerging infectious disease: A theoretical study, 2012, 9, 1551-0018, 539, 10.3934/mbe.2012.9.539
    2. Bruno Buonomo, Modeling ITNs Usage: Optimal Promotion Programs Versus Pure Voluntary Adoptions, 2015, 3, 2227-7390, 1241, 10.3390/math3041241
    3. Hamadjam Abboubakar, Jean Claude Kamgang, Leontine Nkague Nkamba, Daniel Tieudjo, Bifurcation thresholds and optimal control in transmission dynamics of arboviral diseases, 2018, 76, 0303-6812, 379, 10.1007/s00285-017-1146-1
    4. Benjamin Riche, Hélène Bricout, Marie-Laure Kürzinger, Sylvain Roche, Jean Iwaz, Jean-François Etard, René Ecochard, Modeling and predicting the long-term effects of various strategies and objectives of varicella-zoster vaccination campaigns, 2016, 15, 1476-0584, 927, 10.1080/14760584.2016.1183483
    5. Lingcai Kong, Jinfeng Wang, Weiguo Han, Zhidong Cao, Modeling Heterogeneity in Direct Infectious Disease Transmission in a Compartmental Model, 2016, 13, 1660-4601, 253, 10.3390/ijerph13030253
    6. Nkengafac Villyen Motaze, Zinhle E. Mthombothi, Olatunji Adetokunboh, C. Marijn Hazelbag, Enrique M. Saldarriaga, Lawrence Mbuagbaw, Charles Shey Wiysonge, The Impact of Rubella Vaccine Introduction on Rubella Infection and Congenital Rubella Syndrome: A Systematic Review of Mathematical Modelling Studies, 2021, 9, 2076-393X, 84, 10.3390/vaccines9020084
    7. BRUNO BUONOMO, ON THE OPTIMAL VACCINATION STRATEGIES FOR HORIZONTALLY AND VERTICALLY TRANSMITTED INFECTIOUS DISEASES, 2011, 19, 0218-3390, 263, 10.1142/S0218339011003853
    8. Bruno Buonomo, 2014, Chapter 3, 978-3-319-06922-7, 23, 10.1007/978-3-319-06923-4_3
    9. Chairat Modnak, Jin Wang, Zindoga Mukandavire, Simulating optimal vaccination times during cholera outbreaks, 2014, 07, 1793-5245, 1450014, 10.1142/S1793524514500144
    10. Drew Posny, Jin Wang, Zindoga Mukandavire, Chairat Modnak, Analyzing transmission dynamics of cholera with public health interventions, 2015, 264, 00255564, 38, 10.1016/j.mbs.2015.03.006
    11. Matt J. Keeling, Andrew Shattock, Optimal but unequitable prophylactic distribution of vaccine, 2012, 4, 17554365, 78, 10.1016/j.epidem.2012.03.001
    12. Bruno Buonomo, Cruz Vargas-De-León, Effects of Mosquitoes Host Choice on Optimal Intervention Strategies for Malaria Control, 2014, 132, 0167-8019, 127, 10.1007/s10440-014-9894-z
    13. Bruno Buonomo, Piero Manfredi, Alberto d’Onofrio, Optimal time-profiles of public health intervention to shape voluntary vaccination for childhood diseases, 2019, 78, 0303-6812, 1089, 10.1007/s00285-018-1303-1
    14. Adison Thongtha, Chairat Modnak, Optimal COVID-19 epidemic strategy with vaccination control and infection prevention measures in Thailand, 2022, 7, 24680427, 835, 10.1016/j.idm.2022.11.002
    15. Calvin Tadmon, Arnaud Feukouo Fossi, Berge Tsanou, A two–strain avian–human influenza model with environmental transmission: Stability analysis and optimal control strategies, 2024, 10075704, 107981, 10.1016/j.cnsns.2024.107981
    16. Gui Guan, Zhenyuan Guo, Yanyu Xiao, Dynamical behaviors of a network-based SIR epidemic model with saturated incidence and pulse vaccination, 2024, 137, 10075704, 108097, 10.1016/j.cnsns.2024.108097
    17. Samiullah Salim, Fazal Dayan, Muhammad Azizur Rehman, Husam A. Neamah, Optimization and Control in Rubella Transmission Dynamics: A Boundedness-Preserving Numerical Model with Vaccination, 2024, 23529148, 101595, 10.1016/j.imu.2024.101595
    18. Habtamu Ayalew Engida, Demeke Fisseha, Malaria and leptospirosis co-infection: A mathematical model analysis with optimal control and cost-effectiveness analysis, 2025, 24682276, e02517, 10.1016/j.sciaf.2024.e02517
    19. Giovanni Ziarelli, Stefano Pagani, Nicola Parolini, Francesco Regazzoni, Marco Verani, A model learning framework for inferring the dynamics of transmission rate depending on exogenous variables for epidemic forecasts, 2025, 437, 00457825, 117796, 10.1016/j.cma.2025.117796
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5444) PDF downloads(1154) Cited by(0)

Article outline

Figures and Tables

Figures(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog