Loading [Contrib]/a11y/accessibility-menu.js
Special Issues

Mathematical analysis and simulations involving chemotherapy and surgeryon large human tumours under a suitable cell-kill functional response

  • Dosage and frequency of treatment schedulesare important for successful chemotherapy.However, in this work we argue that cell-kill response and tumoralgrowth should not be seen as separate and therefore are essential in a mathematical cancer model.This paper presents a mathematical model for sequencing of cancer chemotherapy andsurgery. Our purpose is to investigate treatments for large human tumoursconsidering a suitable cell-kill dynamics. Weuse some biological and pharmacological data in a numerical approach,where drug administration occurs in cycles (periodic infusion)and surgery is performed instantaneously. Moreover, we alsopresent an analysis of stabilityfor a chemotherapeutic model with continuous drug administration.According to Norton & Simon [22], our results indicate that chemotherapy is lessefficient in treating tumours that have reached a plateau level of growingand that a combination with surgical treatment can provide better outcomes.

    Citation: Diego Samuel Rodrigues, Paulo Fernando de Arruda Mancera. Mathematical analysis and simulations involving chemotherapy and surgeryon large human tumours under a suitable cell-kill functional response[J]. Mathematical Biosciences and Engineering, 2013, 10(1): 221-234. doi: 10.3934/mbe.2013.10.221

    Related Papers:

    [1] Joseph Malinzi, Rachid Ouifki, Amina Eladdadi, Delfim F. M. Torres, K. A. Jane White . Enhancement of chemotherapy using oncolytic virotherapy: Mathematical and optimal control analysis. Mathematical Biosciences and Engineering, 2018, 15(6): 1435-1463. doi: 10.3934/mbe.2018066
    [2] Qingfeng Tang, Guohong Zhang . Stability and Hopf bifurcations in a competitive tumour-immune system with intrinsic recruitment delay and chemotherapy. Mathematical Biosciences and Engineering, 2021, 18(3): 1941-1965. doi: 10.3934/mbe.2021101
    [3] Abdulhamed Alsisi, Raluca Eftimie, Dumitru Trucu . Non-local multiscale approach for the impact of go or grow hypothesis on tumour-viruses interactions. Mathematical Biosciences and Engineering, 2021, 18(5): 5252-5284. doi: 10.3934/mbe.2021267
    [4] Nada Almuallem, Dumitru Trucu, Raluca Eftimie . Oncolytic viral therapies and the delicate balance between virus-macrophage-tumour interactions: A mathematical approach. Mathematical Biosciences and Engineering, 2021, 18(1): 764-799. doi: 10.3934/mbe.2021041
    [5] Farinaz Forouzannia, Sivabal Sivaloganathan, Mohammad Kohandel . A mathematical study of the impact of cell plasticity on tumour control probability. Mathematical Biosciences and Engineering, 2020, 17(5): 5250-5266. doi: 10.3934/mbe.2020284
    [6] Samantha L Elliott, Emek Kose, Allison L Lewis, Anna E Steinfeld, Elizabeth A Zollinger . Modeling the stem cell hypothesis: Investigating the effects of cancer stem cells and TGF−β on tumor growth. Mathematical Biosciences and Engineering, 2019, 16(6): 7177-7194. doi: 10.3934/mbe.2019360
    [7] Cameron Meaney, Gibin G Powathil, Ala Yaromina, Ludwig J Dubois, Philippe Lambin, Mohammad Kohandel . Role of hypoxia-activated prodrugs in combination with radiation therapy: An in silico approach. Mathematical Biosciences and Engineering, 2019, 16(6): 6257-6273. doi: 10.3934/mbe.2019312
    [8] Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier . On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences and Engineering, 2017, 14(1): 217-235. doi: 10.3934/mbe.2017014
    [9] Ardak Kashkynbayev, Yerlan Amanbek, Bibinur Shupeyeva, Yang Kuang . Existence of traveling wave solutions to data-driven glioblastoma multiforme growth models with density-dependent diffusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7234-7247. doi: 10.3934/mbe.2020371
    [10] Philip Gerlee, Alexander R. A. Anderson . Diffusion-limited tumour growth: Simulations and analysis. Mathematical Biosciences and Engineering, 2010, 7(2): 385-400. doi: 10.3934/mbe.2010.7.385
  • Dosage and frequency of treatment schedulesare important for successful chemotherapy.However, in this work we argue that cell-kill response and tumoralgrowth should not be seen as separate and therefore are essential in a mathematical cancer model.This paper presents a mathematical model for sequencing of cancer chemotherapy andsurgery. Our purpose is to investigate treatments for large human tumoursconsidering a suitable cell-kill dynamics. Weuse some biological and pharmacological data in a numerical approach,where drug administration occurs in cycles (periodic infusion)and surgery is performed instantaneously. Moreover, we alsopresent an analysis of stabilityfor a chemotherapeutic model with continuous drug administration.According to Norton & Simon [22], our results indicate that chemotherapy is lessefficient in treating tumours that have reached a plateau level of growingand that a combination with surgical treatment can provide better outcomes.


    [1] World Scientific Publishing Co. Inc., River Edge, 1983.
    [2] Cancer Res., 60 (2000), 1878-1886.
    [3] in "Cancer Chemotherapy Handbook'' (Ed. R. T. Dorr and D. D. V. Hoff), Appleton & Lange, (1994), p.9.
    [4] J. Theor. Med., 3 (2001), 79-100.
    [5] Math. Biosc., 209 (2007), 292-315.
    [6] Math. Biosc., 222 (2009), 13-26.
    [7] McGraw-Hill, 1994.
    [8] available from http://www.avon.nhs.uk/aswcs-chemo/STCP/index.htm.
    [9] Acta Haematol., 106 (2001), 148-156.
    [10] SIAM J. Appl. Math., 63 (2003), 1954-1971.
    [11] Eur. J. Cancer, 32A (1996), 722-726.
    [12] Carcinogenesis, 21 (2000), 505-515.
    [13] J. Theor. Biol., 242 (2006), 62-68.
    [14] J. Theor. Biol., 297 (2012), 41-47.
    [15] Math. Biosc., 110 (1992), 221-252.
    [16] World Scientific, 1994.
    [17] Automatica 28 (1992), 113-1123.
    [18] accessed 29/02/2012.
    [19] N. Engl. J. Med., (1987), 1098.
    [20] Scribner, 2010.
    [21] Math. Biosc., 163 (2000), 159-199.
    [22] Cancer Treat. Rep., 70 (1986), 163-169.
    [23] Math. Comp. Model., 36 (2002), 773-803.
    [24] Nonlin. Anal.: Real World Appl., 14 (2013), 815-828.
    [25] TEMA, 13 (2012), 1-12 (in portuguese).
    [26] 2012, preprint.
    [27] Cancer, 35 (1975), 15-24.
    [28] Cancer Chemother. Rep., 35 (1964), 1-111.
    [29] J. Surg. Oncol., 61 (1996), 68-73.
    [30] J. Theor. Biol., 266 (2010), 124-139.
    [31] Int. J. Biom. Comput., 13 (1982), 19-35.
    [32] accessed 02/03/2012.
    [33] Garland Science, 2008.
  • This article has been cited by:

    1. Rafael T. Guiraldello, Marcelo L. Martins, Paulo F.A. Mancera, Evaluating the efficacies of Maximum Tolerated Dose and metronomic chemotherapies: A mathematical approach, 2016, 456, 03784371, 145, 10.1016/j.physa.2016.03.019
    2. Pedro M. Enriquez-Navas, Jonathan W. Wojtkowiak, Robert A. Gatenby, Application of Evolutionary Principles to Cancer Therapy, 2015, 75, 0008-5472, 4675, 10.1158/0008-5472.CAN-15-1337
    3. D. J. Argyle, E. Pecceu, Canine and feline lymphoma: challenges and opportunities for creating a paradigm shift, 2016, 14, 14765810, 1, 10.1111/vco.12253
    4. Robert A. Gatenby, Joel S. Brown, The Evolution and Ecology of Resistance in Cancer Therapy, 2020, 10, 2157-1422, a040972, 10.1101/cshperspect.a040972
    5. Lorand Gabriel Parajdi, Radu Precup, Marcel-Adrian Şerban, Ioan Ştefan Haplea, Analysis of the effectiveness of the treatment of solid tumors in two cases of drug administration, 2021, 18, 1551-0018, 1845, 10.3934/mbe.2021096
    6. Joseph Malinzi, Kevin Bosire Basita, Sara Padidar, Henry Ademola Adeola, Prospect for application of mathematical models in combination cancer treatments, 2021, 23, 23529148, 100534, 10.1016/j.imu.2021.100534
    7. Tatiana R. Souza, Paulo F. A. Mancera, Rodney C. Bassanezi, Dynamics of tumor growth: chemotherapy and integrative oncology, 2020, 39, 2238-3603, 10.1007/s40314-019-0988-0
    8. Daniel S. Thomas, Luis H. Cisneros, Alexander R. A. Anderson, Carlo C. Maley, In Silico Investigations of Multi-Drug Adaptive Therapy Protocols, 2022, 14, 2072-6694, 2699, 10.3390/cancers14112699
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3035) PDF downloads(533) Cited by(8)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog