Loading [Contrib]/a11y/accessibility-menu.js

A mathematical model for chronic wounds

  • Received: 01 March 2010 Accepted: 29 June 2018 Published: 01 April 2011
  • MSC : 92C50, 35R35, 35B40.

  • Chronic wounds are often associated with ischemic conditions whereby the blood vascular system is damaged. A mathematical model which accounts for these conditions is developed and computational results are described in the two-dimensional radially symmetric case. Preliminary results for the three-dimensional axially symmetric case are also included.

    Citation: Avner Friedman, Chuan Xue. A mathematical model for chronic wounds[J]. Mathematical Biosciences and Engineering, 2011, 8(2): 253-261. doi: 10.3934/mbe.2011.8.253

    Related Papers:

    [1] Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, Magda Lopes Texeira, José Manuel Nieto-Villar . The dynamics of tumor growth and cells pattern morphology. Mathematical Biosciences and Engineering, 2009, 6(3): 547-559. doi: 10.3934/mbe.2009.6.547
    [2] Elena Izquierdo-Kulich, José Manuel Nieto-Villar . Morphogenesis of the tumor patterns. Mathematical Biosciences and Engineering, 2008, 5(2): 299-313. doi: 10.3934/mbe.2008.5.299
    [3] Avner Friedman, Yangjin Kim . Tumor cells proliferation and migration under the influence of their microenvironment. Mathematical Biosciences and Engineering, 2011, 8(2): 371-383. doi: 10.3934/mbe.2011.8.371
    [4] H. J. Alsakaji, F. A. Rihan, K. Udhayakumar, F. El Ktaibi . Stochastic tumor-immune interaction model with external treatments and time delays: An optimal control problem. Mathematical Biosciences and Engineering, 2023, 20(11): 19270-19299. doi: 10.3934/mbe.2023852
    [5] Rafael Martínez-Fonseca, Cruz Vargas-De-León, Ramón Reyes-Carreto, Flaviano Godínez-Jaimes . Bayesian analysis of the effect of exosomes in a mouse xenograft model of chronic myeloid leukemia. Mathematical Biosciences and Engineering, 2023, 20(11): 19504-19526. doi: 10.3934/mbe.2023864
    [6] Yuyang Xiao, Juan Shen, Xiufen Zou . Mathematical modeling and dynamical analysis of anti-tumor drug dose-response. Mathematical Biosciences and Engineering, 2022, 19(4): 4120-4144. doi: 10.3934/mbe.2022190
    [7] Hsiu-Chuan Wei . Mathematical modeling of tumor growth: the MCF-7 breast cancer cell line. Mathematical Biosciences and Engineering, 2019, 16(6): 6512-6535. doi: 10.3934/mbe.2019325
    [8] Marcelo E. de Oliveira, Luiz M. G. Neto . Directional entropy based model for diffusivity-driven tumor growth. Mathematical Biosciences and Engineering, 2016, 13(2): 333-341. doi: 10.3934/mbe.2015005
    [9] Mohammad A. Tabatabai, Wayne M. Eby, Karan P. Singh, Sejong Bae . T model of growth and its application in systems of tumor-immunedynamics. Mathematical Biosciences and Engineering, 2013, 10(3): 925-938. doi: 10.3934/mbe.2013.10.925
    [10] Tuan Anh Phan, Jianjun Paul Tian . Basic stochastic model for tumor virotherapy. Mathematical Biosciences and Engineering, 2020, 17(4): 4271-4294. doi: 10.3934/mbe.2020236
  • Chronic wounds are often associated with ischemic conditions whereby the blood vascular system is damaged. A mathematical model which accounts for these conditions is developed and computational results are described in the two-dimensional radially symmetric case. Preliminary results for the three-dimensional axially symmetric case are also included.


  • This article has been cited by:

    1. Bruno Buonomo, Deborah Lacitignola, Cruz Vargas-De-León, Qualitative analysis and optimal control of an epidemic model with vaccination and treatment, 2014, 100, 03784754, 88, 10.1016/j.matcom.2013.11.005
    2. Yunhu Zhang, Yanni Xiao, Modeling and analyzing the effects of fixed‐time intervention on transmission dynamics of echinococcosis in Qinghai province, 2021, 44, 0170-4214, 4276, 10.1002/mma.7029
    3. Kai Wang, Zhidong Teng, Xueliang Zhang, Dynamical behaviors of an Echinococcosis epidemic model with distributed delays, 2017, 14, 1551-0018, 1425, 10.3934/mbe.2017074
    4. David J. Gerberry, Practical aspects of backward bifurcation in a mathematical model for tuberculosis, 2016, 388, 00225193, 15, 10.1016/j.jtbi.2015.10.003
    5. Matthew A. Dixon, Uffe C. Braae, Peter Winskill, Martin Walker, Brecht Devleesschauwer, Sarah Gabriël, Maria-Gloria Basáñez, Justin V. Remais, Strategies for tackling Taenia solium taeniosis/cysticercosis: A systematic review and comparison of transmission models, including an assessment of the wider Taeniidae family transmission models, 2019, 13, 1935-2735, e0007301, 10.1371/journal.pntd.0007301
    6. Joshua A. Mwasunda, Jacob I. Irunde, Damian Kajunguri, Dmitry Kuznetsov, Modeling and analysis of taeniasis and cysticercosis transmission dynamics in humans, pigs and cattle, 2021, 2021, 1687-1847, 10.1186/s13662-021-03341-9
    7. Joshua A. Mwasunda, Chacha S. Chacha, Mussa A. Stephano, Jacob I. Irunde, Modelling cystic echinococcosis and bovine cysticercosis co-infections with optimal control, 2022, 41, 2238-3603, 10.1007/s40314-022-02034-7
    8. LEI WANG, KAI WANG, XIAOMEI FENG, YU ZHAO, DAQING JIANG, THE EFFECT OF STOCHASTIC VARIABILITY ON TRANSMISSION DYNAMICS OF ECHINOCOCCOSIS, 2021, 29, 0218-3390, 895, 10.1142/S0218339021500224
    9. Run Yang, Jianglin Zhao, Yong Yan, Andrei Korobeinikov, Stability Analysis and Optimal Control Strategies of an Echinococcosis Transmission Model, 2022, 2022, 1748-6718, 1, 10.1155/2022/6154866
    10. Jianguo Sun, Huina Zhang, Daqing Jiang, Mustafa R. S. Kulenovic, On the Dynamics Behaviors of a Stochastic Echinococcosis Infection Model with Environmental Noise, 2021, 2021, 1607-887X, 1, 10.1155/2021/8204043
    11. Jianglin Zhao, Run Yang, A dynamical model of echinococcosis with optimal control and cost-effectiveness, 2021, 62, 14681218, 103388, 10.1016/j.nonrwa.2021.103388
    12. Birhan Getachew Bitew, Justin Manango W. Munganga, Adamu Shitu Hassan, Mathematical modelling of echinococcosis in human, dogs and sheep with intervention, 2022, 16, 1751-3758, 439, 10.1080/17513758.2022.2081368
    13. Joshua A. Mwasunda, Jacob I. Irunde, Damian Kajunguri, Dmitry Kuznetsov, Optimal control analysis of Taenia saginata bovine cysticercosis and human taeniasis, 2022, 16, 24056731, e00236, 10.1016/j.parepi.2021.e00236
    14. Marshall W. Lightowlers, Robin B. Gasser, Andrew Hemphill, Thomas Romig, Francesca Tamarozzi, Peter Deplazes, Paul R. Torgerson, Hector H. Garcia, Peter Kern, Advances in the treatment, diagnosis, control and scientific understanding of taeniid cestode parasite infections over the past 50 years, 2021, 51, 00207519, 1167, 10.1016/j.ijpara.2021.10.003
    15. Juan Li, Zhen Jin, Youming Wang, Xiangdong Sun, Quangang Xu, Jingli Kang, Baoxu Huang, Huaiping Zhu, Data‐driven dynamical modelling of the transmission of African swine fever in a few places in China, 2022, 69, 1865-1674, 10.1111/tbed.14345
    16. Chacha S. Chacha, Mussa A. Stephano, Jacob I. Irunde, Joshua A. Mwasunda, Cystic echinococcosis dynamics in dogs, humans and cattle: Deterministic and stochastic modeling, 2023, 51, 22113797, 106697, 10.1016/j.rinp.2023.106697
    17. Joshua A. Mwasunda, Jacob I. Irunde, Stability and bifurcation analysis of a Taenia saginata model with control measures, 2023, 13, 26667207, 100311, 10.1016/j.rico.2023.100311
    18. Weixin Chen, Xinzhong Xu, Qimin Zhang, Hopf bifurcation and fixed-time stability of a reaction–diffusion echinococcosis model with mixed delays, 2024, 03784754, 10.1016/j.matcom.2024.04.002
    19. Richard Lagos, Juan Pablo Gutiérrez-Jara, Beatriz Cancino-Faure, Leidy Yissedt Lara-Díaz, Ignacio Barradas, Andrei González-Galeano, Breaking the Cycle of Echinococcosis: A Mathematical Modeling Approach, 2025, 10, 2414-6366, 101, 10.3390/tropicalmed10040101
    20. Richard Lagos, Juan Pablo Gutiérrez-Jara, Beatriz Cancino-Faure, Leidy Yissedt Lara-Díaz, Aníbal Coronel, Mar Siles-Lucas, The role of host mobility in the transmission and spread of Echinococcus granulosus: A Chile-based mathematical modeling approach, 2025, 19, 1935-2735, e0012948, 10.1371/journal.pntd.0012948
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2872) PDF downloads(496) Cited by(14)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog