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Abstract. In this work, we generalize the Pugliese-Gandolfi Model [A. Pugliese
and A. Gandolfi, Math Biosc, 214,73 (2008)] of interaction between an expo-
nentially replicating pathogen and the immune system. After the generaliza-
tion, we study the properties of boundedness and unboundedness of the solu-
tions, and we also give a condition for the global eradication as well as for the
onset of sustained oscillations. Then, we study the condition for the uniqueness
of the arising limit cycle, with numerical applications to the Pugliese-Gandolfi
model. By means of simulations, we also show some alternative ways to reach-
ing the elimination of the pathogen and interesting effects linked to variations
in aspecific immune response. After shortly studying some pathological cases
of interest, we include in our model distributed and constant delays and we
show that also delays may unstabilize the equilibria.

1. Introduction. Oscillations are among the core business of physiological pro-
cesses, at all spatial and temporal scales [1]: from cell division cycle to circadian
oscillations up to heart beats. Moreover, many interesting examples of oscillations
are observed in cases of pathologies.

In particular, Mackey and coworkers were among the first to use the expression
“dynamical diseases” [2, 3] to indicate some pathological states which, in terms of
the behavior of their specific biological variables, are not characterized by steady
states or by exponential explosions, but by persistent oscillations of various kinds
(periodic, quasiperiodic or chaotic).

In particular, as stressed and documented by Stark et al. in their recent ex-
cellent review on oscillations in immune system[4], in the experimental and clin-
ical immunology literature wide range of damped and also persistent oscillations
is observed: from malaric periodic fevers [4] to tumor-immune system interactions
[5, 6, 7, 8], passing through cyclic neutropenia[9, 4, 10] and, of course, to the re-
sponse to antigens [4, 11, 12, 13, 14].

The possible causes of the arising of these oscillations have been theoretically
investigated, and particular stress has been given to the possible role of delays
[10, 15, 16, 17, 18], since it is well known that a key mechanism for the insurgence
of oscillations in many biological interactions is the presence of delays [19, 20, 21],
and, in particular, delays are a fundamental trigger of oscillations in the above
mentioned ’dynamical diseases’ [20, 3, 19].
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Also in tumour immuno-biology delays have been explored as sources of oscilla-
tions. For example, Galach [17] studied the role of delays in the tumour-stimulated
proliferation of effectors by adding a constant lag in the corresponding term of the
model by Kutsnetsov et al. [22], and Villasana and Radunskaja also proposed a de-
layed model of tumour-immune system interplay [15] huilt on the Kirschner-Panetta
model [5].

However, among the causes of these phenomena there may also be the interac-
tions, in absence of delays, of the involved populations: the immune system effectors
and proteins and the nonself pathogens, for example the tumor cells. Indeed, delay
independent oscillations have theoretically been shown in some papers with refer-
ence to tumor-immune system interaction [5, 23, 24] . In particular, it was studied in
[24] whether the limit cycle arising from the instabilization of the equilibrium state
between immune system and tumor cells is unique. However, as stressed above,
cycles may arise in response of the immune system to more general pathogens, and
the existence and uniqueness of limit cycle for a simple antibody-antigen model of
immune system was studied in [25].

In [26] Pugliese and Gandolfi proposed an interesting bidimensional model of
the interaction between an exponentially proliferating pathogen and the immune
system, which takes into account both aspecific and specific immunity, and which
was able to reproduce all the known basic phenomena of this interaction, including
sustained oscillations. However, no further investigation was done on these peri-
odic variations, neither on the conditions leading to the global eradication of the
pathogen by the immune effectors.

However, the Pugliese-Gandolfi model is based on very strong assumptions on the
specific effects, at the population scale, of the interactions between immune system
and pathogen, assumptions translated in the use of specific functions modelling the
action of the innate immune system, on the destroying activity of the effectors on
the pathogen, and on the stimulation of the proliferation of immune cells by the
presence of the pathogen. Is this acceptable given the general pourpose of the model
and the wide extension of the diseases that may be modelled through this model ?
Thus, in this work, following our previous studies on tumors, we will analytically
study this topic within the mathematical framework of the approach, introduced
by us in Refs. [23, 24], based on a family of finite-dimensional models, instead
of the classic finite-dimensional approach based on specific models with constant
parameters to be tuned. Indeed, the approach based on meta-models (where meta-
model means a family of models) is a natural way to capture the common features
of such a wide family of immune interactions, and it allows to get inferences that
are independent on the specific choice of the functions representing the various
interactions between the two populations. In this general framework we shall give
conditions for the global eradicability of the pathogen. We shall then focus on
the assessment of the uniqueness and, in some cases, global attractiveness of the
limit cycle, which is a topic of interest not only from a mathematical but also
from a biological point of view. Numerical simulations on the specific Pugliese-
Gandolfi model will be performed to assess the influence of the various biologically
relevant parameters on the amplitude of the oscillations. After briefly analysing
some relevant cases of deranging of the standard behavior of the immune system,
we finally also investigate the impact of delays by focusing in lags in the pathogen-
stimulated proliferation of effectors. The effect of time delay in this process is
taken into account to approximate missing dynamical components such as chemical
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signals, B-lymphocytes maturation and activation of T-lymphocytes[27]. Immune
system needs time, indeed, to identify the pathogens and to adequately react[28,
17]. It is also important to note that cell division length for IS effectors may
range between 0.9 and 12 days [27, 15]. Here we shall focus on two particularly
relevant patterns of delays: constant lags and exponentially distributed lags. In
both cases we shall show that if the delay exceeds a threshold there is the onset
of oscillations. To complement our analytical investigations, we also perform some
numerical simulation on some specific instances of the proposed family of models.

2. Modelling the interaction between a pathogen and the immune sys-
tem. In [26] Pugliese and Gandolfi proposed the following non-dimensional model
for the dynamics of interaction between a pathogen and its host’s immune response:

x′ = αx − mx

1 + βux
− x

1 + βsx
y (1)

y′ =
x

1 + γx
y − y + η

where x(t) is the density of pathogen load, and y(t) is the level of specific immunity,
for example the density of specific T-cells or of antibodies. It is assumed that the
pathogen is exponentially replicating with a net rate α (i.e. the net rate of positive
growth for the pathogen population), which is related to the doubling time of the
pathogen by the well known formula α = Ln(2)/Td. A characteristic feature of the
system is that the immune predation is monotonically increasing with the pathogen
burden up to a saturation level, namely a Holling type II functional response, for
both the aspecific and the specific immune response. The a-specific response is
modelled by: mx/(1 + βux) and the specific one by yx/(1 + βsx). The replication
of immune cells is stimulated by the presence of pathogen and up to a saturation
again following a Holling type II function: x/(1 + γx). The saturation level γ−1 is
assumed to be in all cases greater than the death rate constant, which is equal to
one, since the average life of the immune effectors is taken as time unit. Finally,
there is a influx of effectors at a constant rate η. In [26], both the asymptotic and
the transitory behavior of the system were studied, and it was analytically shown
that periodic attractors may be possible.

Here we generalize the above equations (1) by considering the following quite
general family of models:

x′ = x (α − M(x) − φ(x)π(y)) (2)

y′ = −y + P (x)y + η(x)

where:

• M(x) is the rate of pathogen-killing by the innate immune system. We as-
sume that it is a decreasing function of the pathogen load: M ′(x) < 0. For
simplifying the following calculations we, without loss of information, deine
the cojstant m = M(0) and we assume that: M(x) = m

Ku(x) , with: K ′
u(x) > 0

and (of course): Ku(0) = 1. We shall call m the baseline aspecific immune
reaction;

• Ku(x) for large x is an infinitum of order q ≥ 1: Θ(xq) (where b = θ(aq)
stands for infinitum of order q, i.e. for large a it is b ≈ aq). Biologically this
means that for large burden of pathogens either the rate of their elimination
by the aspecific immune effectors reach a saturation level (q = 1) as in model
(1), or it reduces and goes to zero (q > 1);
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• φ(x) is the rate at which the pathogens are killed by the specific immune
system, and it is a decreasing function of x: φ′(x) < 0. As in the Gandolfi-
Pugliese model, the system is non-dimensionalized so that the baseline specific
immune reaction is equal to the unity: φ(0) = 1. Again for the sake of the
notation simplicity we set: φ(x) = 1

Ks(x) , K ′
s(x) > 0. The latter might be the

case of some pathogens that are able to infect macrophages [29, 30, 31];
• Ks(x) for large x is an infinitum of order f > 0: Θ(xf );
• The predation function π(y), unlike eq. 1 is, in general, not linear, although

it is assumed increasing: π′(y) > 0. Moreover, for large y we assume that
π(y) = θ(yν) with ν > 0, in order to model, in addition to the baseline linear
case (ν = 1), possible i) decreased predation efficiency due to competitive
inter-effectors interactions (ν < 1) or increased efficiency due to cooperative
interactions (ν > 1);

• The average lifespan of the immune effectors is the referencee time used in the
non-dimensionalization;

• P (x) is the pathogen-stimulated proliferation rate of the immune effectors,
and it is increasing with the pathogen load: P ′(x) > 0, is null in absence of
the pathogen: P (0) = 0, and for large loads it is anycase greater than the
death rate of the effectors: P (+∞) > 1. The last assumption implies that a
xm > 0 exists where P (xm) = 1;

• η(x) is the influx rate of effectors, and we assume (see for the oncologic context
[32, 23] and references therein) that it is a non-increasing function of x due
to the possible negative feedback of the pathogens on the efficiency of the
immunopoietic system: η′(x) ≤ 0. However, we assume that this negative
influence of pathogen is not able to totally suppress the production of effectors:
η(+∞) = η∞ > 0. We denote the baseline influx η(0) as η0;

We stress here that the above family of models (2), although similar, is quite differ-
ent from the tumor-related families of models of [23, 24]. In fact, the function M(x)
makes the dynamics of the pathogen density x(t) quite different. For example, in
absence of the specific response, i.e. setting y = 0 and η(x) = 0, one gets:

x′ = x(α − M(x)) (3)

where the relative growth rate is now an increasing function, instead of being con-
stant or decreasing. This also implies the possibility that the pathogen may be
cleared, in some cases, by the aspecific immunity.

Moreover, here the interaction between the pathogens and the immunity effectors
does not affect the death rate of y(t), which deeply affects the dynamics of the
systems introduced in [23, 24].

Significant biological differences also exist with respect to the model (1) proposed
in [26]. In particular, here the immune system functional responses

U(x) := xφ(x) , V (x) := xM(x)

that represent the killing ability of the, respectively, specific and a-specific immune
response are not necessarily saturating : they may also be non-monotone. An
example of non-monotone V (x) is

V (x) =
mx

1 + βu1x + βu1x2
.

Moreover, the predation function π(y) is no longer linear, as in Ref. [23], but it
is a generic growing function. The nonlinear behavior of π(y) has been introduced
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to model competitive (e.g. ν < 1) [33, 34] and/or cooperative (e.g. ν > 1) inter-
effectors interactions [35, 36].

As far as the biological and mathematical soundness of the family (2), it holds
that:

Proposition 1. The model (2) is well posed since R
2
+ is positively invariant and

its solutions are defined for t ∈ [0, +∞). Moreover, the set S = R+ × [η∞, +∞) is
positively invariant and attractive.

Proof. The positive invariance follows from the fact hat, as it is easy to verify, the
normal of the vector field associated to (2) is directed inwardly, in both the x and
y non-negative semi-axes. Moreover, since :

x′ < αx

and

y′ < P (∞)y − y + η(0) (4)

thus both the state variables are exponentially bounded, and as such the orbits are
defined for all t > 0. Finally, the positive invariance and attractiveness of the set S
follows from the differential inequality:

y′ > −y + η∞ ⇒ minlimt→+∞y(t) ≥ η∞

3. Nullclines and boundness (and unboundness) of orbits. In order to de-
termine the critical points, we need to assess the properties of the nullclines. Setting
x′ = 0, and defining:

ỹC(x) = Ks(x)(α − m

Ku(x)
) (5)

it yields that the x-nullcline is given by:

π(yC(x)) = ỹC(x) ⇒ yc(x) = π−1 (ỹC(x)) . (6)

We start noticing that yc(x) is increasing since:

π′(y)y′
C(x) = K ′

s(x)(α − m

Ku(x)
) + K ′

s(x)
mK ′

u(x)

K2
u(x)

> 0.

Moreover, as the growth rate α increases the x nullcline shifts upward, whereas as
n increases the x nullcline shifts downward. Indeed:

∂αyC(x; α, m) =
Ks(x)

π′(y)
> 0, ∂myC(x; α, m) = − Ks(x)

Ku(x)π′(y)
< 0,

which is biologically reasonable.
Moreover, remembering that Ks(x) = Θ(xf ), whereas π(y) = Θ(yν), it follows

that yC(x) = Θ(xf/ν).
Finally, there is another trivial nullcline, the positive semi-axe: x = 0, y ≥ 0.
Setting y′ = 0, one gets the y-nullcline:

yi(x) =
η(x)

1 − P (x)
(7)

which has a vertical asymptote at xm, and to which we add the further constraint:

y′
i(x) > 0 if 0 ≤ x < xm (8)
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Proposition 2. If

α <
ν

f
(P (∞) − 1) (9)

then the orbits of (2) are bounded, whereas if f ≥ 1 and

α > ν (P (∞) − 1) (10)

the orbits are unbounded and:

limt→+∞ (x(t), y(t)) = (+∞, +∞).

Proof. From the differential inequality (4) it follows that:

y(t) ≤ ŷ(t) = − η(0)

P (∞) − 1
+

(
y(0) +

η(0)

P (∞) − 1

)
Exp ((P (∞) − 1) t) (11)

implying:

x′ > αx − VS − USπ (ŷ(t)) . (12)

where:

VS = Supremumx≥0V (x), US = Supremumx≥0U(x).

Thus, since for large t it is:

π (ŷ(t)) = Θ (Exp (ν (P (∞) − 1) t)) ,

it follows that if (10) holds then the orbits are unbounded.
To show that the constraint (9) implies the boundeness of the orbits, we shall

construct a bounded set. Let us start from an initial point (x0, y0) lying on the lower
border of S, i.e. with y0 = η∞. Moreover, let us suppose that x0 is sufficiently larger
than xm to be such that P (x0) = P (∞)− ǫ with P (∞) >> ǫ. Thus, the orbits will
“start” and remain in the region y < yP (x) AND x > cm where x′ > 0 and y′ > 0.
Thus, the initial branch of the orbit will lie there on a curve Y (x) defined by:

dY

dx
=

(P (x) − 1)Y (x) + η(x)

x (α − M(x)m − φ(x)π(Y (x)))

which, thanks to the fact that x′ > 0 is such that:

dY

dx
>

(P (∞) − 1 − ǫ)Y (x)

αx
⇒ Y (x) ≥ η∞

(
x

x0

)P (∞)−1−ǫ

α

.

Now, remembering that the x-nullcline is: yc(x) θ(xf/ν ) if follows that if:

P (∞) − 1 − ǫ

α
>

f

ν

i.e. if (9) holds then the curve (x, Y (x)) crosses the x nullcline, let us say a to a
point (xA, yA). Since now the orbit is in a region where y′ > 0 and x′ < 0, this
orbit either crosses yi(x) or is such that

limt→+∞ (x(t), y(t)) = (xw, +∞)

with xw > xm. However, in the second case it would be x(t) → 0+, contradicting
the fact that xw > xm. thus, the orbit crosses the y nullcline at (xA, yi(xA)) and
enter in a region where y′ < 0. As a consequence, we showed that the orbits are
bounded.
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Remark 1. From (9) it follows that if f << 1, i.e. if the killing rate is U(x) ≈ kx,
then the orbits are bounded up to very high values of α, and similarly if P (∞) >> 1.
This means that a mass action law for killing of pathogens is enough to at least
impede the exponential expansion of the pathogens, and the control is also reached
if the replication rate of effectors is sufficiently stimulated.

Moreover, it holds that:

Proposition 3. In the case f 6= 1, if the initial condition on the pathogen burden
X(0) is sufficiently large and:

α >
ν

f
(P (∞) − 1) (13)

then the orbits are unbounded.

Proof. Proceeding as in the first part of the preceeding proof, we observe that for
large times and large initial conditions since it has to be;

(C − ǫ)xf < Ks(x) < (C + ǫ)xf , 0 < M(x) < ǫ1

as a consequence it follows that:

x′ > (α − ǫ1)x − Ax1−fπ (Exp ((P (∞) − 1)t)) . (14)

So that x(t) > w(t), where w(t) is the solution of the differential equation:

w′ = αw − Aw1−fπ (Exp ((P (∞) − 1)t)) , w(0) = x(0)

which can be solved by transforming it the following linear ODE:

z′ = fαz − fAπ (Exp ((P (∞) − 1)t)) , z(0) = xf (0).

where: z = wf .
Thus, being π(u) an infinite of order ν > 0, we have that if (13) holds then z(t)

is divergent, implying the unboundedness of x(t) and in turn also of y(t), i.e. the
orbits are unbounded.

Remark 2. Constraints (10) and (13) show that if the replication rate is sufficiently
large, then there is the possibility of unbounded orbits.

4. Attractors. Since also x = 0 is a x-nullcline, we observe that all model belong-
ing to our family have a ’pathogen-free’ equilibrium point:

PFE = (0, η(0))

to which is associated the following linearized equation for x:

x′
l = (α − m − φ(0)π (η(0)))xl

implying that:

Proposition 4. If:
α < m + φ(0)π (η(0)) , (15)

i.e. if
yi(0) > yc(0) (16)

then PFE is LAS. If
α > m + φ(0)π (η(0)) , (17)

i.e. if
yi(0) < yc(0) (18)

then PFE is unstable.
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and this corollary:

Corollary 1. If m > α then the pathogen is locally eradicated.

Remark 3. The above proposition provides the conditions needed in order that the
immune system may neutralize small amounts of pathogens, which are summarized
in constraint (15) whose biological meaning is straightforward: the sum of baseline
killing rate of the aspecific and of the specific immunity weighted by π(η(0)) (i.e.
by the ’killing efficiency’ of the baseline amount of effectors) must be greater than
the replication rate of the pathogen. The above corollary simply says that if the
innate immunity itself is greater at the baseline than the replication rate of the
pathogen, then the aspecific immune effectors are able to clear out small amounts
of pathogens.

In absence of the specific immunity the dynamics of the pathogens density x
would be ruled by equation (3), so that the behavior would be the following: i)if
α > M(x) then x(t) → +∞ (i.e. the innate defense would only be active in
decelerating the replication of the pathogen); ii) If m > α thus it exists a xinn

such that M(xinn) = α and the behavior is dichotomic. If 0 < x(0) < xinn then
x(t) → 0, if x(0) > xinn then the pathogen density diverges.

Coming back to the general case where both the immune reaction are present,
depending on the specific functions P (x), Ku(x) etc... the model may have 0, 1, 2
or more other critical point. Of course, if yi(x) > yc(x) there is only an equilibrium:
the PFE, and:

Proposition 5. If yi(x) > yc(x) and (9) hold then PFE is globally asymptotically
stable in R

2
+

Proof. If yi(x) > yc(x) and (9) hold then the set

Q =
{
(x, y) ∈ R

2
+|y > yc(x)

}

is positively invariant and attractive. Thus, defining the following LaSalle-Liapounov
function L = x and applying the LaSalle’s invariance principle, it easily follows our
claim.

Remark 4. Note that, although the pathogen free equilibrium does not depend on
the parameter m, its stability may be influenced by the aspecific immune reaction
that may induce not only local, but also global eradication of the pathogen since
∂myc(x; m) < 0. The contribute of aspecific immunity in eradicating pathogens is
illustrated in fig. 1 where we plotted the nullclines yi(x) and three instances of
yc(x; α, m), as well as an example of global eradication of the pathogen.

Let us consider a generic non-eradicative equilibrium EQ = (xe, ye) with xe > 0
(and ye > 0). We start noticing that, since y′

c(x) > 0 and y′
i(xm) = +∞, it

follows that if yi(0) > yc(0) (i.e. if PFE is LAS) then there is an odd number
of those nontrivial equilibria: 0,2,. . . . Moreover, by rewriting (2) in the following
convenient form:

x′ = U(x) (ỹC(x) − π(y)) (19)

y′ =
η(x)

yi(x)
(yi(x) − y)
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Figure 1. Contribute of aspecific immunity in eradicating
pathogens. In upper panel, plot of the nullclines yi(x) (dotted lines)
and of three instances of yc(x; α, m) for α = 15 and i m = 14.9
(thick solid line): unstable PFE; ii) m = 15.5 (dashed line): LAS
PFE and iii) m = 16.1 (solid line): GAS PFE. In central and lower
panels, respectively, plots of x(t) and y(t) for m = 16.1 and cor-
responding to the following ’non-small’ initial condition: (1, 0.3).
Values of the other parameters: η = 0.05,γ = 0.05, βu = 0.1 and
βs = 0.001.
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after some algebra, one can show that the linearization of (2) has an associated
characteristic polynomial λ2 + a1λ + a0 where:

a1 =
η(xe)

yi(xe)
− π′(ye)U(xe)y

′
C(xe)

ao =
η(xe)

yi(xe)
π′(ye)U(xe) (y′

i(xe) − y′
C(xe)) .

Thus:

Proposition 6. If:

y′
i(xe) > y′

C(xe) AND y′
C(xe) <

η(xe)

π′(ye)yi(xe)U(xe)
(20)

then EQ is locally asymptotically stable. IF

y′
i(xe) < y′

C(xe) OR y′
C(xe) >

η(xe)

π′(ye)yi(xe)U(xe)
(21)

then EQ is unstable.

Remark 5. The LAS condition (20) simply means that, in order that EQ may be
LAS, the slope of the tangent line at x = xe of the y-nullcline must be greater than
the slope of the tangent of the x-nullcline, and that this second slope must not be
’excessively large’.

Remark 6. Note that, in the case π(y) = y, if α is sufficiently large, then there is
a unique equilibrium point xe ≈ xm that is unstable. In fact, the derivative of the
x nullcline is increasing with α: ∂αy′

C(x; α) = ks(x) > 0.

Moreover, in case of unique non-trivial equilibrium point the Poincare’ Bendixon
thricotomy easily yields that:

Proposition 7. Let us suppose that EQ is the unique non-trivial equilibrium and
that (9) holds. Thus, if EQ is unstable with a0 > 0 then EQ is surrounded by at
least a locally stable limit cycle.

Proof. Note preliminarily that we supposed that there are only two equilibria: PFE
and EQ, i.e. for x ∈ (0, xe)∪(xe, xm) there is no other intersection between the two
null-clines. PFE is unstable and its stable manifold, as it is immediate to verify, is
the y-axis. Furthermore, since a1 < 0 and a0 > 0 there are no homoclinic orbits.
Thus, thanks to the Poincare’-Bendixon trichotomy it follows the existence of at
least a LAS limit cycle.

Remark 7. Note that if a0 < 0 then the eigenvalues at x = xe are real and of
opposite signs, so that there can be either a homoclinic orbit or a heteroclinic orbit
linking EQ to PFE.

Finally, note that since, by applying the implicit functions theorem, one easily
gets:

∂xe

∂m
= − 1

ϕ(x)Ku(x)

1

y′
i(xe) − y′

i(xe)
,

∂ye

∂m
= y′

i(xe)
∂xe

∂m

it follows that increasing the baseline aspecific immune reaction m decreases both
the coordinates of of a LAS equilibrium, as well as those of an unstable equilibrium
point around which a periodic orbit cycles. On the contrary, there is an increase of
the coordinates of an unstable equilibrium.
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5. Uniqueness of the limit cycle and its dependance on the parameters.
Given a simple nonlinear ODE bi-dimensional model, however simple it may be, the
determination of the number n of its limit cycles and, in particular, determining
if n = 1 is a non trivial task. However, some significant theoretical results have
been obtained in recent years by reduction of prey-predator models to equivalent
Lienard’s equations [37, 38]. Since we are dealing with a family of models, we limit
to find Lienard’ equations starting from the family 2 and then we state some generic
propositions in which we simply translate theorems of the theory of limit cycles in
terms of our biomedical problem. We shall also provide some numerical examples
on the model 1, by showing that it may admit a unique and GAS limit cycle.

In the case of non-null immune influx (η(x) > 0) and π(y) = y, after defining the
variable

u = ln(x) (22)

and the functions:

φ̂(u) = φ (Eu) ,ŷC(u) = yC (Eu) ,B̂(u) = B (Eu) ,η̂(u) = η (Eu) (23)

we may rewrite model 2 in the form:

u′ = φ̂(u)(ŷC(u) − y) (24)

y′ = B̂(u)y + η̂(u)

If we define:

dτ = φ̂(u(t))dt , A(u) =
B̂(u)

φ̂(u)
, R(u) =

η̂(u)

φ̂(u)
, (25)

and eliminate the y variable, one obtains the following equivalent Lienard’s equation:

u′′(τ) −
(
(ŷ′

C(u) + A(u)
)
u′(τ) + A(u)ŷC(u) + R(u) = 0, (26)

i.e. a Lienard’s equation with Lienard’s functions:

fL(u) = −
(
(ŷ′

C(u) + A(u)
)

, gL(u) = A(u)ŷC(u) + R(u). (27)

Thus, one may apply various theorems for the uniqueness of limit cycle of (26).
Among them, the application of Zhang’s theorem [39] leads to the following propo-
sition:

Proposition 8. For model (24) with η(x) > 0 > and π(y) = y, if there hold the
conditions listed in prop (6) and if in R+ − {log(xe)} it is:

d

du

( ŷ′
C(u) + A(u)

A(u)ŷ′
C(u) + R(u)

)
< 0, (28)

then there is a unique GAS limit cycle.

Let us consider the particular case of model 1. Applying proposition (8), and
setting back Eu = x, and, finally, applying formula (28) one obtains a very complex
rational function of x (and of all the parameters), whose denominator is positive.
Thus the sign of the constraint is determined by the numerator which is in the
following form:

S(x; α, η, γ, βu, βs, m) = x
8∑

i=0

ci(α, η, γ, βu, βs, m)xi,

where the coefficients ci are second order polynomials in α.
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Using the set of parameters:

α = 1.9, η = 0.05, γ = 0.05, βu = 0.1, βs = 10−10, m = 1.5 (29)

that were used in [26] and that leads the onset of at least a limit cycle (see figure
2-left), it yields:

S(x) = x(−0.1525 + 0.26975x− 0.105731x2 − 0.0294475x3

−0.00148431x4 − 9.3564310−13x5 − 1.5430410−14x6

−3.429510−24x7 − 1.8862310−34x8).

The function S(x) is negative, as illustrated in figure 2-right, and as one can see
from the following inequality:

S(x) < xS3(x) = x(−0.1525 + 0.26975x− 0.105731x2 − 0.0294475x3)

since, as it is easy to verify with standard methods, S3(x) < 0.
Similar results can be obtained by using greater values of βs, up to βs = βu = 0.1.

The effect of the increase of βs (for this and other value of α) is of increasing the
amplitude (both for pathogen and for the immune system).
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Figure 2. Left: replica of the Figure 3 of [26]: orbits starting
by two randomly chosen points, one internal to the limit cycle
the other external, and both converging to the unique limit cycle.
Right: plot of the associated S(x). The values of the parameters
are as in (29)

.

Increasing α alone up to α = 3.0, we see that the constraint (28) is again fulfilled,
since:

S(x) = x(−0.3175 + 0.25325x− 0.129244x2 − 0.0325825x3 − 0.00156269x4

−1.26174 ∗ 10−12x5 − 2.27963 ∗ 10−14x6 − 5.415 ∗ 10−24x7 − 3.135 ∗ 10−34x8)

and it is:
S(x) < x(−0.3175 + 0.25325x− 0.129244x2) < 0.

More in general, assuming that all the other parameters are constant, we verified
that for a wide range of α it is S(x; α) < 0, i.e. there is a unique limit cycle.
Moreover, in order to perform some semi-analytical computations, we note that the
coefficients ci(α) i = 0, . . . , 8 are such that : c2 < 0, c7 < 0, c8 < 0 and c3, c4, c5, c6

are negative up to huge values of α (e.g. c3 > 3.16109), whereas c0 < 0 for α > 0.883.
On the contrary, c1 < 0 only for big values of α, namely for: α > 19.88. So, we
may conclude that for a wide range of α it is:

S(x, α) < xT2(x; α)
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Figure 3. Simulation for the case where α = 3 and the other
values are as in (29). Left: orbits starting by two randomly chosen
points, one internal to the limit cycle the other external, and both
converging to the unique limit cycle. Right: plot of the associated
S(x)

where (neglecting the coefficients smaller than 10−10):

T2(x; α) ≈ 0.1325− 0.15α + x(0.29825− 0.015α) + x2(−0.0651187− 0.021375α)

whose maximum is:

T MAX
2 (α) = −0.147368(α− 1.99639)(α + 4.9083)

α + 3.04649

As a consequence, we may say that for α greater than 1.99639 up to huge values of α
there is a unique limit cycle. Numerically, it is easy to show that, in reality, S(x, α)
is negative also for 1.9 < α < 1.9936. Moreover, since for α < P (∞) − 1 = 19 the
orbits are bounded, implying that for 1.9 < α < 19 the unique limit cycle is also
globally attractive in R

2
+.

The simulations we performed to assess the influence of α on limit cycles were
of some interest since they revealed a paradoxical effect. Indeed, by using α = 3
and, for the other parameters the values of (29), we obtained a limit cycle that,
for the variable x(t), has maximum value xmax = 7 about (fig. 4-left), whereas by
increasing α the maximum burden of the pathogen fastly increased, for example
for α = 18 it is xmax = 850 about (fig. 4-right). This makes sense, since a faster
replicating pathogen intuitively should reach higher levels. However, if we we plot
the logarithm in base 10 of x as in the figure 5, we note that the increase of α
has also the effect of decreasing the minimum of x. Moreover, the decrease of
xmin is so sharp that it decrease from 10−2 down to 10−30, which is well under
the limit of validity of this deterministic model. The effect on the minima of y(t)
is, instead, very small, whereas the maxima of y(t) increase from 8 to 120 about.
Thus, by taking into account that for small values of x a stochastic model should
be used, the biological interpretation of this behavior is that, for this constellation
of parameters values, it is very likely that the increase of the replication rate of the
pathogen stimulates an immune reaction such that the pathogen burden reduces to
zero. Note that the immune system effectors y(t) at least for large t are bounded
by η∞.
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Figure 4. Plot of x(t) for two values of α, the other parameters
being as in (29). Left subfigure: α = 3, right: α = 18.
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Figure 5. Plot of Log10(x(t)) for two values of α, the other pa-
rameters being as in (29). Left subfigure: α = 3, right: α = 18.

The influence of βs is even more intriguing. Increasing it means decreasing
the saturation threshold of U(x), and decreasing globally U(x), thus one would
expect a great increase of the maximum x. However, one can also note (see figure
6): i) a strong decrease of xmin, which goes well under the limits of validity of
the deterministic modelling, so that the probability of stochastic extinction is very
likely big; ii) a fast increase of the length of the period of the limit cycle, which has
the effect of reducing the average value of x(t).

A decrease of the parameter γ implies an increase of the pathogen-stimulated
replication rate of the effectors such that the maximima of x sensibly reduces.

The variations of m, i.e. of the killing rate by the aspecific immunity, are the most
surprising. Indeed, the period increases and also the variance of the spikes reduces,
so that also in this case there is a reduction of the average value of x(t), however
increasing m the increase of xmax is nonmonotone. For example for α = 18 and the
other parameters (except m) as in (29) we obtained that xmax|m=1 = xmax|m=16 ≈
600 and around m = 5 it is xmax| ≈ 1500.

Finally, by setting α = 100, γ = 5 ∗ 10−4 and the other values as in (29), we
performed some simulations on the following quadratic family of rates π(y):

π(y) = y + ry2.

The family includes for r = 0 the linear rate π(y) = y that is such that xmax ≈ 480
and ymax ≈ 650, whereas in case of quadratic π(y) with r = 0.1 we observe a
reduction in the maximum x: xmax ≈ 300. Moreover, there is a remarkable decrease
of the time course of y: ymax ≈ 85.

6. Pathological cases. Our family of models refers to the case of physiologic be-
havior of the host organisms. However, it is also useful to consider dys-functionalities,
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Figure 6. Simulations of x(t) (left) and of Log10(x(t)) (right) for
two values of α = 18, βs = 0.001 and the other parameters being
as in (29).

and for this reason we shall briefly study two main cases: i) insufficient pathogen-
driven replication of immune particles: P (∞) < 1; ii) absence of influx: η(x) = 0.

In the case i), in model (2) we have only to take into account that P (x) < 1,
which, however, implies that:

−y + η∞ < y′ < −y (1 − P (∞)) + η(0)

i.e. that variable y is bounded: y ∈ (ym, yM ). Moreover, since thus:

x′ > x (α − M(x) − φ(x)π(yM ))

it follows that for sufficiently large x(0) there is unbounded proliferation of the
pathogen: x(t) → +∞.

In case ii) our model reads:

x′ = x (α − M(x) − φ(x)π(y)) (30)

y′ = P (x)y − y

Concerning the equilibria the point (xm, yC(xm)), which is as well unstable since
the characteristic polynomial of the associated Jacobi’s matrix reads as follows:

λ2 − U(xm)y′
C(xm)λ + U(xm)π′ (yc(xm)) yc(xm)P ′(xm).

A second equilibrium is (0, 0), which is unstable provided that M(0) < α. If M(0) >
α then (0, 0) is LAS, and there also is a third equilibrium point:

(
M−1(α), 0

)
, which,

as it is easy to verify, is unstable.
Finally, in case of coexistence of both these two abnormalities, biologically it is a

very simple matter to infer the behavior: since there is both absence of influx and
insufficient stimulation of the immune proliferation, as a consequence there will be
the extinction of the immune response. This phenomenon is correctly reproduced
by our model since :

y′ = (P (x) − 1)y < (P (∞) − 1) y ⇒ y(t) → 0

and

x′ → x (αx − M(x)) .

7. Effects of delays. In this section we shall briefly assess the effects of delays
concerning the stimulation of immune system replication in perturbing an equilib-
rium state, mainly focusing to the case where, in absence of lags, the equilibrium is
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locally asymptotically stable:

x′ = x (α − M(x) − φ(x)π(y)) (31)

y′ = P (z(t))y − y + η(x) (32)

z(t) =

∫ t

−∞

x(w)K(t − w)dw (33)

K(t) is the distributed delay kernel acting on the variable x(t) [19]. In order to
obtain simple but biologically robust results, we adopted as kernel the so called
Erlang distribution:

Erl(τ ; n, a) =
an

(n − 1)!
τn−1Exp(−aτ).

These distributions are such that the average delay is T = n/a and the standard
deviation is σ =

√
n/a. Note that if a = nq, q being constant, it is: T = 1/q and

σ = 1/(q
√

n)
Moreover, as it is well known, this family has the noteworthy property that it

allows to reduce the delayed models to finite dimensional models [19], by adding
the following linear differential equations involving n auxiliary state variables:

z′i = a(zi−1 − zi), i = 1, . . . , n (34)

with

z0(t) = x(t)

and

z(t) = zn(t).

Finally, the Erlang family of distributions is such that it includes for n = 1 the
exponential distribution, and also the Dirac’s delta distribution as limit case for
n → +∞:

limn→+∞Erl (τ ; n, nq) = δ

(
τ − 1

q

)

i.e. the case of constant delay.
We want to recall here that a delay in the dynamics of immune effectors ac-

counts for a complex chain of events[40]. For instance, in the case of a humoral
immune response, the pathogen must be processed by antigen presenting cells, T-
lymphocites must be activated and proliferate to become mature T-helper cells,
specific B-lymphocite must proliferate and differentiate in mature antibody pro-
ducing cells[41].

As usual when adding an Erlang distributed lag in a ODE model, system (31) is
such that if EQ = (xe, ye) is an equilibrium of (2), then EQdel = (xe, ye, xe, . . . , xe)
is an equilibrium for (31)-(32)-(34). The equilibrium is independent of the delay
parameter a, however its stability depends on a, which, thus, we shall assume as
bifurcation parameter.

For n = 1, i.e. for exponentially distributed delays, by applying the Routh-
Hurwitz criterion, it is possible to obtain a second order polynomial in a deter-
mining the local stability properties of the equilibrium, and the possibility of Hopf
bifurcation. Although in the general case the symbolic expression we obtained is
very complex, in the case η(x) = constant = η it is considerably simpler and more
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understandable. In fact, in such a case, one may rewrite the above delayed system
as follows:

x′ = U(x) (ỹC(x) − π(y)) (35)

y′ =
η

yi(z)
(yi(z) − y)

z′ = a(x − z)

whose characteristic polynomial at an equilibrium point EQdel = (xe, ye, xe) is :

λ3 + c2λ
2 + c1λ + c0

where:

c0 = a
ηU (xe)π′(ye)

yi (xe)
(y′

i (xe) − y′
C (xe))

c1 = a
η − U (xe) yi (xe)π′(ye)y

′
C (xe)

yi (xe)
− ηU (xe) p′(y)y′

C (xe)

yi (xe)

c2 = a − U (xe)π′(ye)y
′
C (xe) +

η

yi (xe)

The Routh-Hurwitz condition c1c2 − c0 > 0 (to be complemented by c2 > 0) reads
as follows:

RH(a) = B2a
2 + B1a + B0 > 0

where:

B0 =
ηU (xe) p′ (ye) y′

C (xe) (U (xe) yi (xe) p′ (ye) y′
C (xe) − η)

yi (xe) 2

B1 =
N1

yi (xe) 2

N1 = η2 − U (xe) yi (xe)π′ (ye) (2y′
C (xe) + y′

i (xe)) η

= +U (xe)
2yi (xe)

2p′ (ye)
2y′

C (xe)
2,

B2 =
η

yi (xe)
− U (xe)π′ (ye) y′

C (xe)

We have:

Proposition 9. Let EQdel be an equilibrium point corresponding, in the unlagged
model (2) to an equilibrium EQ. Thus:

1. If EQ is unstable with y′
i(xe) < y′

c(xe) then EQdel is unstable
2. If EQ is LAS, then it exists an a1 > 0 such that EQdel is LAS for a ∈

(a1, +∞) whereas it become unstable for 0 < a < a1, i.e. for sufficiently large
delays the equilibrium is unstabilized

3. If EQ is unstable with y′
C(xe) > η(xe)

π′(ye)yi(xe)U(xe) and

a∗ = U (xe)π′(ye)y
′
C (xe) −

η

yi (xe)
< a1 (36)

then EQdel is LAS for a ∈ (a∗, a1), i.e. for small average delays the equi-
librium remains unstable, for sufficiently large average delays it is stabilized,
and for larger delays it is again unstable.
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Proof. Case 1: if y′
i(xe) < y′

c(xe) then c0 < 0, implying that the characteristic
polynomial has at least a real positive root.

Now, note that B0 × B2 < 0, so that the equation RH(a) has in all cases a
positive solution a1. Thus, in Case 2 being c2 > 0 B0 < 0 and B2 > 0, then the
Routh-Hurwitz condition RH(a) > 0 is fulfilled in a ∈ (a1, +∞). On the contrary
in Case 3 being B0 > 0, B2 > 0 but c2 being of variable sign, the LAS condition
RH(a) > 0 AND c2 > 0 is fulfilled in a ∈ (a∗, a1).

As far as the behavior at the Hopf point a = a1, the existence of a Hopf bifurca-
tion requires verifying that

Re (λ′(a)) 6= 0

at (a, λ) = (aH ,
√

C0). We computed this expression, and it resulted very complex.
Thus we report here the results of our numerical simulations. We used the following
set of values for the parameters:

α = 1.6, η = 0.05, γ = 0.05, βu = 0.1, βs = 10−2, m = 1.5.

We obtained that in all cases, including the exponential, a Hopf bifurcation arises
with the onset of a limit cycle, as in figure 7. However, at least for the values we
used, we noticed that the oscillations arise for values of a that are roughly in the
interval (n, n + 1), which means that the average delay TH triggering the onset of
the limit cycle is around TH ≈ 1, i.e. TH is of the same order of the lifespan of
immune system effectors, which might not be a realistic value. However, for another
constellation of parametric values more realistic TH might occurr.

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

time

IM
M

U

Figure 7. Erlangian distributed delay of order n = 4 for a = 1/4.
Behavior of y(t).

In the case of presence of a constant lag, denoted as T ,the model (2) reads:

x′(t) = U(x(t)) (yC(x(t)) − π(y(t))) (37)

y′(t) =
η

yi(x(t − T ))
(yi(x(t − T )) − y) (38)

The linearization at an equilibrium point EQdel = (xe, ye) is thus:

x′
1(t) = U(xe)π

′(ye) (y′
C(xe)x1(t) − y1(t)) (39)

y′
1(t) =

η

yi(xe)
(y′

i(xe)x1(t − T ) − y1(t)) (40)
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whose characteristic equation is:

s2 + V s − AC = −E−sT AJ (41)

where, for the sake of the notation simplicity we set:

V =
η

yi(xe)
− U(xe)π

′(ye)y
′
C(xe)

A =
η

yi(xe)
U(xe)π

′(ye)

J = y′
i(xe), C = y′

C(xe)

We remember here that the condition for LAS of an equilibrium of the un-lagged
system are V > 0 and J > C. Searching for Hopf point by setting s = iω yields:

cos (Tω) =
ω2

AJ
+

C

J
(42)

sin (Tω) =
V

AJ
ω (43)

By applying the fundamental trigonometric equality, we get the bi-quadratic equa-
tion:

ω4 + (2AC + V 2)ω2 + A2
(
C2 − J2

)
= 0 (44)

Since (xe, ye) is LAS it is C < J , thus eq. (44) has this unique solution:

ωH = ±

√√√√− (2AC + V 2) +

√
(2AC + V 2)

2
+ 4A2 (J2 − C2)

2
(45)

As a consequence, from (42) and (43), and taking in account that the r.h.s of (42)
is positive, we gets:

Tk =
1

ωH

(
ArcTan

(
V ωH

ω2
H + AC

)
+ 2kπ

)
(46)

Now since:

ds

dT
|s=iω =

iAJωE−iωT

V + i2ω − TAJE−iωT
= AJω

(2ω + iV )E−iωT − iTAJ

|V + i2ω − TAJE−iωT |2 (47)

Thus the real part of ds/dT at the hopf points is proportional to

2ω2
Hcos(ωHT ) + V ωHsin(ωHT ) = 2ω2

H

(
ω2

AJ
+

C

J

)
+

V 2

AJ
ω2

H > 0 (48)

As a consequence, it holds that:

Proposition 10. It exists a

T0 =
1

ωH
ArcTan

(
V ωH

ω2
H + AC

)

with

,

such that: if 0 < T < T0 then EQdel is LAS, if T0 < T < T1 then EQdel is unstable
and at T = T0 there is a Hopf bifurcation with the arising of a limit cycle whose
period is:

TLC =
2π

ωH
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Figure 8. Constant delay T = 1: arising limit cycle.

8. Concluding remarks. We would like to stress that some results we present here
seems to well correlate with some known biological knowledge, but other inferences
seem new, so that they might lead to further theoretical and experimental research
of some biological interest.

For example, we showed that the effect of the aspecific immunity alone is local.
This well correlates with the common knowledge that the aspecific immunity, in
absence of specific immunity (as in the Severe Combined Immunodeficiency [41]),
fails when the host organism is initially attacked by a moderate or large amount
of pathogens (x(0) sufficiently big), or by fastly replicating pathogens (α > m).
Increasing the baseline aspecific reaction, however, has to be considered positive
since it can switch form instability to local stability the pathogen-free equilibrium,
thus protecting against contatcs with small loads of pathogen. However, our results
analytically confirm, at least in principle, that the aspecific immunity can induce
global eradication of the pathogen only if in conjunction with the specific immunity.

Moreover, the model shows that the dynamical effect of the increase of the base-
line aspecific immune reaction m in case of oscillating immune-pathogen patterns is
even more nonlinear, since it induces a nonmonotone response in the maxima of the
oscillations of the pathogen. This new theoretical finding, of course, should have
a confirm by means of available clinical data or by means of experiments based on
animal models.

The strong dependence of the minimum of the pathogen load during oscillations
on its replication rate very likely may lead to stochastic extinction of the population.
Thus, our model suggests that quickly replicating pathogens may more easily induce
acute than chronical diseases. The latter, in fact, would be characterized by constant
or periodic attractors with ’not so small’ values for xmin. This finding well correlates
with the literature hypothesis that slowly replicating viruses induce weaker immune
responses than those that are more rapidly replicating [40]. Of course, we must
stress that since also the maximum burden of the pathogen fastly increases when
α is increased, this means that particularly high proliferation rates of the pathogen
may correspond to ’fulminant’ diseases, as observed in HBV and HCV[40].
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Our simulations also showed that a global reduction of the killing rate U(x)
obtained by increasing βs has the effect of improving the response, since also in
this case xmin dramatically decreases, in other term decreasing this killing rate
seems to make the pathogen eradication more likely through stochastic effects. In
order to better understand this point we think that experimental and theoretical
investigation should be done on how modelling the interactions pathogens-effectors
when a very limited number of pathogens are present. For example, as follow up
of this work we are planning to change this model by allowing, for low levels of
pathogens, a different probability of killing them.

We devoted some space to the assessment of the uniqueness and GAS of oscil-
lations in pathogen-immune system interaction. This point is not only mathemat-
ically of some importance, but it also has some biological relevance. In fact, for
the general family (2), in proposition 2 we showed that the orbits may be bounded.
As a consequence, as illustrated in proposition (7), if the equilibrium is unstable
there is at least one stable limit cycle. We may think to the following three main
configurations:

• There is an unique limit cycle, which must be GAS;
• There is one stable limit cycle Lo and one or two unstable LCs, which, because

of their instability, are not physically observable: in the “real world” all the
orbits will tend to Lo. Roughly speaking, it is “as if” the system had an
unique GAS LC;

• There may be two or more locally stable cycles (birhytmicity), or even more
than two.

In the third case, the periodic behavior of pathogen and immune system effectors
interaction and, in particular, the period of the oscillations depend not only on the
kinetic features (such as the parameter α and the shape of the functions M(x), ϕ(x)
and P (x)), but also on the initial condition. Starting point belonging to different
basins of attraction of different periodic solutions would result in different behaviors.

Thus the assessment of the global stability of the cycle has an interesting bio-
logical meaning: independent of the initial pathogen burden and of immune system
effectors, two different pathogen-immune system systems having the same kinetic
characteristics oscillate not only with the same period, but also with the same
“law”. More interestingly, if there is a GAS limit cycle, in a host also large random
perturbations of the concentrations (due, for example to the inoculation of further
dose of pathogens) do not destroy the behavior before the perturbation, since the
orbit will tend to the same limit cycle.

In our family of models we did not explicitly include therapies, although some
extremely idealized constant therapies might easily be modelled by simply increasing
the parameter η. This increase has the effect of both moving upward the nullcline
yi and also the y coordinate of the PFE. As a consequence, the increase has the
effect of allowing not only local but also global eradication, since a sufficiently large
therapy dose may act so that: ∀x > 0 yi(x) > yC(x). However the inclusion in
the model of more realistic time-varying therapies might be not only interesting per
se, but might produce suggestions on the schedule of their delivering. Regarding
this last point, it would of course be very important to apply the methodologies of
optimal control theory, but also the theory of nonlinear resonances and chaos. In
fact, in case of oscillating patterns the delivering of periodic therapies might lead
to interesting phenomena that might contribute to the classification of response
pattern to drugs. For example, what might be the effect of the delivering of a
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periodic therapy of period T on a host organism whose response to an equivalent
constant therapy would be T -periodic?

As far as delays are concerned, here we only (and briefly) analyzed some quite
simple, although important, delaying kernels. Of course a further investigation on
both general kernels or some more realistic kernels might be of interest. However, a
really challenging investigation would be to infer the real delay distributions from
suitable biological data.

As far as the pathological conditions shortly illustrated in section 6, a detailed
theoretical study on them should give some insight of interest on many diseases
involving the activity of immune system. For example, when delivering a contant
therapy ηther > 0 in the pathological case of absence of influx, may easily be read
as restoring the system to a physiological condition.

Finally, as in all models of populations based on ODE or DDE (or on equivalent
nonlinear stochastic processes) that are aimed at stressing the dynamical effects of
the interaction of populations at a macroscopic level, here we disregarded a wide
spectrum of important phenomena. For example spatial effects were not taken into
account, although they can be important [42, 43], but we did also not model the
role of the specific ’immune activities’ [44] of both pathogens and effectors that can
be considered as active particles [45] for which both stochastic integral modelling
[45] and multi-scale modelling [46, 42] might reveal finer details of the interaction.
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