Loading [Contrib]/a11y/accessibility-menu.js

On the interaction between the immune system and an exponentially replicating pathogen

  • Received: 01 July 2009 Accepted: 29 June 2018 Published: 01 June 2010
  • MSC : Primary: 92D30; Secondary: 34D23, 34C15.

  • In this work, we generalize the Pugliese-Gandolfi Model [A. Pugliese and A. Gandolfi, Math Biosc, 214,73 (2008)] of interaction between an exponentially replicating pathogen and the immune system. After the generalization, we study the properties of boundedness and unboundedness of the solutions, and we also give a condition for the global eradication as well as for the onset of sustained oscillations. Then, we study the condition for the uniqueness of the arising limit cycle, with numerical applications to the Pugliese-Gandolfi model. By means of simulations, we also show some alternative ways to reaching the elimination of the pathogen and interesting effects linked to variations in aspecific immune response. After shortly studying some pathological cases of interest, we include in our model distributed and constant delays and we show that also delays may unstabilize the equilibria.

    Citation: Alberto d'Onofrio. On the interaction between the immune system and an exponentially replicating pathogen[J]. Mathematical Biosciences and Engineering, 2010, 7(3): 579-602. doi: 10.3934/mbe.2010.7.579

    Related Papers:

    [1] Eduardo Ibarguen-Mondragon, Lourdes Esteva, Leslie Chávez-Galán . A mathematical model for cellular immunology of tuberculosis. Mathematical Biosciences and Engineering, 2011, 8(4): 973-986. doi: 10.3934/mbe.2011.8.973
    [2] Maysaa Al Qurashi, Saima Rashid, Fahd Jarad . A computational study of a stochastic fractal-fractional hepatitis B virus infection incorporating delayed immune reactions via the exponential decay. Mathematical Biosciences and Engineering, 2022, 19(12): 12950-12980. doi: 10.3934/mbe.2022605
    [3] Bruno Buonomo, Marianna Cerasuolo . The effect of time delay in plant--pathogen interactions with host demography. Mathematical Biosciences and Engineering, 2015, 12(3): 473-490. doi: 10.3934/mbe.2015.12.473
    [4] Maria Vittoria Barbarossa, Christina Kuttler, Jonathan Zinsl . Delay equations modeling the effects of phase-specific drugs and immunotherapy on proliferating tumor cells. Mathematical Biosciences and Engineering, 2012, 9(2): 241-257. doi: 10.3934/mbe.2012.9.241
    [5] Urszula Foryś, Jan Poleszczuk . A delay-differential equation model of HIV related cancer--immune system dynamics. Mathematical Biosciences and Engineering, 2011, 8(2): 627-641. doi: 10.3934/mbe.2011.8.627
    [6] Mohammed Meziane, Ali Moussaoui, Vitaly Volpert . On a two-strain epidemic model involving delay equations. Mathematical Biosciences and Engineering, 2023, 20(12): 20683-20711. doi: 10.3934/mbe.2023915
    [7] Jordi Ripoll, Jordi Font . Numerical approach to an age-structured Lotka-Volterra model. Mathematical Biosciences and Engineering, 2023, 20(9): 15603-15622. doi: 10.3934/mbe.2023696
    [8] Suqi Ma . Low viral persistence of an immunological model. Mathematical Biosciences and Engineering, 2012, 9(4): 809-817. doi: 10.3934/mbe.2012.9.809
    [9] Beryl Musundi . An immuno-epidemiological model linking between-host and within-host dynamics of cholera. Mathematical Biosciences and Engineering, 2023, 20(9): 16015-16032. doi: 10.3934/mbe.2023714
    [10] Joseph E. Carroll . A two-dimensional discrete delay-differential system model of viremia. Mathematical Biosciences and Engineering, 2022, 19(11): 11195-11216. doi: 10.3934/mbe.2022522
  • In this work, we generalize the Pugliese-Gandolfi Model [A. Pugliese and A. Gandolfi, Math Biosc, 214,73 (2008)] of interaction between an exponentially replicating pathogen and the immune system. After the generalization, we study the properties of boundedness and unboundedness of the solutions, and we also give a condition for the global eradication as well as for the onset of sustained oscillations. Then, we study the condition for the uniqueness of the arising limit cycle, with numerical applications to the Pugliese-Gandolfi model. By means of simulations, we also show some alternative ways to reaching the elimination of the pathogen and interesting effects linked to variations in aspecific immune response. After shortly studying some pathological cases of interest, we include in our model distributed and constant delays and we show that also delays may unstabilize the equilibria.


  • This article has been cited by:

    1. Talal Alzahrani, Raluca Eftimie, Dumitru Trucu, Multiscale moving boundary modelling of cancer interactions with a fusogenic oncolytic virus: The impact of syncytia dynamics, 2020, 323, 00255564, 108296, 10.1016/j.mbs.2019.108296
    2. MONIKA JOANNA PIOTROWSKA, MAREK BODNAR, URSZULA FORYŚ, Tractable Model of Malignant Gliomas Immunotherapy with Discrete Time Delays, 2014, 21, 0889-8480, 127, 10.1080/08898480.2013.804690
    3. Alberto Gandolfi, Andrea Pugliese, Carmela Sinisgalli, Epidemic dynamics and host immune response: a nested approach, 2015, 70, 0303-6812, 399, 10.1007/s00285-014-0769-8
    4. Monika Joanna Piotrowska, Marek Bodnar, Jan Poleszczuk, Urszula Foryś, Mathematical modelling of immune reaction against gliomas: Sensitivity analysis and influence of delays, 2013, 14, 14681218, 1601, 10.1016/j.nonrwa.2012.10.020
    5. Marcello Delitala, Umberto Dianzani, Tommaso Lorenzi, Matteo Melensi, A mathematical model for immune and autoimmune response mediated byT-cells, 2013, 66, 08981221, 1010, 10.1016/j.camwa.2013.06.026
    6. Todd R. Young, Richard Buckalew, Addison K. May, Erik M. Boczko, A low dimensional dynamical model of the initial pulmonary innate response to infection, 2012, 235, 00255564, 189, 10.1016/j.mbs.2011.12.004
    7. Todd R Young, Erik M Boczko, Early treatment gains for antibiotic administration and within human host time series data, 2018, 35, 1477-8599, 203, 10.1093/imammb/dqw025
    8. Monika J. Piotrowska, Urszula Foryś, The nature of Hopf bifurcation for the Gompertz model with delays, 2011, 54, 08957177, 2183, 10.1016/j.mcm.2011.05.027
    9. Shujing Shi, Jicai Huang, Jing Wen, Shigui Ruan, Bifurcation Analysis of a Dynamical Model for the Innate Immune Response to Initial Pulmonary Infections, 2020, 30, 0218-1274, 2050252, 10.1142/S0218127420502521
    10. Paul A. Valle, Luis N. Coria, Diana Gamboa, Corina Plata, Bounding the Dynamics of a Chaotic-Cancer Mathematical Model, 2018, 2018, 1024-123X, 1, 10.1155/2018/9787015
    11. Florent Feudjio Kemwoue, Vandi Deli, Joseph Marie Mendimi, Carlos Lawrence Gninzanlong, Jules Fossi Tagne, Jacques Atangana, Dynamics of cancerous tumors under the effect of delayed information: mathematical and electronic study, 2022, 2195-268X, 10.1007/s40435-022-01031-2
    12. Florent Feudjio Kemwoue, Vandi Deli, Hélène Carole Edima, Joseph Marie Mendimi, Carlos Lawrence Gninzanlong, Mireille Mbou Dedzo, Jules Fossi Tagne, Jacques Atangana, Effects of delay in a biological environment subject to tumor dynamics, 2022, 158, 09600779, 112022, 10.1016/j.chaos.2022.112022
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2507) PDF downloads(467) Cited by(12)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog