1.
|
Fred Brauer,
General compartmental epidemic models,
2010,
31,
0252-9599,
289,
10.1007/s11401-009-0454-1
|
|
2.
|
Jianquan Li, Yijun Lou,
Characteristics of an epidemic outbreak with a large initial infection size,
2016,
10,
1751-3758,
366,
10.1080/17513758.2016.1205223
|
|
3.
|
Jing-An Cui, Fangyuan Chen,
Effects of isolation and slaughter strategies in different species on emerging zoonoses,
2017,
14,
1551-0018,
1119,
10.3934/mbe.2017058
|
|
4.
|
Xinxin Wang, Shengqiang Liu, Lin Wang, Weiwei Zhang,
An Epidemic Patchy Model with Entry–Exit Screening,
2015,
77,
0092-8240,
1237,
10.1007/s11538-015-0084-6
|
|
5.
|
Fred Brauer, Carlos Castillo-Chavez, Zhilan Feng,
2019,
Chapter 4,
978-1-4939-9826-5,
117,
10.1007/978-1-4939-9828-9_4
|
|
6.
|
Marek Trawicki,
Deterministic Seirs Epidemic Model for Modeling Vital Dynamics, Vaccinations, and Temporary Immunity,
2017,
5,
2227-7390,
7,
10.3390/math5010007
|
|
7.
|
Rosalyn J. Moran, Erik D. Fagerholm, Maell Cullen, Jean Daunizeau, Mark P. Richardson, Steven Williams, Federico Turkheimer, Rob Leech, Karl J. Friston,
Estimating required ‘lockdown’ cycles before immunity to SARS-CoV-2: model-based analyses of susceptible population sizes, ‘S0’, in seven European countries, including the UK and Ireland,
2020,
5,
2398-502X,
85,
10.12688/wellcomeopenres.15886.1
|
|
8.
|
Raul Nistal, Manuel de la Sen, Santiago Alonso-Quesada, Asier Ibeas,
2014,
A nonlinear SEIR epidemic model with feedback vaccination control,
978-3-9524269-1-3,
158,
10.1109/ECC.2014.6862291
|
|
9.
|
Assessing the effect of non-pharmaceutical interventions on containing an emerging disease,
2012,
9,
1551-0018,
147,
10.3934/mbe.2012.9.147
|
|
10.
|
Ryosuke Omori, Hiroshi Nishiura,
Theoretical basis to measure the impact of short-lasting control of an infectious disease on the epidemic peak,
2011,
8,
1742-4682,
10.1186/1742-4682-8-2
|
|
11.
|
Zhipeng Qiu, Zhilan Feng,
Transmission Dynamics of an Influenza Model with Vaccination and Antiviral Treatment,
2010,
72,
0092-8240,
1,
10.1007/s11538-009-9435-5
|
|
12.
|
David Berger, Kyle Herkenhoff, Simon Mongey,
An SEIR Infectious Disease Model with Testing and Conditional Quarantine,
2020,
1556-5068,
10.2139/ssrn.3561142
|
|
13.
|
David Berger, Kyle Herkenhoff, Chengdai Huang, Simon Mongey,
Testing and reopening in an SEIR model,
2020,
10942025,
10.1016/j.red.2020.11.003
|
|
14.
|
S. Towers, J. Chen, C. Cruz, J. Melendez, J. Rodriguez, A. Salinas, F. Yu, Y. Kang,
Quantifying the relative effects of environmental and direct transmission of norovirus,
2018,
5,
2054-5703,
170602,
10.1098/rsos.170602
|
|
15.
|
Ryosuke Omori, Yukihiko Nakata, Heidi L. Tessmer, Satowa Suzuki, Keigo Shibayama,
The determinant of periodicity in Mycoplasma pneumoniae incidence: an insight from mathematical modelling,
2015,
5,
2045-2322,
10.1038/srep14473
|
|
16.
|
Chengjun Sun, Ying-Hen Hsieh,
Global analysis of an SEIR model with varying population size and vaccination,
2010,
34,
0307904X,
2685,
10.1016/j.apm.2009.12.005
|
|
17.
|
Calistus N. Ngonghala, Enahoro Iboi, Steffen Eikenberry, Matthew Scotch, Chandini Raina MacIntyre, Matthew H. Bonds, Abba B. Gumel,
Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel Coronavirus,
2020,
325,
00255564,
108364,
10.1016/j.mbs.2020.108364
|
|
18.
|
N. Sherborne, K. B. Blyuss, I. Z. Kiss,
Dynamics of Multi-stage Infections on Networks,
2015,
77,
0092-8240,
1909,
10.1007/s11538-015-0109-1
|
|
19.
|
Ping Yan, Zhilan Feng,
Variability order of the latent and the infectious periods in a deterministic SEIR epidemic model and evaluation of control effectiveness,
2010,
224,
00255564,
43,
10.1016/j.mbs.2009.12.007
|
|
20.
|
Saikat Batabyal, Arthita Batabyal,
Mathematical computations on epidemiology: a case study of the novel coronavirus (SARS-CoV-2),
2021,
1431-7613,
10.1007/s12064-021-00339-5
|
|
21.
|
Mohammad A. Safi, Mudassar Imran, Abba B. Gumel,
Threshold dynamics of a non-autonomous SEIRS model with quarantine and isolation,
2012,
131,
1431-7613,
19,
10.1007/s12064-011-0148-6
|
|
22.
|
Ceyhun Eksin, Martial Ndeffo-Mbah, Joshua S. Weitz,
Reacting to outbreaks at neighboring localities,
2021,
520,
00225193,
110632,
10.1016/j.jtbi.2021.110632
|
|
23.
|
Fred Brauer,
Mathematical epidemiology is not an oxymoron,
2009,
9,
1471-2458,
10.1186/1471-2458-9-S1-S2
|
|
24.
|
Fengqin Zhang, Jianquan Li, Jia Li,
Epidemic characteristics of two classic SIS models with disease-induced death,
2017,
424,
00225193,
73,
10.1016/j.jtbi.2017.04.029
|
|
25.
|
K. M. Ariful Kabir, Jun Tanimoto,
Evolutionary game theory modelling to represent the behavioural dynamics of economic shutdowns and shield immunity in the COVID-19 pandemic,
2020,
7,
2054-5703,
201095,
10.1098/rsos.201095
|
|
26.
|
Impact of discontinuous treatments on disease dynamics in an SIR
epidemic model,
2012,
9,
1551-0018,
97,
10.3934/mbe.2012.9.97
|
|
27.
|
Jingan Cui, Yanan Zhang, Zhilan Feng,
Influence of non-homogeneous mixing on final epidemic size in a meta-population model,
2019,
13,
1751-3758,
31,
10.1080/17513758.2018.1484186
|
|
28.
|
Qianqian Cui, Qiang Zhang, Zhipeng Qiu, Xiaomin Yang,
Transmission Dynamics of an Epidemic Model with Vaccination, Treatment and Isolation,
2019,
42,
0126-6705,
885,
10.1007/s40840-017-0519-3
|
|
29.
|
E. Tagliazucchi, P. Balenzuela, M. Travizano, G.B. Mindlin, P.D. Mininni,
Lessons from being challenged by COVID-19,
2020,
137,
09600779,
109923,
10.1016/j.chaos.2020.109923
|
|
30.
|
Mohammad A. Safi, Abba B. Gumel,
Dynamics analysis of a quarantine model in two patches,
2015,
38,
01704214,
349,
10.1002/mma.3072
|
|
31.
|
Jean Dolbeault, Gabriel Turinici, E. Augeraud, M. Banerjee, J.-S. Dhersin, A. d'Onofrio, T. Lipniacki, S. Petrovskii, Chi Tran, A. Veber-Delattre, E. Vergu, V. Volpert,
Heterogeneous social interactions and the COVID-19 lockdown outcome in a multi-group SEIR model,
2020,
15,
0973-5348,
36,
10.1051/mmnp/2020025
|
|
32.
|
Chengjun Sun, Wei Yang,
Global results for an SIRS model with vaccination and isolation,
2010,
11,
14681218,
4223,
10.1016/j.nonrwa.2010.05.009
|
|
33.
|
Abba B. Gumel, Enahoro A. Iboi, Calistus N. Ngonghala, Elamin H. Elbasha,
A primer on using mathematics to understand COVID-19 dynamics: Modeling, analysis and simulations,
2021,
6,
24680427,
148,
10.1016/j.idm.2020.11.005
|
|
34.
|
Muntasir Alam, K M Ariful Kabir, Jun Tanimoto,
Based on mathematical epidemiology and evolutionary game theory, which is more effective: quarantine or isolation policy?,
2020,
2020,
1742-5468,
033502,
10.1088/1742-5468/ab75ea
|
|
35.
|
Suli Liu, Michael Y. Li,
Epidemic models with discrete state structures,
2021,
01672789,
132903,
10.1016/j.physd.2021.132903
|
|
36.
|
Yi Wang, Jinde Cao,
Global stability of general cholera models with nonlinear incidence and removal rates,
2015,
352,
00160032,
2464,
10.1016/j.jfranklin.2015.03.030
|
|
37.
|
Hongbin Guo, Michael Y. Li, Zhisheng Shuai,
Global Dynamics of a General Class of Multistage Models for Infectious Diseases,
2012,
72,
0036-1399,
261,
10.1137/110827028
|
|
38.
|
Fuzhong Nian, Anhui Cong, Rendong Liu,
Information propagation based on historical memory,
2019,
30,
0129-1831,
2050005,
10.1142/S0129183120500059
|
|
39.
|
Mustafa Turkyilmazoglu,
Explicit formulae for the peak time of an epidemic from the SIR model,
2021,
01672789,
132902,
10.1016/j.physd.2021.132902
|
|
40.
|
KM Ariful Kabir, Atiqur Chowdhury, Jun Tanimoto,
An evolutionary game modeling to assess the effect of border enforcement measures and socio-economic cost: Export-importation epidemic dynamics,
2021,
146,
09600779,
110918,
10.1016/j.chaos.2021.110918
|
|
41.
|
Dylan H. Morris, Fernando W. Rossine, Joshua B. Plotkin, Simon A. Levin,
Optimal, near-optimal, and robust epidemic control,
2021,
4,
2399-3650,
10.1038/s42005-021-00570-y
|
|
42.
|
Vijay Kumar, Jyoti Chawla, Rajeev Kumar, Arti Saxena,
2021,
Chapter 6,
978-3-030-67050-4,
99,
10.1007/978-3-030-67051-1_6
|
|
43.
|
Torsten Thalheim, Tyll Krüger, Jörg Galle,
Indirect Virus Transmission via Fomites Can Counteract Lock-Down Effectiveness,
2022,
19,
1660-4601,
14011,
10.3390/ijerph192114011
|
|
44.
|
Yanjun Zhao, Huilai Li, Wenxuan Li, Yang Wang,
Global stability of a SEIR epidemic model with infectious force in latent period and infected period under discontinuous treatment strategy,
2021,
14,
1793-5245,
2150034,
10.1142/S1793524521500340
|
|
45.
|
Ashutosh Trivedi, Nanda Kishore Sreenivas, Shrisha Rao,
Modeling the Spread and Control of COVID-19,
2021,
9,
2079-8954,
53,
10.3390/systems9030053
|
|
46.
|
Hyun Ho Shin, Carlos Sauer Ayala, Pastor Pérez-Estigarribia, Sebastián Grillo, Leticia Segovia-Cabrera, Miguel García-Torres, Carlos Gaona, Sandra Irala, María Esther Pedrozo, Guillermo Sequera, José Luis Vázquez Noguera, Eduardo De Los Santos,
A Mathematical Model for COVID-19 with Variable Transmissibility and Hospitalizations: A Case Study in Paraguay,
2021,
11,
2076-3417,
9726,
10.3390/app11209726
|
|
47.
|
Daniele Proverbio, Françoise Kemp, Stefano Magni, Andreas Husch, Atte Aalto, Laurent Mombaerts, Alexander Skupin, Jorge Gonçalves, Jose Ameijeiras-Alonso, Christophe Ley, Michele Tizzoni,
Dynamical SPQEIR model assesses the effectiveness of non-pharmaceutical interventions against COVID-19 epidemic outbreaks,
2021,
16,
1932-6203,
e0252019,
10.1371/journal.pone.0252019
|
|
48.
|
2022,
chapter 3,
9781799883432,
56,
10.4018/978-1-7998-8343-2.ch003
|
|
49.
|
Nana Kena Frempong, Theophilus Acheampong, Ofosuhene O. Apenteng, Emmanuel Nakua, John H. Amuasi, Bing Xue,
Does the data tell the true story? A modelling assessment of early COVID-19 pandemic suppression and mitigation strategies in Ghana,
2021,
16,
1932-6203,
e0258164,
10.1371/journal.pone.0258164
|
|
50.
|
Lee Benson, Ross S. Davidson, Darren M. Green, Andrew Hoyle, Mike R. Hutchings, Glenn Marion, Claudio José Struchiner,
When and why direct transmission models can be used for environmentally persistent pathogens,
2021,
17,
1553-7358,
e1009652,
10.1371/journal.pcbi.1009652
|
|
51.
|
K. M. Ariful Kabir, Tori Risa, Jun Tanimoto,
Prosocial behavior of wearing a mask during an epidemic: an evolutionary explanation,
2021,
11,
2045-2322,
10.1038/s41598-021-92094-2
|
|
52.
|
Kaitlyn Muller, Peter A. Muller,
Mathematical modelling of the spread of COVID-19 on a university campus,
2021,
6,
24680427,
1025,
10.1016/j.idm.2021.08.004
|
|
53.
|
Yanjun Zhao, Wenxuan Li, Yang Wang,
2023,
9780323995573,
323,
10.1016/B978-0-32-399557-3.00017-X
|
|
54.
|
Yan Chen, Haitao Song, Shengqiang Liu,
Evaluations of COVID-19 epidemic models with multiple susceptible compartments using exponential and non-exponential distribution for disease stages,
2022,
7,
24680427,
795,
10.1016/j.idm.2022.11.004
|
|
55.
|
Florin Avram, Rim Adenane, David I. Ketcheson,
A Review of Matrix SIR Arino Epidemic Models,
2021,
9,
2227-7390,
1513,
10.3390/math9131513
|
|
56.
|
Andreas Hornstein,
Quarantine, Contact Tracing, and Testing: Implications of an Augmented SEIR Model,
2022,
22,
1935-1690,
53,
10.1515/bejm-2020-0168
|
|
57.
|
SURYADEEPTO NAG, SIDDHARTHA P. CHAKRABARTY,
MODELING THE DYNAMICS OF COVID-19 TRANSMISSION IN INDIA: SOCIAL DISTANCING, REGIONAL SPREAD AND HEALTHCARE CAPACITY,
2022,
30,
0218-3390,
647,
10.1142/S0218339022500231
|
|
58.
|
Cameron J. Browne, Hayriye Gulbudak, Joshua C. Macdonald,
Differential impacts of contact tracing and lockdowns on outbreak size in COVID-19 model applied to China,
2022,
532,
00225193,
110919,
10.1016/j.jtbi.2021.110919
|
|
59.
|
Florin Avram, Rim Adenane, Andrei Halanay,
New Results and Open Questions for SIR-PH Epidemic Models with Linear Birth Rate, Loss of Immunity, Vaccination, and Disease and Vaccination Fatalities,
2022,
14,
2073-8994,
995,
10.3390/sym14050995
|
|
60.
|
M. Aykut Attar, Ayça Tekin-Koru,
Latent social distancing: Identification, causes and consequences,
2022,
46,
09393625,
100944,
10.1016/j.ecosys.2022.100944
|
|
61.
|
Rajan Gupta, Gaurav Pandey, Saibal K. Pal,
Comparative analysis of epidemiological models for COVID-19 pandemic predictions,
2021,
5,
2470-9360,
69,
10.1080/24709360.2021.1913709
|
|
62.
|
Md. Mamun-Ur-Rashid Khan, Md. Rajib Arefin, Jun Tanimoto,
Investigating the trade-off between self-quarantine and forced quarantine provisions to control an epidemic: An evolutionary approach,
2022,
432,
00963003,
127365,
10.1016/j.amc.2022.127365
|
|
63.
|
Zuzana Chladná, Jana Kopfová, Dmitry Rachinskii, Pavel Štepánek,
Effect of Quarantine Strategies in a Compartmental Model with Asymptomatic Groups,
2021,
1040-7294,
10.1007/s10884-021-10059-5
|
|
64.
|
Muhammad Abdurrahman Rois, Cicik Alfiniyah, Chidozie W. Chukwu,
Dynamic analysis and optimal control of COVID-19 with comorbidity: A modeling study of Indonesia,
2023,
8,
2297-4687,
10.3389/fams.2022.1096141
|
|
65.
|
Florin Avram, Rim Adenane, Lasko Basnarkov, Gianluca Bianchin, Dan Goreac, Andrei Halanay,
An Age of Infection Kernel, an R Formula, and Further Results for Arino–Brauer A, B Matrix Epidemic Models with Varying Populations, Waning Immunity, and Disease and Vaccination Fatalities,
2023,
11,
2227-7390,
1307,
10.3390/math11061307
|
|
66.
|
Sarita Bugalia, Jai Prakash Tripathi,
Assessing potential insights of an imperfect testing strategy: Parameter estimation and practical identifiability using early COVID-19 data in India,
2023,
10075704,
107280,
10.1016/j.cnsns.2023.107280
|
|
67.
|
K. M. Ariful Kabir, Mohammad Sharif Ullah, Jun Tanimoto,
Analyzing the Costs and Benefits of Utilizing a Mixed-Strategy Approach in Infectious Disease Control under a Voluntary Vaccination Policy,
2023,
11,
2076-393X,
1476,
10.3390/vaccines11091476
|
|
68.
|
Preeti Deolia, Anuraj Singh,
Analysing the probable insights of ADE in dengue vaccination embodying sequential Zika infection and waning immunity,
2024,
139,
2190-5444,
10.1140/epjp/s13360-023-04813-5
|
|
69.
|
Mohamad Tafrikan, Yolanda Norasia, Aly Syafrudin, Muhammad Abdurrahman Rois,
2024,
3104,
0094-243X,
020009,
10.1063/5.0194546
|
|
70.
|
Mohammad Sharif Ullah, K.M. Ariful Kabir,
Behavioral game of quarantine during the monkeypox epidemic: Analysis of deterministic and fractional order approach,
2024,
10,
24058440,
e26998,
10.1016/j.heliyon.2024.e26998
|
|
71.
|
Qian Li, Biao Tang, Yanni Xiao,
Multiple epidemic waves in a switching system with multi-thresholds triggered alternate control,
2024,
0924-090X,
10.1007/s11071-024-09533-8
|
|
72.
|
Renfei Wang, Yilin Li, Dayu Wu, Yong Zou, Ming Tang, Shuguang Guan, Ying Liu, Zhen Jin, Efim Pelinovsky, Mikhail Kirillin, Elbert Macau,
Impact of agent-based intervention strategies on the COVID-19 pandemic in large-scale dynamic contact networks,
2024,
03784371,
129852,
10.1016/j.physa.2024.129852
|
|
73.
|
Atiqur Chowdhury, K M Ariful Kabir, Jun Tanimoto,
How quarantine and social distancing policy can suppress the outbreak of novel coronavirus in developing or under poverty level countries: a mathematical and statistical analysis,
2021,
10,
2378315X,
145,
10.15406/bbij.2021.10.00341
|
|
74.
|
Muhammad Abdurrahman Rois, Cicik Alfiniyah, Santi Martini, Dipo Aldila, Farai Nyabadza,
Modeling and optimal control of COVID-19 with comorbidity and three-dose vaccination in Indonesia,
2024,
25889338,
10.1016/j.jobb.2024.06.004
|
|
75.
|
Mahmoud A. Ibrahim,
Threshold dynamics in a periodic epidemic model with imperfect quarantine, isolation and vaccination,
2024,
9,
2473-6988,
21972,
10.3934/math.20241068
|
|
76.
|
Florin Avram, Rim Adenane, Lasko Basnarkov,
Some Probabilistic Interpretations Related to the Next-Generation Matrix Theory: A Review with Examples,
2024,
12,
2227-7390,
2425,
10.3390/math12152425
|
|
77.
|
Romelito L. Lapitan,
Precognition of Known And Unknown Biothreats: A Risk-Based Approach,
2024,
1530-3667,
10.1089/vbz.2023.0169
|
|
78.
|
Lukasz Rachel,
The second wave,
2024,
1434-4742,
10.1007/s10058-024-00374-w
|
|
79.
|
Kiriti Bhusan Mahato, Mst Sebi Khatun, K.M. Ariful Kabir, Pritha Das,
Dynamical behaviors and social efficiency deficit analysis of an epidemic model with three combined strategies,
2024,
03784371,
130315,
10.1016/j.physa.2024.130315
|
|
80.
|
Abhi Chakraborty, Md. Fahimur Rahman Shuvo, Faiza Farheen Haque, K. M. Ariful Kabir,
Analyzing disease control through testing game approach embedded with treatment and vaccination strategies,
2025,
15,
2045-2322,
10.1038/s41598-024-84746-w
|
|
81.
|
Martina Alutto, Leonardo Cianfanelli, Giacomo Como, Fabio Fagnani,
On the Dynamic Behavior of the Network SIR Epidemic Model,
2025,
12,
2325-5870,
177,
10.1109/TCNS.2024.3448136
|
|