Loading [MathJax]/jax/output/SVG/jax.js

Final and peak epidemic sizes for SEIR models with quarantine and isolation

  • Received: 01 July 2007 Accepted: 29 June 2018 Published: 01 August 2007
  • MSC : 92D25, 92D30, 34C60.

  • Two SEIR models with quarantine and isolation are considered, in which the latent and infectious periods are assumed to have an exponential and gamma distribution, respectively. Previous studies have suggested (based on numerical observations) that a gamma distribution model (GDM) tends to predict a larger epidemic peak value and shorter duration than an exponential distribution model (EDM). By deriving analytic formulas for the maximum and final epidemic sizes of the two models, we demonstrate that either GDM or EDM may predict a larger epidemic peak or final epidemic size, depending on control measures. These formulas are helpful not only for understanding how model assumptions may affect the predictions, but also for confirming that it is important to assume realistic distributions of latent and infectious periods when the model is used for public health policy making.

    Citation: Z. Feng. Final and peak epidemic sizes for SEIR models with quarantine and isolation[J]. Mathematical Biosciences and Engineering, 2007, 4(4): 675-686. doi: 10.3934/mbe.2007.4.675

    Related Papers:

    [1] Hai-Feng Huo, Qian Yang, Hong Xiang . Dynamics of an edge-based SEIR model for sexually transmitted diseases. Mathematical Biosciences and Engineering, 2020, 17(1): 669-699. doi: 10.3934/mbe.2020035
    [2] Jianquan Li, Yiqun Li, Yali Yang . Epidemic characteristics of two classic models and the dependence on the initial conditions. Mathematical Biosciences and Engineering, 2016, 13(5): 999-1010. doi: 10.3934/mbe.2016027
    [3] Julien Arino, Fred Brauer, P. van den Driessche, James Watmough, Jianhong Wu . A final size relation for epidemic models. Mathematical Biosciences and Engineering, 2007, 4(2): 159-175. doi: 10.3934/mbe.2007.4.159
    [4] Zi Sang, Zhipeng Qiu, Xiefei Yan, Yun Zou . Assessing the effect of non-pharmaceutical interventions on containing an emerging disease. Mathematical Biosciences and Engineering, 2012, 9(1): 147-164. doi: 10.3934/mbe.2012.9.147
    [5] Luis F. Gordillo, Stephen A. Marion, Priscilla E. Greenwood . The effect of patterns of infectiousness on epidemic size. Mathematical Biosciences and Engineering, 2008, 5(3): 429-435. doi: 10.3934/mbe.2008.5.429
    [6] Sherry Towers, Katia Vogt Geisse, Chia-Chun Tsai, Qing Han, Zhilan Feng . The impact of school closures on pandemic influenza: Assessing potential repercussions using a seasonal SIR model. Mathematical Biosciences and Engineering, 2012, 9(2): 413-430. doi: 10.3934/mbe.2012.9.413
    [7] Yu Tsubouchi, Yasuhiro Takeuchi, Shinji Nakaoka . Calculation of final size for vector-transmitted epidemic model. Mathematical Biosciences and Engineering, 2019, 16(4): 2219-2232. doi: 10.3934/mbe.2019109
    [8] Ali Moussaoui, Mohammed Meziane . On the date of the epidemic peak. Mathematical Biosciences and Engineering, 2024, 21(2): 2835-2855. doi: 10.3934/mbe.2024126
    [9] Fred Brauer . Age-of-infection and the final size relation. Mathematical Biosciences and Engineering, 2008, 5(4): 681-690. doi: 10.3934/mbe.2008.5.681
    [10] Julijana Gjorgjieva, Kelly Smith, Gerardo Chowell, Fabio Sánchez, Jessica Snyder, Carlos Castillo-Chavez . The Role of Vaccination in the Control of SARS. Mathematical Biosciences and Engineering, 2005, 2(4): 753-769. doi: 10.3934/mbe.2005.2.753
  • Two SEIR models with quarantine and isolation are considered, in which the latent and infectious periods are assumed to have an exponential and gamma distribution, respectively. Previous studies have suggested (based on numerical observations) that a gamma distribution model (GDM) tends to predict a larger epidemic peak value and shorter duration than an exponential distribution model (EDM). By deriving analytic formulas for the maximum and final epidemic sizes of the two models, we demonstrate that either GDM or EDM may predict a larger epidemic peak or final epidemic size, depending on control measures. These formulas are helpful not only for understanding how model assumptions may affect the predictions, but also for confirming that it is important to assume realistic distributions of latent and infectious periods when the model is used for public health policy making.


  • This article has been cited by:

    1. Fred Brauer, General compartmental epidemic models, 2010, 31, 0252-9599, 289, 10.1007/s11401-009-0454-1
    2. Jianquan Li, Yijun Lou, Characteristics of an epidemic outbreak with a large initial infection size, 2016, 10, 1751-3758, 366, 10.1080/17513758.2016.1205223
    3. Jing-An Cui, Fangyuan Chen, Effects of isolation and slaughter strategies in different species on emerging zoonoses, 2017, 14, 1551-0018, 1119, 10.3934/mbe.2017058
    4. Xinxin Wang, Shengqiang Liu, Lin Wang, Weiwei Zhang, An Epidemic Patchy Model with Entry–Exit Screening, 2015, 77, 0092-8240, 1237, 10.1007/s11538-015-0084-6
    5. Fred Brauer, Carlos Castillo-Chavez, Zhilan Feng, 2019, Chapter 4, 978-1-4939-9826-5, 117, 10.1007/978-1-4939-9828-9_4
    6. Marek Trawicki, Deterministic Seirs Epidemic Model for Modeling Vital Dynamics, Vaccinations, and Temporary Immunity, 2017, 5, 2227-7390, 7, 10.3390/math5010007
    7. Rosalyn J. Moran, Erik D. Fagerholm, Maell Cullen, Jean Daunizeau, Mark P. Richardson, Steven Williams, Federico Turkheimer, Rob Leech, Karl J. Friston, Estimating required ‘lockdown’ cycles before immunity to SARS-CoV-2: model-based analyses of susceptible population sizes, ‘S0’, in seven European countries, including the UK and Ireland, 2020, 5, 2398-502X, 85, 10.12688/wellcomeopenres.15886.1
    8. Raul Nistal, Manuel de la Sen, Santiago Alonso-Quesada, Asier Ibeas, 2014, A nonlinear SEIR epidemic model with feedback vaccination control, 978-3-9524269-1-3, 158, 10.1109/ECC.2014.6862291
    9. Assessing the effect of non-pharmaceutical interventions on containing an emerging disease, 2012, 9, 1551-0018, 147, 10.3934/mbe.2012.9.147
    10. Ryosuke Omori, Hiroshi Nishiura, Theoretical basis to measure the impact of short-lasting control of an infectious disease on the epidemic peak, 2011, 8, 1742-4682, 10.1186/1742-4682-8-2
    11. Zhipeng Qiu, Zhilan Feng, Transmission Dynamics of an Influenza Model with Vaccination and Antiviral Treatment, 2010, 72, 0092-8240, 1, 10.1007/s11538-009-9435-5
    12. David Berger, Kyle Herkenhoff, Simon Mongey, An SEIR Infectious Disease Model with Testing and Conditional Quarantine, 2020, 1556-5068, 10.2139/ssrn.3561142
    13. David Berger, Kyle Herkenhoff, Chengdai Huang, Simon Mongey, Testing and reopening in an SEIR model, 2020, 10942025, 10.1016/j.red.2020.11.003
    14. S. Towers, J. Chen, C. Cruz, J. Melendez, J. Rodriguez, A. Salinas, F. Yu, Y. Kang, Quantifying the relative effects of environmental and direct transmission of norovirus, 2018, 5, 2054-5703, 170602, 10.1098/rsos.170602
    15. Ryosuke Omori, Yukihiko Nakata, Heidi L. Tessmer, Satowa Suzuki, Keigo Shibayama, The determinant of periodicity in Mycoplasma pneumoniae incidence: an insight from mathematical modelling, 2015, 5, 2045-2322, 10.1038/srep14473
    16. Chengjun Sun, Ying-Hen Hsieh, Global analysis of an SEIR model with varying population size and vaccination, 2010, 34, 0307904X, 2685, 10.1016/j.apm.2009.12.005
    17. Calistus N. Ngonghala, Enahoro Iboi, Steffen Eikenberry, Matthew Scotch, Chandini Raina MacIntyre, Matthew H. Bonds, Abba B. Gumel, Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel Coronavirus, 2020, 325, 00255564, 108364, 10.1016/j.mbs.2020.108364
    18. N. Sherborne, K. B. Blyuss, I. Z. Kiss, Dynamics of Multi-stage Infections on Networks, 2015, 77, 0092-8240, 1909, 10.1007/s11538-015-0109-1
    19. Ping Yan, Zhilan Feng, Variability order of the latent and the infectious periods in a deterministic SEIR epidemic model and evaluation of control effectiveness, 2010, 224, 00255564, 43, 10.1016/j.mbs.2009.12.007
    20. Saikat Batabyal, Arthita Batabyal, Mathematical computations on epidemiology: a case study of the novel coronavirus (SARS-CoV-2), 2021, 1431-7613, 10.1007/s12064-021-00339-5
    21. Mohammad A. Safi, Mudassar Imran, Abba B. Gumel, Threshold dynamics of a non-autonomous SEIRS model with quarantine and isolation, 2012, 131, 1431-7613, 19, 10.1007/s12064-011-0148-6
    22. Ceyhun Eksin, Martial Ndeffo-Mbah, Joshua S. Weitz, Reacting to outbreaks at neighboring localities, 2021, 520, 00225193, 110632, 10.1016/j.jtbi.2021.110632
    23. Fred Brauer, Mathematical epidemiology is not an oxymoron, 2009, 9, 1471-2458, 10.1186/1471-2458-9-S1-S2
    24. Fengqin Zhang, Jianquan Li, Jia Li, Epidemic characteristics of two classic SIS models with disease-induced death, 2017, 424, 00225193, 73, 10.1016/j.jtbi.2017.04.029
    25. K. M. Ariful Kabir, Jun Tanimoto, Evolutionary game theory modelling to represent the behavioural dynamics of economic shutdowns and shield immunity in the COVID-19 pandemic, 2020, 7, 2054-5703, 201095, 10.1098/rsos.201095
    26. Impact of discontinuous treatments on disease dynamics in an SIR epidemic model, 2012, 9, 1551-0018, 97, 10.3934/mbe.2012.9.97
    27. Jingan Cui, Yanan Zhang, Zhilan Feng, Influence of non-homogeneous mixing on final epidemic size in a meta-population model, 2019, 13, 1751-3758, 31, 10.1080/17513758.2018.1484186
    28. Qianqian Cui, Qiang Zhang, Zhipeng Qiu, Xiaomin Yang, Transmission Dynamics of an Epidemic Model with Vaccination, Treatment and Isolation, 2019, 42, 0126-6705, 885, 10.1007/s40840-017-0519-3
    29. E. Tagliazucchi, P. Balenzuela, M. Travizano, G.B. Mindlin, P.D. Mininni, Lessons from being challenged by COVID-19, 2020, 137, 09600779, 109923, 10.1016/j.chaos.2020.109923
    30. Mohammad A. Safi, Abba B. Gumel, Dynamics analysis of a quarantine model in two patches, 2015, 38, 01704214, 349, 10.1002/mma.3072
    31. Jean Dolbeault, Gabriel Turinici, E. Augeraud, M. Banerjee, J.-S. Dhersin, A. d'Onofrio, T. Lipniacki, S. Petrovskii, Chi Tran, A. Veber-Delattre, E. Vergu, V. Volpert, Heterogeneous social interactions and the COVID-19 lockdown outcome in a multi-group SEIR model, 2020, 15, 0973-5348, 36, 10.1051/mmnp/2020025
    32. Chengjun Sun, Wei Yang, Global results for an SIRS model with vaccination and isolation, 2010, 11, 14681218, 4223, 10.1016/j.nonrwa.2010.05.009
    33. Abba B. Gumel, Enahoro A. Iboi, Calistus N. Ngonghala, Elamin H. Elbasha, A primer on using mathematics to understand COVID-19 dynamics: Modeling, analysis and simulations, 2021, 6, 24680427, 148, 10.1016/j.idm.2020.11.005
    34. Muntasir Alam, K M Ariful Kabir, Jun Tanimoto, Based on mathematical epidemiology and evolutionary game theory, which is more effective: quarantine or isolation policy?, 2020, 2020, 1742-5468, 033502, 10.1088/1742-5468/ab75ea
    35. Suli Liu, Michael Y. Li, Epidemic models with discrete state structures, 2021, 01672789, 132903, 10.1016/j.physd.2021.132903
    36. Yi Wang, Jinde Cao, Global stability of general cholera models with nonlinear incidence and removal rates, 2015, 352, 00160032, 2464, 10.1016/j.jfranklin.2015.03.030
    37. Hongbin Guo, Michael Y. Li, Zhisheng Shuai, Global Dynamics of a General Class of Multistage Models for Infectious Diseases, 2012, 72, 0036-1399, 261, 10.1137/110827028
    38. Fuzhong Nian, Anhui Cong, Rendong Liu, Information propagation based on historical memory, 2019, 30, 0129-1831, 2050005, 10.1142/S0129183120500059
    39. Mustafa Turkyilmazoglu, Explicit formulae for the peak time of an epidemic from the SIR model, 2021, 01672789, 132902, 10.1016/j.physd.2021.132902
    40. KM Ariful Kabir, Atiqur Chowdhury, Jun Tanimoto, An evolutionary game modeling to assess the effect of border enforcement measures and socio-economic cost: Export-importation epidemic dynamics, 2021, 146, 09600779, 110918, 10.1016/j.chaos.2021.110918
    41. Dylan H. Morris, Fernando W. Rossine, Joshua B. Plotkin, Simon A. Levin, Optimal, near-optimal, and robust epidemic control, 2021, 4, 2399-3650, 10.1038/s42005-021-00570-y
    42. Vijay Kumar, Jyoti Chawla, Rajeev Kumar, Arti Saxena, 2021, Chapter 6, 978-3-030-67050-4, 99, 10.1007/978-3-030-67051-1_6
    43. Torsten Thalheim, Tyll Krüger, Jörg Galle, Indirect Virus Transmission via Fomites Can Counteract Lock-Down Effectiveness, 2022, 19, 1660-4601, 14011, 10.3390/ijerph192114011
    44. Yanjun Zhao, Huilai Li, Wenxuan Li, Yang Wang, Global stability of a SEIR epidemic model with infectious force in latent period and infected period under discontinuous treatment strategy, 2021, 14, 1793-5245, 2150034, 10.1142/S1793524521500340
    45. Ashutosh Trivedi, Nanda Kishore Sreenivas, Shrisha Rao, Modeling the Spread and Control of COVID-19, 2021, 9, 2079-8954, 53, 10.3390/systems9030053
    46. Hyun Ho Shin, Carlos Sauer Ayala, Pastor Pérez-Estigarribia, Sebastián Grillo, Leticia Segovia-Cabrera, Miguel García-Torres, Carlos Gaona, Sandra Irala, María Esther Pedrozo, Guillermo Sequera, José Luis Vázquez Noguera, Eduardo De Los Santos, A Mathematical Model for COVID-19 with Variable Transmissibility and Hospitalizations: A Case Study in Paraguay, 2021, 11, 2076-3417, 9726, 10.3390/app11209726
    47. Daniele Proverbio, Françoise Kemp, Stefano Magni, Andreas Husch, Atte Aalto, Laurent Mombaerts, Alexander Skupin, Jorge Gonçalves, Jose Ameijeiras-Alonso, Christophe Ley, Michele Tizzoni, Dynamical SPQEIR model assesses the effectiveness of non-pharmaceutical interventions against COVID-19 epidemic outbreaks, 2021, 16, 1932-6203, e0252019, 10.1371/journal.pone.0252019
    48. 2022, chapter 3, 9781799883432, 56, 10.4018/978-1-7998-8343-2.ch003
    49. Nana Kena Frempong, Theophilus Acheampong, Ofosuhene O. Apenteng, Emmanuel Nakua, John H. Amuasi, Bing Xue, Does the data tell the true story? A modelling assessment of early COVID-19 pandemic suppression and mitigation strategies in Ghana, 2021, 16, 1932-6203, e0258164, 10.1371/journal.pone.0258164
    50. Lee Benson, Ross S. Davidson, Darren M. Green, Andrew Hoyle, Mike R. Hutchings, Glenn Marion, Claudio José Struchiner, When and why direct transmission models can be used for environmentally persistent pathogens, 2021, 17, 1553-7358, e1009652, 10.1371/journal.pcbi.1009652
    51. K. M. Ariful Kabir, Tori Risa, Jun Tanimoto, Prosocial behavior of wearing a mask during an epidemic: an evolutionary explanation, 2021, 11, 2045-2322, 10.1038/s41598-021-92094-2
    52. Kaitlyn Muller, Peter A. Muller, Mathematical modelling of the spread of COVID-19 on a university campus, 2021, 6, 24680427, 1025, 10.1016/j.idm.2021.08.004
    53. Yanjun Zhao, Wenxuan Li, Yang Wang, 2023, 9780323995573, 323, 10.1016/B978-0-32-399557-3.00017-X
    54. Yan Chen, Haitao Song, Shengqiang Liu, Evaluations of COVID-19 epidemic models with multiple susceptible compartments using exponential and non-exponential distribution for disease stages, 2022, 7, 24680427, 795, 10.1016/j.idm.2022.11.004
    55. Florin Avram, Rim Adenane, David I. Ketcheson, A Review of Matrix SIR Arino Epidemic Models, 2021, 9, 2227-7390, 1513, 10.3390/math9131513
    56. Andreas Hornstein, Quarantine, Contact Tracing, and Testing: Implications of an Augmented SEIR Model, 2022, 22, 1935-1690, 53, 10.1515/bejm-2020-0168
    57. SURYADEEPTO NAG, SIDDHARTHA P. CHAKRABARTY, MODELING THE DYNAMICS OF COVID-19 TRANSMISSION IN INDIA: SOCIAL DISTANCING, REGIONAL SPREAD AND HEALTHCARE CAPACITY, 2022, 30, 0218-3390, 647, 10.1142/S0218339022500231
    58. Cameron J. Browne, Hayriye Gulbudak, Joshua C. Macdonald, Differential impacts of contact tracing and lockdowns on outbreak size in COVID-19 model applied to China, 2022, 532, 00225193, 110919, 10.1016/j.jtbi.2021.110919
    59. Florin Avram, Rim Adenane, Andrei Halanay, New Results and Open Questions for SIR-PH Epidemic Models with Linear Birth Rate, Loss of Immunity, Vaccination, and Disease and Vaccination Fatalities, 2022, 14, 2073-8994, 995, 10.3390/sym14050995
    60. M. Aykut Attar, Ayça Tekin-Koru, Latent social distancing: Identification, causes and consequences, 2022, 46, 09393625, 100944, 10.1016/j.ecosys.2022.100944
    61. Rajan Gupta, Gaurav Pandey, Saibal K. Pal, Comparative analysis of epidemiological models for COVID-19 pandemic predictions, 2021, 5, 2470-9360, 69, 10.1080/24709360.2021.1913709
    62. Md. Mamun-Ur-Rashid Khan, Md. Rajib Arefin, Jun Tanimoto, Investigating the trade-off between self-quarantine and forced quarantine provisions to control an epidemic: An evolutionary approach, 2022, 432, 00963003, 127365, 10.1016/j.amc.2022.127365
    63. Zuzana Chladná, Jana Kopfová, Dmitry Rachinskii, Pavel Štepánek, Effect of Quarantine Strategies in a Compartmental Model with Asymptomatic Groups, 2021, 1040-7294, 10.1007/s10884-021-10059-5
    64. Muhammad Abdurrahman Rois, Cicik Alfiniyah, Chidozie W. Chukwu, Dynamic analysis and optimal control of COVID-19 with comorbidity: A modeling study of Indonesia, 2023, 8, 2297-4687, 10.3389/fams.2022.1096141
    65. Florin Avram, Rim Adenane, Lasko Basnarkov, Gianluca Bianchin, Dan Goreac, Andrei Halanay, An Age of Infection Kernel, an R Formula, and Further Results for Arino–Brauer A, B Matrix Epidemic Models with Varying Populations, Waning Immunity, and Disease and Vaccination Fatalities, 2023, 11, 2227-7390, 1307, 10.3390/math11061307
    66. Sarita Bugalia, Jai Prakash Tripathi, Assessing potential insights of an imperfect testing strategy: Parameter estimation and practical identifiability using early COVID-19 data in India, 2023, 10075704, 107280, 10.1016/j.cnsns.2023.107280
    67. K. M. Ariful Kabir, Mohammad Sharif Ullah, Jun Tanimoto, Analyzing the Costs and Benefits of Utilizing a Mixed-Strategy Approach in Infectious Disease Control under a Voluntary Vaccination Policy, 2023, 11, 2076-393X, 1476, 10.3390/vaccines11091476
    68. Preeti Deolia, Anuraj Singh, Analysing the probable insights of ADE in dengue vaccination embodying sequential Zika infection and waning immunity, 2024, 139, 2190-5444, 10.1140/epjp/s13360-023-04813-5
    69. Mohamad Tafrikan, Yolanda Norasia, Aly Syafrudin, Muhammad Abdurrahman Rois, 2024, 3104, 0094-243X, 020009, 10.1063/5.0194546
    70. Mohammad Sharif Ullah, K.M. Ariful Kabir, Behavioral game of quarantine during the monkeypox epidemic: Analysis of deterministic and fractional order approach, 2024, 10, 24058440, e26998, 10.1016/j.heliyon.2024.e26998
    71. Qian Li, Biao Tang, Yanni Xiao, Multiple epidemic waves in a switching system with multi-thresholds triggered alternate control, 2024, 0924-090X, 10.1007/s11071-024-09533-8
    72. Renfei Wang, Yilin Li, Dayu Wu, Yong Zou, Ming Tang, Shuguang Guan, Ying Liu, Zhen Jin, Efim Pelinovsky, Mikhail Kirillin, Elbert Macau, Impact of agent-based intervention strategies on the COVID-19 pandemic in large-scale dynamic contact networks, 2024, 03784371, 129852, 10.1016/j.physa.2024.129852
    73. Atiqur Chowdhury, K M Ariful Kabir, Jun Tanimoto, How quarantine and social distancing policy can suppress the outbreak of novel coronavirus in developing or under poverty level countries: a mathematical and statistical analysis, 2021, 10, 2378315X, 145, 10.15406/bbij.2021.10.00341
    74. Muhammad Abdurrahman Rois, Cicik Alfiniyah, Santi Martini, Dipo Aldila, Farai Nyabadza, Modeling and optimal control of COVID-19 with comorbidity and three-dose vaccination in Indonesia, 2024, 25889338, 10.1016/j.jobb.2024.06.004
    75. Mahmoud A. Ibrahim, Threshold dynamics in a periodic epidemic model with imperfect quarantine, isolation and vaccination, 2024, 9, 2473-6988, 21972, 10.3934/math.20241068
    76. Florin Avram, Rim Adenane, Lasko Basnarkov, Some Probabilistic Interpretations Related to the Next-Generation Matrix Theory: A Review with Examples, 2024, 12, 2227-7390, 2425, 10.3390/math12152425
    77. Romelito L. Lapitan, Precognition of Known And Unknown Biothreats: A Risk-Based Approach, 2024, 1530-3667, 10.1089/vbz.2023.0169
    78. Lukasz Rachel, The second wave, 2024, 1434-4742, 10.1007/s10058-024-00374-w
    79. Kiriti Bhusan Mahato, Mst Sebi Khatun, K.M. Ariful Kabir, Pritha Das, Dynamical behaviors and social efficiency deficit analysis of an epidemic model with three combined strategies, 2024, 03784371, 130315, 10.1016/j.physa.2024.130315
    80. Abhi Chakraborty, Md. Fahimur Rahman Shuvo, Faiza Farheen Haque, K. M. Ariful Kabir, Analyzing disease control through testing game approach embedded with treatment and vaccination strategies, 2025, 15, 2045-2322, 10.1038/s41598-024-84746-w
    81. Martina Alutto, Leonardo Cianfanelli, Giacomo Como, Fabio Fagnani, On the Dynamic Behavior of the Network SIR Epidemic Model, 2025, 12, 2325-5870, 177, 10.1109/TCNS.2024.3448136
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4317) PDF downloads(1088) Cited by(81)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog