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A MATHEMATICAL MODEL FOR CHRONIC WOUNDS

Avner Friedman

Mathematical Biosciences Institute and Department of Mathematics

Ohio State University, Columbus, OH 43210, USA

Chuan Xue

Mathematical Biosciences Institute

Ohio State University, Columbus, OH 43210, USA

Abstract. Chronic wounds are often associated with ischemic conditions whereby

the blood vascular system is damaged. A mathematical model which accounts

for these conditions is developed and computational results are described in
the two-dimensional radially symmetric case. Preliminary results for the three-

dimensional axially symmetric case are also included.

1. Introduction. Chronic wounds represent a major public health problem af-
fecting 6.5 million individuals in the United States. It is estimated that $25 billion
is spend annually on the treatment of chronic wounds [1]. Wound healing under
normal conditions is a process consisting of four overlapping stages: haemostasis,
inflammation, proliferation and remodeling [2, 3, 4]. During haemostasis, which
occurs immediately after injury, clotting factors are delivered by platelets to the
injured site to stop bleeding. At the wound-site, platelets also release chemokines,
such as platelet-derived growth factor (PDGF), which recruits blood-borne cells to
the wound. During the inflammatory phase, mast cells release granules that contain
enzymes promoting vascular leakiness. This enables neutrophils to migrate from
the blood vessels into the wound site. Macrophages, differentiated from monocytes,
also migrate into the wound, and, together with neutrophils, degrade and remove
necrotic tissue and kill infectious pathogens. Macrophages also enhance the pro-
duction of growth factors secreted by platelets, and other growth factors such as
vascular endothelial growth factors (VEGFs), to attract fibroblasts and endothelial
cells. The proliferative phase is characterized by the production of extracellular
matrix (ECM) by fibroblasts, and by the directed growth and movement of new
blood vessels (angiogenesis) into the wound. The newly deposited ECM on one
hand serves as a bed for tissue repair, and on the other hand contributes to scar
formation. During the remodeling phase, which may last several years, fibroblasts
and other cells interact to increase the tensile strength of the ECM. Chronic wounds
are those that fail to proceed through the above four stages timely and have persis-
tent inflammatory stage, primarily due to venous insufficiency [1, 5]. In this paper
we consider the first three stages of normal and chronic wound healing, i.e., the
wound closure; the remodeling stage was considered by Dale et al. [6].
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Oxygen plays a critical role in the healing process, and it depends on the forma-
tion of new blood vessels that move into the wound. There are several mathematical
models of wound healing which incorporates the effect of angiogenesis [7, 8, 9, 10].
Mathematical models of angiogenic networks, such as through the induction of vas-
cular networks by VEGFs [11, 12], were developed by McDougall and coworkers
[13, 14, 15], in connection with chemotherapeutic strategies. The role of oxygen
in wound healing was explicitly incorporated in [9] and [10]. In particular, it was
demonstrated in [10] that enhanced healing can be achieved by moderate hyperoxic
treatment. A more recent model by Xue, Friedman and Sen [16], which builds on
[10], includes also the velocity of the ECM and treats the wound boundary as a
free boundary. This model was developed for a two-dimensional radially symmetric
wound. In the present paper, we extend the model to a general three-dimensional
geometry, and provide initial simulations for the three-dimensional axially symmet-
ric wounds.

2. The mathematical model. A schematic diagram of the wound healing pro-
cesses is shown in Figure 1. The variables involved in the model are macrophages

(a) (b)

Figure 1. Schematics of the processes of wound closure.

(m), oxygen (w), PDGF (p), VEGF (e), fibroblast (f), extracellular matrix density
(ρ) and velocity (v), capillary tips (n) and capillary sprouts (b). As illustrated in
Figure 2, the wound occupies a region

Wt = {(x, y, z);−h(x, y, t) < z < 0, (x, y) ∈ At},
and the healed, or partially healed, region is Ωt = D\Wt, where

D = {(x, y, z);−H0 < z < 0, x2 + y2 < L2};
H0 and L are such that W0 lies above the plane z = −H0 and inside the cylinder
{x2 + y2 < L2}.
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Figure 2. The geometry of the wound.
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The ECM in Ωt is a growing collagen matrix which is elastic on a short time
scale and viscous on a long time scale. We model it as upper convected Maxwell
(viscoelastic) fluid with pressure depending on its density. The continuity equation
for the matrix density ρ is

∂ρ

∂t
+∇ · (ρv) = Gρ(f, w, p), (1)

where

Gρ =
kρw

w +Kwρ
f(1− ρ

ρm
)− λρρ, (2)

and kρ, Kwρ, ρm, λρ are positive constants. The momentum equation is

∂(ρv)

∂t
+∇ · (ρv ⊗ v) = ∇ · σ,

where σ is the total stress. We can write σ = −PI + τ where P is the isotropic
pressure and τ is the deviatoric stress. Since healing is a slow, or quasi-stationary,
process with negligible inertia, the last equation can be approximated by ∇·σ = 0,
or

−∇P +∇ · τ = 0 (3)

For compressible material the isotropic pressure is a function of the density, i.e.,
P = P (ρ), and we take

P =

β(
ρ

ρ0
− 1), ρ ≥ ρ0,

0, ρ < ρ0.
(4)

where β, ρ0 are positive constants.
For an upper convected Maxwell fluid, the stress-strain relationship is given by,

λ

(
Dτ

Dt
− (∇v)τ − τ(∇v)T

)
+ τ = η(∇v +∇vT ),

where η is the shear viscosity, and, as shown in Xue et al. [16], the left-hand side is
very small, so after dropping it we obtain,

τ = η(∇v +∇vT ). (5)

Hence, (3) is equivalent to,

−∇P + η∇ · (∇v +∇vT ) = 0.

In summary, the functions ρ and v satisfy the system (1) - (5) in Ωt.
The (moving) wound’s boundary is

Γt = ∂Wt ∩ {z < 0}.

We denote the velocity of Γt in the direction of the inward normal ν (pointing into
Wt) by Vν . Then

Vν = v · ν on Γt. (6)
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In addition to (1) - (2), the variables listed above satisfy a system of partial
differential equations in Ωt:

∂w

∂t
+∇ · (wv)−Dw∇2w = Bw(w, f,m, p) (7)

∂p

∂t
+∇ · (pv)−Dp∇2w = Bp(w, f,m, p), (8)

∂e

∂t
+∇ · (ev)−De∇2e = Be(w,m, e, b, n), (9)

∂m

∂t
+∇ · (mv)−∇ · (Dm∇m−mχm∇p) = Bm(w,m, p, b), (10)

∂f

∂t
+∇ · (fv)−∇ · (Df∇f − fχf∇p) = Bf (w, f), (11)

∂n

∂t
+∇ · (nv)−∇ · (Dn∇n− nχn∇e) = Bn(b, n, e), (12)

∂b

∂t
+∇ · (bv)−∇ · (Db∇b+ bχb1∇n− bχb2∇e) = Bb(w, b, n), (13)

with specified structural functions Bi and χi. The explicit form of the Bi’s and the
chemotactic/haptotactic functions χi are given below:

Bw(w, f,m, p) = kwb
(
(1− α)wb − w

)
−
[(
λwff + λwmm

)(
1 +

λwwp

Kp + p

)
+ λwm

]
w,

Bp(w, f,m, p) = kpmGp

(
w

w0

)
− λpffp

Kp + p
− λpp,

Be(w,m, e, b, n) = kemGe

(
w

w0

)
− (λenn+ λebb+ λe)e,

Bm(w,m, p, b) =
kmbp

Kp + p
− λmm (1 + λdD(w)) ,

Bf (w, f) = kfGf (w)f

(
1− f

fm

)
− λff(1 + λdD(w)),

Bn(b, n, e) = (knbb+ knn)
e

Ke + e
− (λnbb+ λnnn)n,

Bb(w, b, n) = kbGb(w)b

(
1− b

b0

)
+ (λnbb+ λnnn)n,

χm(m, ρ) = χ̄m
ρ

ρ0
H(mm −m), χf (f, ρ) = χ̄f

ρ

ρ0
H(fm − f),

χn(n, ρ) = χ̄n
ρ

ρ0
H(nm − n), χb1 =

ADn

b0
, χb2(n, ρ) =

Aχ̄nρ

b0ρ0
H(nm − n).

The level of oxygen in the wound is a critical factor in the healing process.
Moderate hypoxia improves healing; it stimulates macrophages to produce growth
factors. Severe hypoxia impairs healing, since there is not enough oxygen for cells
to grow and proliferate. Moderate hyperoxia improves healing, as it enables cells
to proliferate faster. Extreme hyperoxia is toxic, and thus impairs healing. These
facts are accounted for in the model equations. For example, in Equation (9),

Be = kemGe(w/w0)− (λe1n+ λe2b+ λe3)e,
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where w0 is the oxygen concentration in a healthy tissue, ke and λei are constants,
and Ge has the profile shown in Figure 3.

hypoxic normoxic hyperoxic
w

Ge

Figure 3. The profile of Ge(w).

Ischemia is a condition where blood supply to organ or tissue is decreased as a
result of constriction or obstruction of blood vessels. We denote the boundary of D
in {z < 0} by ∂1D, and suppose that blood supply is cut off from a portion ∂10D of
∂1D. Then on ∂10D and on the boundary of Ωt which lies on z = 0, all the fluxes
in Equations (7) - (13) in the normal direction is zero. On the remaining boundary
∂11D = ∂1D\∂10D the functions w, p, e, m, f , n, b take the same values as in
normal healthy tissue. Under the above ischemic condition, the oxygen level wb in
the vasculature (which appears in one of the terms of the function Bw(w, f,m, p))
needs to be adjusted accordingly.

To complete the model we need to prescribe boundary conditions on the free
boundary Γt, and initial conditions. At the wound’s boundary PDGF is secreted
by platelets, but as the wound closes the secretion is diminished. We take

−Dp∇p · ν = g(|Wt,z|) on Γt,

where |Wt,z| is the area of the cross section Wt,z of the open wound (Wt) with the
z-plane at time t. The function g is a monotone decreasing function of |Wt,z| and
g(0) = 0. For the remaining variables w, e, m, f , n, b, the flux in normal direction
on Γt is taken to be zero. Finally, the initial conditions on D\W0 are the same as
for a healthy tissue. For the parameter values for the system (1) - (13), we refer to
[16].

3. The radially symmetric 2-D case. We shall now specialize the model to the
two-dimensional case, and furthermore, assume radial symmetry. Since the ischemic
conditions as described above will break the symmetry, we shall implement the
ischemic setup in a different way.

Suppose a function u satisfies
∂uε
∂t
−Du∆uε = f in R1 < r < L,

uε = g on Eε,
∂uε
∂ν

= 0 on Dδ,

where Dδ consists of arcs of length δ on r = L, the distance between each adjacent
δ-arcs is ε, and Eε = {r = L}\Dδ. Then, by [17], if ε ∼ exp(−c/δ), δ → 0, while c
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is a positive constant, the functions uε will converge to a solution of
∂u

∂t
−Du∆u = f in R1 < r < L,

(1− α)(u− g) + α
∂u

∂ν
= 0 on r = L,

where α ∈ (0, 1) is a function of the constant c. Thus α represents the degree of
ischemia: α = 1 means total cutoff of blood supply and α = 0 means no ischemia.

Using this observation, which can be extended to the system (1) - (13), we can
now specialize this system to the two dimensional radially symmetric geometry,
with wound {0 ≤ r < R(t)}, where we replace the conditions on ∂10D and ∂11D by
a single mixed condition on all of ∂1D. For example, w will satisfy

(1− α)(w − w0) + αL
∂w

∂ν
= 0 on r = L. (14)

Figure 4. Schematic view of the wound environment developed
by Roy et al. [18]. The blue objects represent circulation barriers
created using a bipedicle flap approach, and the red arrows illus-
trate the blood circulation near the wounds. Figure reprinted with
permission. Copyright 2009 National Academy of Sciences, U.S.A.

In [18], the significance of ischemia on wound healing was experimentally ad-
dressed by a novel pre-clinical experimental model. Ischemic wounds were devel-
oped on a full-thickness bipedicle dermal flap where blood supply was isolated from
underneath the flap and from the two long edges, as shown in Figure 4. One circular
wound was then developed in the center of the flap (ischemic wound) and another
on the normal skin (pair-matched non-ischemic wound) of the same animal served
as control.

Figure 5 compares the experimental results obtained in [18] with the simulation
results of our model. We see a very good fit after the initial 2-3 days, thus suggesting
that since the radius of the wound in the experiments in [18] is small compared to
the distance between the two parallel cuts (see Figure 4), a suitable choice of α can
equivalently represent the level of ischemia in the three-dimensional geometry of
the in vivo experiments. We note that since the wound contraction that occurs in
vivo for the first few days is not included in our model, we cannot expect to get a
good fit during this initial period of time.
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Figure 5. (a), (c) Experimental results obtained by Roy et al.
[18]; (b), (d) simulation results of the mathematical model with ra-
dial symmetry [16]. [Figure reprinted with permission. (a), (c)
Copyright 2009, American Physical Society; (b), (d) Copyright
2009 National Academy of Sciences, U.S.A.]

It was recently proved by Friedman, Hu and Xue [19] that (for any parameter
values) in the radially symmetric two dimensional geometry the system (1) - (13)
has a unique global solution for any α ∈ [0, 1], and that if 1 − α is small (extreme
ischemia), then R(t) = const. > 0 for all t ≥ T1 for some T1 = T1(α) > 0. Thus,
in the case of extreme ischemia the wound does not heal. For the parameter values
used in [16] it was further shown numerically in [19] that the radius R(t) ≡ Rα(t)
is monotone increasing in α for any time t.

4. The three-dimensional axially symmetric case. The 2-D radially symmet-
ric model described in Section 3 predicts quite well the change of the radius R(t)
of ischemic wound on the surface z = 0 of the 3-D cutaneous wound developed in
the experiments of [18]. In order to determine the radius R(z, t) at depth z of an
axially symmetric 3-D wound, we apply the model (1) - (13) to a wound region

Wt = {r < R(z, t), −h(t) < z < 0}.
In this case the homogenized boundary condition on r = L and at z = −H0 (cf.
(14)) are

(1− α1)(w − w0) + α1∇w · er = 0 on r = L,

(1− α2)(w − w0) + α2∇w · ez = 0 on z = −H0,

where er is the unit outward normal on r = L, ez is the unit outward normal on
z = H0 and α1, α2 ∈ [0, 1] is the ischemic parameter. Similar boundary conditions
are imposed for the other variables in (8) - (13).

Since the radius of the wound in the experiments conducted in [18] is small com-
pared to the distance between the two long edges (see Figure 4), we conjecture that
the radius R(z, t), which has not been measured yet in experiments, and the radius
R(z, t) that will be computed by the mathematical model, for suitable parameters
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α1, α2, will be in good agreement. Figure 6 gives the shape and macrophage density
of a normal wound (α1 = α2 = 0) at Day 2 and Day 13 solved from the model. In
the simulation, radial symmetry in the x and y direction has been imposed. The
initial wound is given by {(r, z) :

√
r2 + z2 < 0.75 mm}.

Figure 6. Normal wound healing. The boundary flux function of
PDGF is given as g(z) = R(z, t)/R0 with R0 = 0.75 mm. The
black curve indicates the initial position of the wound boundary,
which is given by

√
r2 + z2 = R0. The color of each plot gives the

macrophage density. L = H0 = 1.5 mm.

5. Future directions. Oxygen treatment of chronic wounds, either topical or in
hyperbaric chamber have not yet achieved the desired level of effectiveness. Oxygen
treatment can be introduced into our model by adding a control term Φ(w, t) to
Bw in Equation (7). We can then use our model to investigate which hypothetical
treatment Φ(w, t) will best promote wound closure under ischemic conditions and
this will suggest a biologically testable optimal protocol.
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