Processing math: 100%

Thresholds for Epidemic Outbreaks in Finite Scale-Free Networks

  • Received: 01 October 2004 Accepted: 29 June 2018 Published: 01 March 2005
  • MSC : 92D30.

  • We numerically investigate the existence of a threshold for epidemic outbreaks in a class of scale-free networks characterized by a parametrical dependence of the scaling exponent, influencing the convergence of fluctuations in the degree distribution. In finite-size networks, finite thresholds for the spreading of an epidemic are always found. However, both the thresholds and the behavior of the epidemic prevalence are quite different with respect to the type of network considered and the system size. We also discuss agreements and differences with some analytical claims previously reported.

    Citation: Dong-Uk Hwang, S. Boccaletti, Y. Moreno, R. López-Ruiz. Thresholds for Epidemic Outbreaks in Finite Scale-Free Networks[J]. Mathematical Biosciences and Engineering, 2005, 2(2): 317-327. doi: 10.3934/mbe.2005.2.317

    Related Papers:

    [1] Maoxing Liu, Jie Zhang, Zhengguang Li, Yongzheng Sun . Modeling epidemic in metapopulation networks with heterogeneous diffusion rates. Mathematical Biosciences and Engineering, 2019, 16(6): 7085-7097. doi: 10.3934/mbe.2019355
    [2] Xing Zhang, Zhitao Li, Lixin Gao . Stability analysis of a SAIR epidemic model on scale-free community networks. Mathematical Biosciences and Engineering, 2024, 21(3): 4648-4668. doi: 10.3934/mbe.2024204
    [3] Meici Sun, Qiming Liu . An SIS epidemic model with time delay and stochastic perturbation on heterogeneous networks. Mathematical Biosciences and Engineering, 2021, 18(5): 6790-6805. doi: 10.3934/mbe.2021337
    [4] Yanni Xiao, Tingting Zhao, Sanyi Tang . Dynamics of an infectious diseases with media/psychology induced non-smooth incidence. Mathematical Biosciences and Engineering, 2013, 10(2): 445-461. doi: 10.3934/mbe.2013.10.445
    [5] Junbo Jia, Wei Shi, Pan Yang, Xinchu Fu . Immunization strategies in directed networks. Mathematical Biosciences and Engineering, 2020, 17(4): 3925-3952. doi: 10.3934/mbe.2020218
    [6] Yilei Tang, Dongmei Xiao, Weinian Zhang, Di Zhu . Dynamics of epidemic models with asymptomatic infection and seasonal succession. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1407-1424. doi: 10.3934/mbe.2017073
    [7] Shouying Huang, Jifa Jiang . Global stability of a network-based SIS epidemic model with a general nonlinear incidence rate. Mathematical Biosciences and Engineering, 2016, 13(4): 723-739. doi: 10.3934/mbe.2016016
    [8] Cunjuan Dong, Changcheng Xiang, Wenjin Qin, Yi Yang . Global dynamics for a Filippov system with media effects. Mathematical Biosciences and Engineering, 2022, 19(3): 2835-2852. doi: 10.3934/mbe.2022130
    [9] Toshikazu Kuniya, Mimmo Iannelli . R0 and the global behavior of an age-structured SIS epidemic model with periodicity and vertical transmission. Mathematical Biosciences and Engineering, 2014, 11(4): 929-945. doi: 10.3934/mbe.2014.11.929
    [10] Lili Liu, Xi Wang, Yazhi Li . Mathematical analysis and optimal control of an epidemic model with vaccination and different infectivity. Mathematical Biosciences and Engineering, 2023, 20(12): 20914-20938. doi: 10.3934/mbe.2023925
  • We numerically investigate the existence of a threshold for epidemic outbreaks in a class of scale-free networks characterized by a parametrical dependence of the scaling exponent, influencing the convergence of fluctuations in the degree distribution. In finite-size networks, finite thresholds for the spreading of an epidemic are always found. However, both the thresholds and the behavior of the epidemic prevalence are quite different with respect to the type of network considered and the system size. We also discuss agreements and differences with some analytical claims previously reported.


  • This article has been cited by:

    1. David Hiebeler, Moment Equations and Dynamics of a Household SIS Epidemiological Model, 2006, 68, 0092-8240, 1315, 10.1007/s11538-006-9080-1
    2. Kurt Langfeld, Dynamics of epidemic diseases without guaranteed immunity, 2021, 11, 2190-5983, 10.1186/s13362-021-00101-y
    3. Shunjiang Ni, Wenguo Weng, Hui Zhang, Modeling the effects of social impact on epidemic spreading in complex networks, 2011, 390, 03784371, 4528, 10.1016/j.physa.2011.07.042
    4. Constantinos I. Siettos, Lucia Russo, Mathematical modeling of infectious disease dynamics, 2013, 4, 2150-5594, 295, 10.4161/viru.24041
    5. Mike J. Jeger, Marco Pautasso, Ottmar Holdenrieder, Mike W. Shaw, Modelling disease spread and control in networks: implications for plant sciences, 2007, 174, 0028-646X, 279, 10.1111/j.1469-8137.2007.02028.x
    6. Silvio C. Ferreira, Claudio Castellano, Romualdo Pastor-Satorras, Epidemic thresholds of the susceptible-infected-susceptible model on networks: A comparison of numerical and theoretical results, 2012, 86, 1539-3755, 10.1103/PhysRevE.86.041125
    7. Shunjiang Ni, Wenguo Weng, Shifei Shen, Weicheng Fan, Epidemic outbreaks in growing scale-free networks with local structure, 2008, 387, 03784371, 5295, 10.1016/j.physa.2008.05.051
    8. Carlo Piccardi, Renato Casagrandi, 2009, Chapter 5, 978-3-642-03198-4, 77, 10.1007/978-3-642-03199-1_5
    9. Shaofen Zou, Jianhong Wu, Yuming Chen, Multiple epidemic waves in delayed susceptible-infected-recovered models on complex networks, 2011, 83, 1539-3755, 10.1103/PhysRevE.83.056121
    10. David E. Hiebeler, Andrew Audibert, Emma Strubell, Isaac J. Michaud, An epidemiological model of internet worms with hierarchical dispersal and spatial clustering of hosts, 2017, 418, 00225193, 8, 10.1016/j.jtbi.2017.01.035
    11. Wei-Ping Guo, Xiang Li, Xiao-Fan Wang, Epidemics and immunization on Euclidean distance preferred small-world networks, 2007, 380, 03784371, 684, 10.1016/j.physa.2007.03.007
    12. Tad Dallas, Stephanie Foré, Chemical attraction of Dermacentor variabilis ticks parasitic to Peromyscus leucopus based on host body mass and sex, 2013, 61, 0168-8162, 243, 10.1007/s10493-013-9690-x
    13. David E. Hiebeler, Amanda Keck Criner, Partially mixed household epidemiological model with clustered resistant individuals, 2007, 75, 1539-3755, 10.1103/PhysRevE.75.022901
    14. Andreas I. Reppas, Konstantinos Spiliotis, Constantinos I. Siettos, On the effect of the path length of small-world networks on epidemic dynamics, 2012, 3, 2150-5594, 146, 10.4161/viru.19131
    15. Carlo Piccardi, Renato Casagrandi, Inefficient epidemic spreading in scale-free networks, 2008, 77, 1539-3755, 10.1103/PhysRevE.77.026113
    16. Ramakant Prasad, Surendra Kumar Sagar, Shama Parveen, Ravins Dohare, Mathematical modeling in perspective of vector-borne viral infections: a review, 2022, 11, 2314-8543, 10.1186/s43088-022-00282-4
    17. Wenbin Gu, Wenjie Li, Feng Gao, Sheng Su, Baolin Sun, Wei Wang, Influence of human motion patterns on epidemic spreading dynamics, 2024, 34, 1054-1500, 10.1063/5.0158243
    18. Wu Wang, Cong Li, Bo Qu, Xiang Li, Predicting epidemic threshold in complex networks by graph neural network, 2024, 34, 1054-1500, 10.1063/5.0209912
  • Reader Comments
  • © 2005 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2844) PDF downloads(507) Cited by(18)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog