Research article Special Issues

Neuropsychological Patterns Following Lesions of the Anterior Insula in a Series of Forty Neurosurgical Patients

  • Received: 12 November 2014 Accepted: 15 December 2014 Published: 21 December 2014
  • In the present study we investigated the effects of lesions affecting mainly the anterior insula in a series of 22 patients with lesions in the left hemisphere (LH), and 18 patients with lesions involving the right hemisphere (RH). The site of the lesion was established by performing an overlap of the probabilistic cytoarchitectonic maps of the posterior insula. Here we report the patients’ neuropsychological profile and an analysis of their pre-surgical symptoms. We found that pre-operatory symptoms significantly differed in patients depending on whether the lesion affected the right or left insula and a strict parallelism between the patterns emerged in the pre-surgery symptoms analysis, and the patients’ cognitive profile. In particular, we found that LH patients showed cognitive deficits. By contrast, the RH patients, with the exception of one case showing an impaired performance at the visuo-spatial planning test were within the normal range in performing all the tests. In addition, a sub-group of patients underwent to the post-surgery follow-up examination.

    Citation: Barbara Tomasino, Dario Marin, Cinzia Canderan, Marta Maieron, Miran Skrap, Raffaella Ida Rumiati. Neuropsychological Patterns Following Lesions of the Anterior Insula in a Series of Forty Neurosurgical Patients[J]. AIMS Neuroscience, 2014, 1(3): 225-244. doi: 10.3934/Neuroscience.2014.3.225

    Related Papers:

    [1] Ning Bai, Juan Zhang , Li Li, Zhen Jin . Evaluating the effect of virus mutation on the transmission of avian influenza H7N9 virus in China based on dynamical model. Mathematical Biosciences and Engineering, 2019, 16(5): 3393-3410. doi: 10.3934/mbe.2019170
    [2] Jing-An Cui, Fangyuan Chen . Effects of isolation and slaughter strategies in different species on emerging zoonoses. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1119-1140. doi: 10.3934/mbe.2017058
    [3] Ryan Covington, Samuel Patton, Elliott Walker, Kazuo Yamazaki . Improved uniform persistence for partially diffusive models of infectious diseases: cases of avian influenza and Ebola virus disease. Mathematical Biosciences and Engineering, 2023, 20(11): 19686-19709. doi: 10.3934/mbe.2023872
    [4] Xue Zhang, Shuni Song, Jianhong Wu . Onset and termination of oscillation of disease spread through contaminated environment. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1515-1533. doi: 10.3934/mbe.2017079
    [5] Xiaomeng Wang, Xue Wang, Xinzhu Guan, Yun Xu, Kangwei Xu, Qiang Gao, Rong Cai, Yongli Cai . The impact of ambient air pollution on an influenza model with partial immunity and vaccination. Mathematical Biosciences and Engineering, 2023, 20(6): 10284-10303. doi: 10.3934/mbe.2023451
    [6] Baoxiang Zhang, Yongli Cai, Bingxian Wang, Weiming Wang . Dynamics and asymptotic profiles of steady states of an SIRS epidemic model in spatially heterogenous environment. Mathematical Biosciences and Engineering, 2020, 17(1): 893-909. doi: 10.3934/mbe.2020047
    [7] Liqiong Pu, Zhigui Lin . A diffusive SIS epidemic model in a heterogeneous and periodically evolvingenvironment. Mathematical Biosciences and Engineering, 2019, 16(4): 3094-3110. doi: 10.3934/mbe.2019153
    [8] Guodong Li, Wenjie Li, Ying Zhang, Yajuan Guan . Sliding dynamics and bifurcations of a human influenza system under logistic source and broken line control strategy. Mathematical Biosciences and Engineering, 2023, 20(4): 6800-6837. doi: 10.3934/mbe.2023293
    [9] Olivia Prosper, Omar Saucedo, Doria Thompson, Griselle Torres-Garcia, Xiaohong Wang, Carlos Castillo-Chavez . Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza. Mathematical Biosciences and Engineering, 2011, 8(1): 141-170. doi: 10.3934/mbe.2011.8.141
    [10] Omar Saucedo, Maia Martcheva, Abena Annor . Computing human to human Avian influenza $\mathcal{R}_0$ via transmission chains and parameter estimation. Mathematical Biosciences and Engineering, 2019, 16(5): 3465-3487. doi: 10.3934/mbe.2019174
  • In the present study we investigated the effects of lesions affecting mainly the anterior insula in a series of 22 patients with lesions in the left hemisphere (LH), and 18 patients with lesions involving the right hemisphere (RH). The site of the lesion was established by performing an overlap of the probabilistic cytoarchitectonic maps of the posterior insula. Here we report the patients’ neuropsychological profile and an analysis of their pre-surgical symptoms. We found that pre-operatory symptoms significantly differed in patients depending on whether the lesion affected the right or left insula and a strict parallelism between the patterns emerged in the pre-surgery symptoms analysis, and the patients’ cognitive profile. In particular, we found that LH patients showed cognitive deficits. By contrast, the RH patients, with the exception of one case showing an impaired performance at the visuo-spatial planning test were within the normal range in performing all the tests. In addition, a sub-group of patients underwent to the post-surgery follow-up examination.


    Avian influenza is an animal disease, it caused by avian influenza A virus. Avian influenza generally targets specific species, but the virus can infect humans by crossing species barriers in rare cases. For example, avian influenza virus AH5N1 and AH5N7. Since the first outbreak of avian influenza AH5N1 in Hong Kong in 1997, the virus has infected more than 400 people worldwide, with a mortality rate close to 60% [1]. In 2013, the avian influenza AH7N9 crossed the species barrier for the first outbreak in mainland China. More than 400 people have been infected, and the mortality rate is close to 40% [1]. Avian influenza has not only brought serious threat to human health, but also caused human psychological panic. And it caused a huge blow to the national economy. Therefore, to provide effective control and prevention strategies, mathematical models and methods have been widely adopted to study the epidemiological characteristics of infectious diseases.

    The mathematical dynamics method can describe the internal mechanism of infectious disease transmission by establishing a mathematical model. Kermack and McKendrick [2,3,4] established the famous compartmental model, a "threshold theory" was proposed to distinguish the prevalence of the disease. Liu and Ruan [5] constructed two bird-to-human avian influenza models with different growth laws of the avian population, and proved the globally asymptotic stability. Gourley et al. [6] established a patch model with delay to investigate the role of migratory birds in the spread of H5N1 avian influenza, they proved globally asymptotic stability of the disease-free equilibrium. Bourouiba et al. [6] established a delayed avian influenza model to investigate the role of migrating birds in the spread of avian influenza. S. Iwami et al. [7] constructed a mathematical model to explain the spread of avian influenza and mutant avian influenza. Tuncer and Martcheva [8] addressed the question of modeling the periodicity in cumulative number of human cases of H5N1. Three potential drivers of influenza seasonality were investigated. Hu [9] constructed an avian influenza model with nonlinear incidence and analyzed the stability of the model, as follows:

    $ {dSadt=ΛaλaSaIa1+α1IaμaSa,dIadt=λaSaIa1+α1IaδaIaμaIa,dShdt=ΛhλhShIa1+α2I2hμhSh,dIhdt=λhShIa1+α2I2hγhIhδhIhμhIh,dRhdt=γhIhμhRh,
    $
    (1.1)

    in model (1.1), $ S_{a} $ and $ I_{a} $ denote the sizes of susceptible poultry and infectious poultry. $ S_{h} $, $ I_{h} $, and $ R_{h} $ denote the sizes of susceptible human, infectious human, recovery human, respectively. $ \frac{1}{1+\alpha_{1}I_{a}} $ [10] describes the saturation due to the protection measures of the poultry farmers when the number of infective poultry increases. Similarly, as the number of the infective human individuals increases, the susceptible human population may tend to reduce the number of contacts with infective infective avian population per unit time due to the psychological effect, so we use a nonmonotone incidence function to describe the transmission of the virus from infective poultry to susceptible human; that is, $ \frac{\beta_{h}S_{h}I_{a}}{1+\alpha_{2}I^{2}_{h}} $ [11,12]. All parameters are assumed non-negative and their meanings are described as follows: $ \Lambda_{a} $ and $ \Lambda_{h} $ denote the recruitment rate of poultry and human population, respectively; $ \lambda_{a} $ and $ \lambda_{h} $ represent the infected rate of poultry and human population, respectively; $ \mu_{a} $ and $ \mu_{h} $ represent the natural mortality rate of poultry and human population, respectively; $ \delta_{a} $ and $ \delta_{h} $ represent the mortality due to disease in poultry and human population, respectively; $ \gamma_{h} $ denotes recovery rate of infected human population.

    The model (1.1) is a time-dependent ordinary differential system. But in fact, the spread of infectious diseases are significantly affected by the spatial heterogeneity, for example, spatial position, water resource availability and other factors. There is increasing evidence that the spatial diffusion has significant impact on the spread of infectious diseases. Tang [13] investigated an avian influenza epidemic model with diffusion and nonlocal delay, this model describes the transmission of avian influenza among birds and human; especially the asymptomatic individuals in the latent period have infectious force. Lin [14] introduce two moving boundaries, which are called free boundaries, to describe the avian influenza virus transmitting in the habitat.

    However, all the above models are obtained under the assumption that all individuals are uniformly mixed, which means they have the same contact rate with other individuals in the region. That is, the mixture between individuals are homogeneous, but, the contact between poultry-to-poultry, and poultry-to-human are obviously heterogeneous [15] in reality. In order to reflect the heterogeneity of contacting between individuals, it is of great significance to explore the spread of avian influenza on coupled networks. Zhan [16] had studied the coupling dynamics between epidemic spreading and relevant information diffusion.

    On the other hand, as is known to all that avian influenza has posed huge economic burden which primarily includes opportunity loss, health care related expenditures, loss of employment and so on. Because of resource limitations, it is very necessary to formulate optimal control strategies which can prevent wide spreading of infectious diseases at minimum cost. Therefore, we introduce the slaughtering for poultry and treatment for humans as control variables, and establish an optimal control problem to decrease the number infected poultry and humans. Mathematically, the optimal control is obtained by solving the state equation and adjoint equation or the Hamilton-Jacobi-Bellman equation. In fact, for a complex system, such equations have difficulties giving analytic solutions. Optimal controls may not even exist in many situations, while near-optimal controls always exist. Many more near-optimal controls are available than optimal ones. Therefore, in this paper, we explore the near-optimal controls, aiming to slaughter poultry and treat infected humans while keeping the loss and cost to a minimum. The main contributions of this paper are as follows:

    ● An avian influenza model with spatial diffusion on complex networks is established.

    ● We define the basic reproduction number of virus and show that it is a threshold for viral persistence or extinction.

    ● The necessary and sufficient conditions of near-optimal control are presented.

    The rest of this paper is organized as follows. In section 2, we construct an avian influenza model with spatial diffusion on complex networks, In section 3, we discuss the well-posedness of the system. We compute the basic reproduction number of the avian influenza model in section 4. In section 5, we analyze the sufficient and necessary conditions for the near optimal control. In section 6, several numerical simulations are given to demonstrate the theory results. Finally, we give a brief conclusion and future work in section 7.

    We will use the following notations in this paper:

    ● $ \mid\cdot\mid $: the norm of an Euclidean space;

    ● $ f_{x} $: the partial derivation of $ f $ with respect to $ x $;

    ● $ \chi_{S} $: the indicator function of a set $ S $;

    ● $ C $: generally refers to all arbitary normal numbers.

    Considering the heterogeneity of the contact between poultry-to-poultry and poultry-to-human, we introduce one-way-coupled networks into avian influenza model. There are two separate networks, $ \mathcal{A} $ and $ \mathcal{H} $. Network $ \mathcal{H} $ consists of humanity, where each node represents an individual, and each connection between two individuals represents direct contact between them. Network $ \mathcal{A} $ is composed of poultry population. And there is a connection from subnetwork $ \mathcal{A} $ to subnetwork $ \mathcal{H} $. We express in degrees $ (i, j) $ that there are $ i $ edges connected to subnetwork $ \mathcal{A} $ and $ j $ edges connected to subnetwork $ \mathcal{H} $. And it is expressed in degrees $ (i, \cdot) $ that $ i $ edges are connected to subnetwork $ \mathcal{A} $, and any edges are connected to subnetwork $ \mathcal{H} $. The same degree $ (\cdot, j) $ indicates that any edge is connected to the subnetwork $ \mathcal{A} $ and $ j $ edges are connected to the sub-network $ \mathcal{H} $. Then, model (1.1) can be written as

    $ {dSai,j(t)dt=Λaλa(i)Sai,j(t)Θa(t)1+α1Θa(t)μaSai,j(t),dIai,j(t)dt=λa(i)Sai,j(t)Θa(t)1+α1Θa(t)δaIai,j(t)μaIai,j(t),dShi,j(t)dt=Λhλah(j)Shi,j(t)Θah(t)1+α2Θah(t)μhShi,j(t),dIhi,j(t)dt=λah(j)Shi,j(t)Θah(t)1+α2Θah(t)γhIhi,j(t)δhIhi,j(t)μhIhi,j(t),dRhi,j(t)dt=γhIhi,j(t)μhRhi,j(t),
    $
    (2.1)

    $ \Theta_{a}(t) $ denotes the infection probability of susceptible poultry nodes with the degree $ i $ in contact with the infected poultry nodes. $ \Theta_{ah}(t) $ denotes the infection probability of susceptible human nodes with the degree $ j $ in contact with the infected poultry nodes. In the uncorrelated networks, $ \Theta_{a}(t) $, $ \Theta_{ah}(t) $ can be written as

    $ Θa(t)=1kani=1ipa(i,)Iai,j(t),Θah(t)=1kahnj=1jpa(,j)Iai,j(t),
    $

    where $ \langle k\rangle_{a} $ = $ \sum_{i = 1}^{n}ip_{a}(i, \cdot) $, $ \langle k\rangle_{ah} $ = $ \sum_{j = 1}^{n}jp_{a}(\cdot, j) $, $ p_{a}(i, \cdot) $ = $ \sum_{j = 1}^{n}p_{a}(i, j) $, $ p_{a}(\cdot, j) $ = $ \sum_{i = 1}^{n}p_{a}(i, j) $, $ p_{a}(i, j) $ = $ \frac{N^{a}_{i, j}}{N^{a}} $, $ N^{a} $ = $ \sum_{i = 1}^{n} \sum_{j = 1}^{n}S^{a}_{i, j}+\sum_{i = 1}^{n} \sum_{j = 1}^{n}I^{a}_{i, j} $. The stability of equilibrium points is often governed by a threshold called the basic reproduction number $ \mathcal{R}_{0} $. The basic reproduction number $ \mathcal{R}_{0} $ of model (2.1) is obtained by using the method in the reference [17], where

    $ R0=Λaμa(δa+μa)1kani=1λa(i)ipa(i,)=Λaλaμa(δa+μa)i2i,
    $

    where $ \langle i^{2}\rangle = \sum_{i = 1}^{n}i^{2}p_{a}(i, \cdot) $. The parameters of the coupling network are described in Table 1.

    Table 1.  The parameters of the coupling network are described in model (2.1).
    Parameter Description
    $ N^{X}_{i, j} $ The number of nodes with degree $ (i, j) $ on subnet $ X $
    $ S^{a}_{i, j}(I^{a}_{i, j}) $ The number of susceptible (infected) nodes with degree $ (i, j) $ on subnet $ \mathcal{A} $
    $ S^{h}_{i, j}(I^{h}_{i, j}) $ The number of susceptible (infected) nodes with degree $ (i, j) $ on subnet $ \mathcal{H} $
    $ R^{h}_{i, j} $ The number of recovered nodes nodes with degree $ (i, j) $ on subnet $ \mathcal{H} $
    $ p_{a}(i, \cdot)(p_{a}(\cdot, j)) $ The boundary degree distribution of subnet $ \mathcal{A} $
    $ \langle k\rangle_{a}(\langle k\rangle_{ah}) $ The average of nodes in subject $ \mathcal{A} $ connected to subnet $ \mathcal{A}(\mathcal{H}) $
    $ \lambda_{a}(i)=\lambda_{a}i $ Poultry to poultry transmission rate of degree $ i $
    $ \lambda_{ah}(j)=\lambda_{ah}j $ Poultry to human transmission rate of degree $ j $

     | Show Table
    DownLoad: CSV
    Table 2.  The parameters of the coupling network are described in model (2.1).
    Parameter Value Data Source
    $ \Lambda_{a}(\Lambda_{h}) $ 1000/245(2000/36500) per day [35,36]
    $ \lambda_{a}(\lambda_{h}) $ $ 5.1\times10^{-4} (2\times10^{-6}) $per day [35]
    $ \mu_{a}(\mu_{h}) $ $ 1/245(5.48\times10^{-5}) $per day [35,36]
    $ \delta_{a}(\delta_{h}) $ $ 1/400(0.001) $per day [35,37,38]
    $ \gamma_{h} $ 0.1per day [37,38]
    $ c $ 0.5 Assumed
    $ \alpha_{1} $ 0.01 Assumed
    $ \alpha_{2} $ 0.03 Assumed

     | Show Table
    DownLoad: CSV

    In general, the individual disperses randomly in the habitat. Therefore, we consider not only the individuals activity in temporal dimension, but also the distribution of the individual in the spatial and the dynamic characteristic of the avian influenza. Considering spatial spreading, Kim et al.[18] investigated a diffusive epidemic model, this model describes the transmission of avian influenza among birds and humans. (We assume that susceptible individuals, infectious individuals and recovered individuals move spatially randomly.) In view of the fact that the spatial diffusion and environmental heterogeneity are important factors in modeling the spread of many diseases, with reference [19], an extended version of the avian-human model can be described by

    $ {Sai,jtlk=1xk(DikSai,jxk)=Λaλa(i)Sai,jΘa1+α1ΘaμaSai,j,t>0,xΩ,Iai,jtlk=1xk(DikIai,jxk)=λa(i)Sai,jΘa1+α1ΘaδaIai,jμaIai,j,t>0,xΩ,Shi,jtlk=1xk(GkjShi,jxk)=Λhλah(j)Shi,jΘahμhShi,j,t>0,xΩ,Ihi,jtlk=1xk(GkjIhi,jxk)=λah(j)Shi,jΘahγhIhi,jδhIhi,jμhIhi,j,t>0,xΩ,Rhi,jtlk=1xk(GkjRhi,jxk)=γhIhi,jμhRhi,j,t>0,xΩ,
    $
    (2.2)

    because the removed population has no effect on the dynamics of $ S^{h}_{i, j} $ and $ I^{h}_{i, j} $, model (2.2) can be decoupled to the following model

    $ {Sai,jtlk=1xk(DikSai,jxk)=Λaλa(i)Sai,jΘa1+α1ΘaμaSai,j,t>0,xΩ,Iai,jtlk=1xk(DikIai,jxk)=λa(i)Sai,jΘa1+α1ΘaδaIai,jμaIai,j,t>0,xΩ,Shi,jtlk=1xk(GkjShi,jxk)=Λhλah(j)Shi,jΘahμhShi,j,t>0,xΩ,Ihi,jtlk=1xk(GkjIhi,jxk)=λah(j)Shi,jΘahγhIhi,jδhIhi,jμhIhi,j,t>0,xΩ,
    $
    (2.3)

    where $ S^{a}_{i, j}: = S^{a}_{i, j}(t, x) $, $ I^{a}_{i, j}: = I^{a}_{i, j}(t, x) $, $ S^{h}_{i, j}: = S^{h}_{i, j}(t, x) $, $ I^{h}_{i, j}: = I^{h}_{i, j}(t, x) $, $ x = (x_{1}, x_{2}, \cdots, x_{l})^{T}\in\Omega\subset \mathbb{R}^{l} $, $ \Omega $ is the spatial habitat in $ \mathbb{R}^{l} $ with smooth boundary $ \partial\Omega $, $ \Omega = \{x||x_{k}|\leq L_{k}\} $, $ L_{k} $ is constant, $ k = 1, 2, \cdots, l $; $ D_{ik}: = D_{ik}(t, x) > 0 $, $ G_{kj}: = G_{kj}(t, x) > 0 $ denote the transmission diffusion operator, $ \Lambda_{a}: = \Lambda_{a}(x) $, $ \Lambda_{h}: = \Lambda_{h}(x) $, $ \lambda_{a}(i): = \lambda_{a}(i)(x) $, $ \lambda_{ah}(j): = \lambda_{ah}(j)(x) $, $ \mu_{a}: = \mu_{a}(x) $, $ \mu_{h}: = \mu_{h}(x) $, $ \delta_{a}: = \delta_{a}(x) $, $ \delta_{h}: = \delta_{h}(x) $, and $ \gamma_{h}: = \gamma_{h}(x) $ are positive Hölder continuous functions on $ \overline{\Omega} $.

    $ Θa(t,x)=1kani=1ipa(i,)Iai,j(t,x):=Θa,Θah(t,x)=1kahnj=1jpa(,j)Iai,j(t,x):=Θah,
    $

    the initial conditions are given by $ S^{a}_{i, j}(0, x) = \phi_{1i} $, $ I^{a}_{i, j}(0, x) = \phi_{2i} $, $ S^{h}_{i, j}(0, x) = \phi_{3j} $, $ I^{h}_{i, j}(0, x) = \phi_{4j} $, $ \phi\in\mathbb{R_{+}} $, $ x\in\overline{\Omega}, i, j = 1, 2, \cdots, n $, where $ \mathbb{R_{+}} = \{x\in\mathbb{R}:x\geq0\} $. For $ x\in\Omega $, with homogeneous Neumann boundary conditions

    $ Sai,j(t,x)n=(Sai,j(t,x)x1,Sai,j(t,x)x2,,Sai,j(t,x)xl)T=0,t>0,xΩ,Iai,j(t,x)n=(Iai,j(t,x)x1,Iai,j(t,x)x2,,Iai,j(t,x)xl)T=0,t>0,xΩ,Shi,j(t,x)n=(Shi,j(t,x)x1,Shi,j(t,x)x2,,Shi,j(t,x)xl)T=0,t>0,xΩ,Ihi,j(t,x)n=(Ihi,j(t,x)x1,Ihi,j(t,x)x2,,Ihi,j(t,x)xl)T=0,t>0,xΩ,
    $
    (2.4)

    where $ \Omega $ is a bounded smooth domain in $ \mathbb{R}^{l} $, $ \partial\Omega $ and $ \overline{\Omega} $ are the boundary and the closure of $ \Omega $, $ n $ is the outer normal vector of $ \partial\Omega $. Let $ \mathbb{X}: = C(\overline{\Omega}, \mathbb{R}^{4n}) $ be the Banach space with the supremum norm $ \|\cdot\| $. Define $ \mathbb{X}^{+}: = C(\overline{\Omega}, \mathbb{R}_{+}^{4n}) $. The symbol $ \nabla $ is the gradient operator.

    In this section, we will focus on the existence and uniqueness of the global solutions of model (2.3).

    Lemma 3.1. For every initial value function $ \phi: = (\phi_{1i}, \phi_{2i}, \phi_{3j}, \phi_{4j})\in\mathbb{X}^{+} $, the solution $ U(t, x;\phi) = (S^{a}_{i, j}(t, x;\phi_{1i}), I^{a}_{i, j}(t, x;\phi_{2i}), S^{h}_{i, j}(t, x;\phi_{3j}), I^{h}_{i, j}(t, x;\phi_{4j})) $ of model (2.3), satisfies that

    $ limtsup(Sai,j(t,x;ϕ1i)+Iai,j(t,x;ϕ2i)+Shi,j(t,x;ϕ3j)+Ihi,j(t,x;ϕ4j))<C,
    $

    where C is a normal constant.

    Proof. Let

    $ W(t)=Ω(Sai,j(t,x;ϕ1i)+Iai,j(t,x;ϕ2i)+Shi,j(t,x;ϕ3j)+Ihi,j(t,x;ϕ4j))dx,
    $
    $ W(t)dt=Ω(Sai,j(t,x;ϕ1i)t+Iai,j(t,x;ϕ2i)t+Shi,j(t,x;ϕ3j)t+Ihi,j(t,x;ϕ4j)t)dx=Ω(lk=1xk(DikSai,jxk)+lk=1xk(DikIai,jxk)+lk=1xk(GkjShi,jxk)+lk=1xk(GkjIhi,jxk)+ΛaμaSai,jδaIai,jμaIai,j+ΛhμhShi,jγhIhi,jδhIhi,jμhIhi,j)dxΩ(lk=1(DikSai,jn)+lk=1(DikIai,jn)+lk=1(GkjShi,jn)+lk=1(GkjIhi,jxk)+Λa+ΛhμhSai,jμhIai,jμhShi,jμhIhi,j)dx=Ω(Λa+Λh)dxμhW(t),
    $

    where $ |\Omega| $ represents the volume of $ \Omega $, we can obtain

    $ limtW(t)Ω(Λa+Λh)dxμh.
    $

    In other words, there is a positive constant $ C $ such that $ \lim_{t\rightarrow \infty}W(t) < C $. This proof is complete. Next, we will focus on the existence and uniqueness of the global solutions of model (2.3) by semigroup.

    Theorem 3.2. For every initial value function $ \phi: = (\phi_{1i}, \phi_{2i}, \phi_{3j}, \phi_{4j}) \in\mathbb{X}^{+} $, model (2.3) has a unique solution $ U(t, x;\phi) = (S^{a}_{i, j}(t, x;\phi_{1i}), I^{a}_{i, j}(t, x;\phi_{2i}), S^{h}_{i, j} (t, x;\phi_{3j}), I^{h}_{i, j}(t, x;\phi_{4j})) $ with $ U(0, x;\phi) = \phi $ and the semiflow $ \Psi_{t}:\mathbb{X}^{+}\longrightarrow\mathbb{X}^{+} $ generated by (2.3) is defined by

    $ Ψt(ϕ)=(Sai,j(t,x;ϕ),Iai,j(t,x;ϕ),Shi,j(t,x;ϕ),Ihi,j(t,x;ϕ)),x¯Ω,t0.
    $

    Furthermore, the semiflow $ \Psi_{t}:\mathbb{X}^{+}\rightarrow \mathbb{X}^{+} $ is point dissipative and the positive orbits of bounded subsets of $ \mathbb{X}^{+} $ for $ \Psi_{t} $ are bounded.

    Proof. Suppose $ \mathcal{T}_{1i}(t) $, $ \mathcal{T}_{2i}(t) $, $ \mathcal{T}_{3j}(t) $, $ \mathcal{T}_{4j}(t) $: $ C(\overline{\Omega}, \mathbb{R})\longrightarrow C(\overline{\Omega}, \mathbb{R}) $ be the $ C_{0} $ semigroups associated with $ \sum_{k = 1}^{l}\frac{\partial}{\partial x_{k}}(D_{ik}\frac{\partial}{\partial x_{k}})-\mu_{a} $, $ \sum_{k = 1}^{l}\frac{\partial}{\partial x_{k}}(D_{ik}\frac{\partial}{\partial x_{k}})-(\mu_{a}+\delta_{a}) $, $ \sum_{k = 1}^{l}\frac{\partial}{\partial x_{k}}(G_{kj}\frac{\partial}{\partial x_{k}})-\mu_{h} $, $ \sum_{k = 1}^{l}\frac{\partial}{\partial x_{k}}(G_{kj}\frac{\partial}{\partial x_{k}})-(\mu_{h}+\delta_{h}+\gamma_{h}) $ subject to the Neumann boundary condition, respectively. It then follows that $ \mathcal{T}(t) $: = ($ \mathcal{T}_{1i}(t) $, $ \mathcal{T}_{2i}(t) $, $ \mathcal{T}_{3j}(t) $, $ \mathcal{T}_{4j}(t) $), it is strongly positive and compact for each $ t > 0 $ [20]. For every initial value functions $ \phi $ = ($ \phi_{1i}(x) $, $ \phi_{2i}(x) $, $ \phi_{3j}(x) $, $ \phi_{4j}(x) $)$ \in\mathbb{X}^{+} $, we define $ F $ = ($ F_{1i} $, $ F_{2i} $, $ F_{3j} $, $ F_{4j} $): $ \mathbb{X}^{+}\longrightarrow\mathbb{X} $ by $ F_{1i}(\phi)(x) = \Lambda_{a}-\lambda_{a}(i)\phi_{1i}(x)\frac{\Theta_{a}(t, x, \phi_{2i})} {1+\alpha_{1}\Theta_{a}(t, x, \phi_{2i})} $, $ F_{2i}(\phi)(x) = \lambda_{a}(i)\phi_{1i}(x) \frac{\Theta_{a}(t, x, \phi_{2i})} {1+\alpha_{1}\Theta_{a}(t, x, \phi_{2i})} $, $ F_{3j}(\phi)(x) = \Lambda_{h} -\lambda_{ah}(j)\phi_{3j}(x) \Theta_{ah}(t, x, \phi_{2i}) $, $ F_{4j}(\phi)(x) = \lambda_{ah}(j)\phi_{3j}(x) \Theta_{ah}(t, x, \phi_{2i}) $. The model (2.3) can be rewritten as the integral equation

    $ U(t)=T(t)ϕ+t0T(ts)F(U(s))ds,
    $

    where $ U(t) = (S^{a}_{i, j}, I^{a}_{i, j}, S^{h}_{i, j}, I^{h}_{i, j})^{T} $. It is easy to show that $ \lim_{h\longrightarrow0^{+}}\; dist(\phi+hF(\phi), \mathbb{X}^{+}) = 0, \forall\phi\in\mathbb{X}^{+} $. By in [21], model (2.3) has a unique positive solution $ (S^{a}_{i, j}(t, x;\phi_{1i}), I^{a}_{i, j}(t, x;\phi_{2i}), S^{h}_{i, j}(t, x;\phi_{3j}), I^{h}_{i, j}(t, x;\phi_{4j})) $ on $ [0, \tau_{e})\times\Omega $, where $ 0 < \tau_{e}\leq\infty $. In what follows, we prove that the local solution can be extended to a global one, that is $ \tau_{e} = \infty $. For this purpose, by a standard argument, we only need to prove that the solution is bounded in $ [0, \tau_{e})\times\Omega $. To this end, we let $ N^{a}_{i, j}(t, x) = S^{a}_{i, j}(t, x) +I^{a}_{i, j}(t, x) $, $ N^{h}_{i, j}(t, x) = S^{h}_{i, j}(t, x)+I^{h}_{i, j}(t, x) +R^{h}_{i, j}(t, x) $. Then $ N^{a}_{i, j}(t, x) $, and $ N^{h}_{i, j}(t, x) $ satisfy the following system

    $ {Nai,j(t,x)tlk=1xk(DikNai,j(t,x)xk)=ΛaμaNai,j(t,x)δaIai,j(t,x),t>0,xΩ,Nhi,j(t,x)tlk=1xk(GkjNhi,j(t,x)xk)=ΛhμhNhi,j(t,x)γhIhi,j(t,x)δhIhi,j(t,x),t>0,xΩ,Nai,j(0,x)=Sai,j(0,x)+Iai,j(0,x)0,Nhi,j(0,x)=Shi,j(0,x)+Ihi,j(0,x)+Rhi,j(0,x)0,xΩ,DikNai,j(t,x)n=0,GkjNhi,j(t,x)n=0,t>0,xΩ.
    $
    (3.1)

    Thank to [22], model (3.1) admits a unique positive steady state $ E^{0} $ which is globally asymptotically stable in $ C(\Omega, \mathbb{R}) $. It follows that $ U(t, x;\phi) = (S^{a}_{i, j}(t, x;\phi), I^{a}_{i, j}(t, x;\phi), S^{h}_{i, j}(t, x;\phi), I^{h}_{i, j}(t, x;\phi)) $ is bounded on $ [0, \tau_{e})\times\Omega $, which implies the Theorem.

    In the rest of this subsection, we first define the basic reproduction number of virus and show that it is a threshold for viral persistence or extinction.

    It follows from Theorem 3.2 model (2.3) with (2.4) admits a unique disease free steady state, $ E^{0} = (S^{a0}_{1, j}, S^{a0}_{2, j}, \cdots, S^{a0}_{n, j}, 0, 0, \cdots, 0, S^{h0}_{i, 1}, S^{h0}_{i, 2}, \cdots, S^{h0}_{i, n}, 0, 0, \cdots, 0) $, linearizing (2.3) with (2.4) at $ E^{0} $, we get the following linear cooperative system for $ I^{a}_{i, j} $, and $ I^{h}_{i, j} $, component

    $ {Iai,jtlk=1xk(DikIai,jxk)=λa(i)Sa0i,jΘaδaIai,jμaIai,j,t>0,xΩ,Ihi,jtlk=1xk(GkjIhi,jxk)=λah(j)Sh0i,jΘahγhIhi,jδhIhi,jμhIhi,j,t>0,xΩ,Iai,j(t,x)n=(Iai,j(t,x)x1,Iai,j(t,x)x2,,Iai,j(t,x)xl)T=0,t>0,xΩ,Ihi,j(t,x)n=(Ihi,j(t,x)x1,Ihi,j(t,x)x2,,Ihi,j(t,x)xl)T=0,t>0,xΩ,Iai,j(0,x)=ϕ2i,Ihi,j(0,x)=ϕ4j.
    $
    (4.1)

    Substituting $ I^{a}_{i, j} = e^{\xi_{i} t}\psi_{i}(x), \; I^{h}_{i, j} = e^{\xi_{j}t}\varphi_{j}(x), $ into (4.1), $ \psi_{i}(x)\in C(\overline{\Omega}, \mathbb{R}^{2n}) $, $ \varphi_{j}(x)\in C(\overline{\Omega}, \mathbb{R}^{2n}) $, we obtain the following eigenvalue problem,

    $ {ξiψi(x)lk=1xk(Dikψi(x)xk)=λa(i)Sa0i,jkani=1ipa(i,)ψi(x)δaψi(x)μaψi(x),xΩ,ξjφj(x)lk=1xk(Gkjφj(x)xk)=λah(j)Sh0i,jkahnj=1jpa(,j)ψj(x)γhφj(x)δhφj(x)μhφj(x),xΩ,ψi(x)n=(ψi(x)x1,ψi(x)x2,,ψi(x)xl)T=0,xΩ,φj(x)n=(φj(x)x1,φj(x)x2,,φj(x)xl)T=0,xΩ,ψi(x)=ϕ2i,φj(x)=ϕ4j,
    $
    (4.2)

    which is a cooperation system. By a similar argument in [39], it follows that (4.2) admits a unique principal eigenvalue $ \xi_{0}(E^{0}) $ with a strongly positive eigenfunction $ (\psi_{i}(x), \varphi_{j}(x)) $. Denote by $ \Gamma(t) $ the solution semigroup of (4.1) on $ C(\overline{\Omega}, \mathbb{R}^{2n}) $ with generator $ \mathcal{B}: = B+F $,

    $ B=[ωa+a1+λa(1)Sa01,jf(1)λa(1)Sa01,jf(n)00λa(n)Sa0n,jf(1)ωa+an+λa(n)Sa0n,jf(n)00λah(1)Sh0i,1g(1)λah(1)Sh0i,1g(n)ωh+h10λah(n)Sh0i,ng(1)λah(n)Sh0i,ng(n)0ωh+hn],
    $

    where $ \omega_{a} = -\mu_{a}-\delta_{a} $, $ \omega_{h} = -\mu_{h} -\delta_{h} $, $ f(i) = \frac{ip_{a}(i, \cdot)} {\langle k\rangle_{a}} $, $ g(j) = \frac{jp_{a}(\cdot, j)}{\langle k\rangle_{ah}} $, $ \triangle^{a}_{i} = \Sigma_{k = 1}^{l}\frac{\partial}{\partial x_{k}}D_{ik}\frac{\partial}{\partial x_{k}} $, $ \triangle^{h}_{j} = \Sigma_{k = 1}^{l}\frac{\partial} {\partial x_{k}}G_{kj}\frac{\partial}{\partial x_{k}} $, $ B = diag(\omega_{a}+\triangle^{a}_{1}, \cdots, \omega_{a}+\triangle^{a}_{n}, \omega_{h}+\triangle^{h}_{1}, \cdots, \omega_{h}+\triangle^{h}_{n})^{T} = diag(\triangle^{a}_{1}, \cdots, \triangle^{a}_{n}, \triangle^{h}_{1}, \cdots, \triangle^{h}_{n})^{T}-V $,

    $ F=[λa(1)Sa01,f(1)λa(1)Sa01,f(n)00λa(n)Sa0n,f(1)λa(n)Sa0n,f(n)00λah(1)Sh0,1g(1)λah(1)Sh0,1g(n)00λah(n)Sh0,ng(1)λah(n)Sh0,ng(n)00].
    $

    We further let $ \overline{\Gamma}(t):C(\overline{\Omega}, \mathbb{R}^{2n})\rightarrow C(\overline{\Omega}, \mathbb{R}^{2n}) $ be the $ C_{0} $-semigroup generated by operator $ B $, we know that both $ B $ and $ -V $ are cooperative for any $ x\in\Omega $, which implies that $ \overline{\Gamma}(t) $ is a positive semigroup in the sense that $ \overline{\Gamma}(t)C(\overline{\Omega}, \mathbb{R}^{2n}_{+})\subseteq C(\overline{\Omega}, \mathbb{R}^{2n}_{+}) $. Further from [27] and the fact that both $ \mathcal{B} $ and $ B $ are resolvent-operators, it then follows that the next generation operator is $ \mathcal{L}: = -FB^{-1} $, given by $ \mathcal{L}(\phi) = \int_{0}^{\infty}F(x) \overline{\Gamma}(t)\phi(x)dt, \phi\in C(\overline{\Omega}, \mathbb{R}^{2n}), x\in\overline{\Omega} $. Then $ \mathcal{L} $ is well-defined, continuous, and positive operator on $ C(\overline{\Omega}, \mathbb{R}^{2n}) $, which maps the initial infection distribution $ \phi $ to the distribution of the total new infections produced during the infection period. We follow the procedure in [28] to define the spectral radius of $ \mathcal{L} $ as the basic reproduction number

    $ R0=r(L)=r(FB1)=sup{|λ|,λσ(L)}=Ωλa(i)Sa0i,j1kani=1ipa(i,)ψ2idxΩ[lk=1(kψi)T(Dikkψi)+(μa+δa)ψ2i]dx.
    $

    Lemma 4.1. $ \mathcal{R}_{0}-1 $ and $ \xi_{0}(E^{0}) $ have the same sign. The steady state $ E^{0} $ is asymptotically stable if $ \mathcal{R}_{0} < 1 $, and it is unstable $ \mathcal{R}_{0} > 1 $.

    Proof. The method was the same as that in reference [26,27].

    Theorem 4.2. (i)If $ \mathcal{R}_{0} < 1 $ then the disease-free equilibrium $ E^{0} $ is globally asymptotically stable.

    (ii) If $ \mathcal{R}_{0} > 1 $, then there exists $ \epsilon_{0} $ such that any positive solution of model (2.3) satisfies

    $ lim supt(Sai,j(t,),Iai,j(t,),Shi,j(t,),Ihi,j(t,))(Sa0i,j(t,),0,Sh0i,j(t,),0)>ϵ0.
    $

    Proof. The method was the same as that in reference [29,30].

    In this section, we will establish an near-optimal control of model (2.3) and get an optimal control strategy in theory. We introduce control variables $ u(t, x) $ = $ (u^{a}_{i}(t, x) $, $ u^{h}_{j}(t, x))^{T}\in\mathcal {U}([0, T]\times\Omega) $ = $ \{u^{a}_{i}(t, x) $ and $ u^{h}_{j}(t, x) $ measurable: $ 0\leq u^{a}_{i}(t, x)\leq1 $, $ 0 \leq u^{h}_{j}(t, x)\leq1 $, $ i, j = 1, 2, \cdots, n\} $. Assume the control set $ {U}([0, T]\times\Omega) $ is convex. $ u^{a}_{i}(t, x) $ denotes the proportion of slaughtered susceptible poultry and infected poultry, $ u^{h}_{j}(t, x) $ denotes the proportion of treatment for infected humans. Now, we obtain an optimal control system as follows,

    $ {Sai,jtlk=1xk(DikSai,jxk)=Λaλa(i)Sai,jΘa1+α1ΘaμaSai,juaiSai,j,t>0,xΩ,Iai,jtlk=1xk(DikIai,jxk)=λa(i)Sai,jΘa1+α1ΘaδaIai,jμaIai,juaiIai,j,t>0,xΩ,Shi,jtlk=1xk(GkjShi,jxk)=Λhλah(j)Shi,jΘahμhShi,j,t>0,xΩ,Ihi,jtlk=1xk(GkjIhi,jxk)=λah(j)Shi,jΘahγhIhi,jδhIhi,jμhIhi,jcuhjIhi,j1+α2Ihi,j,t>0,xΩ,
    $
    (5.1)

    we take saturated treatment rate $ \frac{cu^{h}_{j}I^{h}_{i, j}} {1+\alpha_{2}I^{h}_{i, j}}\; (\alpha_{2} $ denotes saturation constant) because of the medical resources are limited. We intend to get an near-optimal pair of slaughter and treatment, which seeks to minimize the number of infected poultry, the number of infected humans, and the cost during the implementing these $ 2n $ control strategies. Therefore, we establish the following objective function

    $ J(uai(t,x),uhj(t,x))=T0Ωni=1A1iIai,j(t,x)+A2iuai(t,x)(Sai,j(t,x)+Iai,j(t,x))+12ςi(uai)2(t,x)dxdt+T0Ωnj=1A3jIhi,j(t,x)+A4juhj(t,x)Ihi,j(t,x)+12ϱj(uhj)2(t,x)dxdt,
    $
    (5.2)

    where $ A_{1i}, \; A_{2i}, \; A_{3j}, \; A_{4j} $ are regarded as a tradeoff factor. The meaning of the objective functional $ J(u^{a}_{i}(t, x), u^{h}_{j}(t, x)) $ is described as follows:

    (1) The term $ \int_{0}^{T}\int_{\Omega}\sum_{i = 1}^{n}A_{1i} I^{a}_{i, j}(t, x)dxdt +\int_{0}^{T}\int_{\Omega}\sum_{j = 1}^{n}A_{3j}I^{h}_{i, j}(t, x)dxdt $ gives the total number of infected poultry infected with avian influenza virus and the total number of infected human over the time period $ T $.

    (2) The term $ \int_{0}^{T}\int_{\Omega}\sum_{i = 1}^{n}A_{2i}u^{a}_{i}(t, x)(S^{a}_{i, j}(t, x)+I^{a}_{i, j}(t, x)) +\frac{1}{2}\varsigma_{i}(u^{a}_{i})^{2}(t, x)dxdt $ gives the total cost of slaughtering for susceptible and infected avian.

    (3) The term $ \int_{0}^{T}\int_{\Omega}\sum_{j = 1}^{n}A_{4j}u^{h}_{j}(t, x)I^{h}_{i, j}(t, x) +\frac{1}{2}\varrho_{j}(u^{h}_{j})^{2}(t, x)dxdt $ gives the total cost of treatment for infected humans.

    The objective of the optimal control problem is to minimize the cost function $ J(u^{a}_{i}(t, x), u^{h}_{j}(t, x)) $ over all $ u(t, x) = (u^{a}_{i}(t, x), u^{h}_{j}(t, x))^{T}\in\mathcal{U}([0, T]\times\Omega) $. The value function is defined as

    $ V(0,ϕ(0,x))=inf(uai(t,x),uhj(t,x))U([0,T]×Ω)J(0,ϕ(0,x);uai(t,x),uhj(t,x)).
    $

    Definition 5.1. (Near-optimal Control)[24] Both a family of admissible pairs $ \{(u^{a\varepsilon}_{i}(t, x), u^{h\varepsilon}_{j}(t, x)\} $ parameterized by $ \varepsilon > 0 $ and any element $ (u^{a\varepsilon}_{i}(t, x), u^{h\varepsilon}_{j}(t, x)) $ in the family are called near-optimal if

    $ |J(0,ϕ(0,x);uaεi(t,x),uhεj(t,x))V(0,ϕ(0,x);uai(t,x),uhj(t,x))|r(ε),
    $

    holds for sufficiently small $ \varepsilon $, where $ r $ is a function of $ \varepsilon $ satisfying $ r(\varepsilon)\rightarrow 0 $ as $ \varepsilon\rightarrow 0 $. The estimate $ r(\varepsilon) $ is called an error bound. If $ r(\varepsilon) = c\varepsilon^{\kappa} $ for some $ \kappa $ independent of the constant $ c $, then $ u^{a\varepsilon}_{i}(t), \; u^{h\varepsilon}_{j}(t) $ are called near-optimal with order $ \varepsilon^{\kappa} $.

    Lemma 5.2. (Ekeland's Principle, [25]). Let (S, d) be a complete metrix space, and let $ \rho(\cdot):S\rightarrow R^{1} $ be lower semicontinuous and bounded from below. For $ \epsilon\geq0 $, suppose that $ u^{\epsilon}(t, x)\in S $ satisfies

    $ ρ(uϵ())infu()Sρ(u())+ϵ,
    $

    then, for any $ \iota > 0 $, there exists $ u^{\iota}(\cdot)\in S $ such that $ \rho(u^{\iota}(\cdot))\leq\rho(u^{\epsilon}(\cdot), \; d(u^{\iota}(\cdot), u^{\epsilon}(\cdot))\leq\iota, \; \rho(u^{\iota}(\cdot))\leq\rho(u(\cdot)) +\frac{\epsilon}{\iota}d(u(\cdot), u^{\iota}(\cdot)) $.

    In this section, we will first show a few lemmas, which will be used to establish the sufficient and necessary condition for the near-optimal control of model (5.1). As is well known, the study of adjoint equations plays a key role in deriving the necessary and sufficient conditions of optimality. Next, we introduce the adjoint equation:

    $ {p1i(t,x)dt=(μa+uai+λa(i)Θa1+α1Θalk=1xkDikxk)p1iλa(i)Θa1+α1Θap2iA2iuai,p2i(t,x)dt=λa(i)f(i)Sai,j(1+α1Θa)2p1i+(δa+μa+uaiλa(i)f(i)Sai,j(1+α1Θa)2lk=1xkDikxk)p2i+λah(j)g(j)Shi,jp3jλah(j)g(j)Shi,jp4jA1iA2iuai,p3j(t,x)dt=(μh+λah(j)Θahlk=1xkDikxk)p3jλah(j)Θahp4j,p4j(t,x)dt=(γh+δh+μh+cuhj(1+α2Ihi,j)2lk=1xkDikxk)p4jA3jA4juhj,p1i(T,x)=p2i(T,x)=p3j(T,x)=p4j(T,x)=0.
    $
    (5.3)

    The following Lemma 5.3 shows that the solution of model model (5.1) is bounded.

    Lemma 5.3. For any $ \eta\geq0 $, and $ (u^{a}_{i}(t, x), \; u^{h}_{j}(t, x))\in\mathcal{U}([0, T]\times\Omega) $, we have

    $ sup0tT|Sai,j(t,x)|η+|Iai,j(t,x)|η+|Shi,j(t,x)|η+|Ihi,j(t,x)|ηC,
    $
    (5.4)

    where $ C $ is a constant that depends only on $ \eta $.

    Proof. The method was the same as that the Lemma 3.1, we get the almost surely positively invariant set of model model (5.1), which means that the inequality (5.4) holds.

    Lemma 5.4. For any $ (u^{a}_{i}(t, x), \; u^{h}_{j}(t, x))\in\mathcal{U}([0, T]\times\Omega) $, we have

    $ sup0tT|p1i(t,x)|2+|p2i(t,x)|2+|p3j(t,x)|2+|p4j(t,x)|2C,
    $

    where $ C $ is a constant.

    The proof is shown in Appendix A.

    For any $ u(t, x), \; \widetilde{u}(t, x)\in\mathcal{U}([0, T]\times\Omega) $, define a metric on $ \mathcal{U}([0, T]\times\Omega) $ as follows

    $ d(u(t,x),˜u(t,x))=E[mes{(t,x)[0,T]×Ω:u(t,x)˜u(t,x)}],
    $

    by a similar way as Lemma 6.4 in [32], we know that $ \mathcal{U}([0, T]\times\Omega) $ is a complete space under $ d $.

    The following Lemma will show the continuity of the state process $ (S^{a}_{i, j}(t, x) $, $ I^{a}_{i, j}(t, x) $, $ S^{h}_{i, j}(t, x) $, $ I^{h}_{i, j}(t, x)) $ under metric $ d $.

    Lemma 5.5. For any $ \eta\geq0 $, and $ 0 < \kappa < 1 $ satisfying $ \kappa\eta < 1 $, there exists a constant $ C_{\kappa\eta} $ such that $ u(t, x), \widetilde{u}(t, x)\in\mathcal{U}([0, T]\times\Omega) $ along with the corresponding trajectory $ (S^{a}_{i, j}(t, x) $, $ I^{a}_{i, j}(t, x) $, $ S^{h}_{i, j}(t, x) $, $ I^{h}_{i, j}(t, x)) $, $ (\widetilde{S}^{a}_{i, j}(t, x) $, $ \widetilde{S}^{a}_{i, j}(t, x) $, $ \widetilde{S}^{h}_{i, j}(t, x) $, $ \widetilde{S}^{h}_{i, j}(t, x)) $, we have

    $ sup0tT|Sai,j˜Sai,j|2η+|Iai,j˜Iai,j|2η+|Shi,j˜Shi,j|2η+|Shi,j˜Shi,j|2ηC[d(uai,˜uai)κη+d(uhj,˜uhj)κη].
    $

    The proof is shown in Appendix B.

    The next lemma will show that the $ pth $ moment continuity of the solutions to the adjoint Eq (5.3) under metric $ d $.

    Lemma 5.6. For any $ 1 < \eta < 2 $, and $ 0 < \kappa < 1 $ satisfying $ (1+\kappa)\eta < 2 $, there exists a constant $ C_{\kappa\eta} $ such that $ u(t, x), \; \widetilde{u}(t, x) \in\mathcal{U}([0, T]\times\Omega) $ along with the corresponding trajectory $ (S^{a}_{i, j}(t, x) $, $ I^{a}_{i, j}(t, x) $, $ S^{h}_{i, j}(t, x) $, $ I^{h}_{i, j}(t, x)) $, $ (\widetilde{S}^{a}_{i, j}(t, x) $, $ \widetilde{S}^{a}_{i, j}(t, x) $, $ \widetilde{S}^{h}_{i, j}(t, x) $, $ \widetilde{S}^{h}_{i, j}(t, x)) $, and the solution of corresponding adjoint equation, we have

    $ sup0tT|p1i˜p1i|η+|p2i˜p2i|η+|p3j˜p3j|η+|p4j˜p4j|ηC[d(uai,˜uai)κη2+d(uhj,˜uhj)κη2].
    $

    The proof is shown in Appendix C.

    To obtain the sufficient conditions, we define the Hamiltonian function $ H $ as follows:

    $ H=ni=1(A1iIai,j+A2iuai(Sai,j+Iai,j)+12ςi(uai)2+p1i(lk=1xk(DikSai,jxk)+Λaλa(i)Sai,jΘa1+α1ΘaμaSai,juaiSai,j)+p2i(lk=1xk(DikIai,jxk)+λa(i)Sai,jΘa1+α1ΘaδaIai,jμaIai,juaiIai,j))+nj=1(A3jIhi,j+A4juhjIhi,j+12ϱj(uhj)2+p3j(lk=1xk(GkjShi,jxk)+Λhλah(j)Shi,jΘahμhShi,j)+p4j(lk=1xk(GkjIhi,jxk)+λah(j)Shi,jΘahγhIhi,jδhIhi,jμhIhi,jcuhjIhi,j1+α2Ihi,j)).
    $
    (5.5)

    We can test the Hamiltonian function $ H $ is convex, a.s. Next, the sufficient conditions for the approximate optimal controls of model model (5.1) are proposed.

    Theorem 5.7. Let $ (S^{a\varepsilon}_{i, j}(t, x) $, $ I^{a\varepsilon}_{i, j}(t, x) $, $ S^{h\varepsilon}_{i, j}(t, x) $, $ I^{h\varepsilon}_{i, j}(t, x) $ , $ u^{a\varepsilon}_{i}(t, x) $, $ u^{h\varepsilon}_{j}(t, x)) $ be an admissible pair and $ (p^{\varepsilon}_{1i}(t, x) $, $ p^{\varepsilon}_{2i}(t, x) $, $ p^{\varepsilon}_{3j}(t, x) $, $ p^{\varepsilon}_{4j}(t, x)) $ be the solution of (5.3) corresponding to $ (S^{a\varepsilon}_{i, j}(t, x) $, $ I^{a\varepsilon}_{i, j}(t, x) $, $ S^{h\varepsilon}_{i, j}(t, x) $, $ I^{h\varepsilon}_{i, j}(t, x) $ , $ u^{a\varepsilon}_{i}(t, x) $, $ u^{h\varepsilon}_{j}(t, x)) $. Assume the control set $ \mathcal{U}([0, T]\times\Omega) $ is convex.a.s. Then for any $ \varepsilon > 0 $, if

    $ supuaiU([0,T]×Ω)T0Ωni=1(A2i(Saεi,j+Iaεi,j)+12ςi(uaεi+uai))Saεi,jpε1iIaεi,jpε2i)(uaεiuai)dxdtε2,supuhjU([0,T]×Ω)T0Ωnj=1(A4jIhεi,j+12ϱj(uhεj+uhj)cIhεi,jpε4j1+α2Ihεi,j)(uhεjuhj)dxdtε2,
    $

    we have

    $ T0Ωni=1A2iuaεi(Saεi,j+Iaεi,j)+12ςi(uaεi)2dxdt+T0Ωnj=1A4juhεjIhεi,jdxdtinf(uai,uhj)U([0,T]×Ω)T0Ωni=1A2iuai(Saεi,j+Iaεi,j)+12ςi(uai)2dxdt+T0Ωnj=1A4juhjIhεi,jdxdt+Cε12.
    $

    Proof. In order to prove that $ H_{u} $ can be estimated by $ \varepsilon $, we define a new metric $ d $ on $ \mathcal{U}([0, T]\times\Omega) $. Since the control region is closed, $ \mathcal{U}([0, T]\times\Omega) $ becomes a complete matric space when endowed with the metric

    $ d(u,˜u)=T0Ωni=1vε(t,x)|uai˜uai|dxdt+T0Ωnj=1vε(t,x)|uhj˜uhj|dxdt,
    $

    where $ v^{\varepsilon}(t, x) = 1+|S^{a\varepsilon}_{i, j}| +|I^{a\varepsilon}_{i, j}|+ |S^{h\varepsilon}_{i, j}|+|I^{h\varepsilon}_{i, j}| $. Next, we will estimate $ J(0, \phi(0, x);u^{a\varepsilon}_{i}(t, x), u^{h\varepsilon}_{j}(t, x)) -J(0, \phi(0, x);u^{a}_{i}(t, x), u^{h}_{j}(t, x)) $. From the Hamiltonian function (5.5) and the objective function (5.2), we have

    $ J(0,ϕ(0,x);uaεi(t,x),uhεj(t,x))J(0,ϕ(0,x);uai(t,x),uhj(t,x))T0Ωni=1(A2i(Sai,j+Iai,j)+ςiuaip1iSai,jp2iIai,j)(uaεiuai)dxdt+T0Ωnj=1(A4jIhi,j+ϱjuhjcIhi,jp4j1+α2Ihi,j)(uhεjuhj)dxdt.
    $
    (5.6)

    Next, we will focus on the estimation of $ H_{u} $. Firstly, we define a new functional $ M(\cdot):\mathcal{U}([0, T]\times\Omega)\rightarrow \mathbb{R} $,

    $ M(u)=T0Ωni=1(A2iuai(Saεi,j+Iaεi,j)+12ςi(uai)2pε1iuaiSaεi,jpε2iuaiIaεi,j)dxdt+T0Ωnj=1(A4juhjIhεi,j+12ϱj(uhj)2cuhjIhεi,jpε4j1+α2Ihεi,j)dxdt,
    $

    we show that

    $ |M(u)M(˜u)|=T0Ωni=1(A2i(Saεi,j+Iaεi,j)(uai˜uai)+12ςi(uai˜uai)(uai+˜uai)pε1iSaεi,j(uai˜uai)pε2iIaεi,j(uai˜uai))dxdt+T0Ωnj=1(A4jIhεi,j(uhj˜uhj)+12ϱj(uhj˜uhj)(uhj+˜uhj)cpε4jIhεi,j1+α2Ihεi,j(uhj˜uhj))dxdtT0Ωni=1[A2i(Saεi,j+Iaεi,j)+ςi](uai˜uai)dxdt+T0Ωnj=1[A4jIhεi,j+ϱj](uhj˜uhj)dxdtCT0Ωni=1(Saεi,j+Iaεi,j)(uai˜uai)dxdt+T0Ωnj=1(Shεi,j+Ihεi,j)(uhj˜uhj)dxdt.
    $

    Thus, $ M(u) $ is continuous on $ \mathcal{U}([0, T]\times\Omega) $ with respect to $ d $. According to the conditions of Theorem (4.2) and Lemma 5.2, we can see that there exists $ \widetilde{u}^{\varepsilon}\in\mathcal{U}([0, T]\times\Omega) $ such that

    $ d(uε˜uε)ε12,M(˜uε)M(u)+ε12d(u,˜uε),uU([0,T]×Ω).
    $

    This show that

    $ T0Ωni=1(A2i˜uaεi(Saεi,j+Iaεi,j)+12ςi(˜uaεi)2pε1i˜uaεiSaεi,jpε2i˜uaεiIaεi,j)dxdt+T0Ωnj=1(A4j˜uhεjIhεi,j+12ϱj(˜uhεj)2c˜uhεjIhεi,jpε4j1+α2Ihεi,j)dxdt=min(uai,uhj)U([0,T]×Ω)T0Ωni=1(A2iuai(Saεi,j+Iaεi,j)+12ςi(uai)2pε1iuaiSaεi,jpε2iuaiIaεi,j+ε12vε|uai˜uaεi|)dxdt+T0Ωnj=1(A4juhjIhεi,j+12ϱj(uhj)2cuhjIhεi,jpε4j1+α2Ihεi,j+ε12vε|uhj˜uhεj|)dxdt.
    $
    (5.7)

    According to [23], we have

    $ 0ni=1(A2i(Saεi,j+Iaεi,j)+ςi˜uaεipε1iSaεi,jpε2iIaεi,j)+nj=1(A4jIhεi,j+ϱj˜uhεjcIhεi,jpε4j1+α2Ihεi,j)ni=1(A2i(Saεi,j+Iaεi,j)+ςi˜uaεipε1iSaεi,jpε2iIaεi,j)+nj=1(A4jIhεi,j+ϱj˜uhεjcIhεi,jpε4j1+α2Ihεi,j)+[ε12vε,ε12vε].
    $
    (5.8)

    Because the Hamiltonian function $ H $ is differentiable in $ u $, it follows from (5.8) that there exists a $ \vartheta^{\varepsilon}\in [-\varepsilon^{\frac{1}{2}}v^{\varepsilon}, \varepsilon^{\frac{1}{2}}v^{\varepsilon}] $ such that

    $ ni=1(A2i(Saεi,j+Iaεi,j)+ςi˜uaεipε1iSaεi,jpε2iIaεi,j)+nj=1(A4jIhεi,j+ϱj˜uhεjcIhεi,jpε4j1+α2Ihεi,j)+ϑε=0.
    $
    (5.9)

    From (5.9), we have

    $ |ni=1(A2i(Saεi,j+Iaεi,j)+ςiuaεipε1iSaεi,jpε2iIaεi,j)+nj=1(A4jIhεi,j+ϱjuhεjcIhεi,jpε4j1+α2Ihεi,j)||ni=1ςi(uaεi˜uaεi)+nj=1ϱj(uhεj˜uhεj)|+|ni=1(A2i(Saεi,j+Iaεi,j)+ςi˜uaεipε1iSaεi,jpε2iIaεi,j)+nj=1(A4jIhεi,j+ϱj˜uhεjcIhεi,jpε4j1+α2Ihεi,j)|C(ni=1vε|uaεi˜uaεi|+nj=1vε|uhεj˜uhεj|)+ϑεC(ni=1vε|uaεi˜uaεi|+nj=1vε|uhεj˜uhεj|)+2ε12vε.
    $
    (5.10)

    This proof is complete.

    From the Lemma 5.4 and definition of $ d $, we can achieve the desired conclusion from (5.6) and (5.10) by Hölder's inequality. Furthermore, according to the ideas in Lenhart and Workman [34], the optimal control $ (u^{a\ast}_{i}, u^{h\ast}_{j}) $, which minimizes the objective function $ J(u^{a}_{i}(t, x), u^{h}_{j}(t, x)) $, is obtained and represented by

    $ {uai(t,x)=min{max{(p1i(t,x)A2i)Sai,j(t,x)+p2i(t,x)Iai,j(t,x)ςi,0},1},i=1,2,,n,uhj(t,x)=min{max{cp4j(t,x)Ihi,j(t,x)A4jIhi,j(t,x)(1+α2Ihi,j(t,x))(1+α2Ihi,j(t,x))ϱj,0},1},j=1,2,,n.
    $
    (5.11)

    In this suction, we will derive the necessary conditions for near optimal control of model (5.1).

    Theorem 5.8. Let $ (S^{a\varepsilon}_{i, j}(t, x) $, $ I^{a\varepsilon}_{i, j}(t, x) $, $ S^{h\varepsilon}_{i, j}(t, x) $, $ I^{h\varepsilon}_{i, j}(t, x) $ , $ u^{a\varepsilon}_{i}(t, x) $, $ u^{h\varepsilon}_{j}(t, x)) $ be an admissible pair. There exists a constant C such that any $ \eta\in[0, 1), \varepsilon > 0 $ and any $ \varepsilon $-optimal pair $ (S^{a\varepsilon}_{i, j}(t, x) $, $ I^{a\varepsilon}_{i, j}(t, x) $, $ S^{h\varepsilon}_{i, j}(t, x) $, $ I^{h\varepsilon}_{i, j}(t, x), $ $ u^{a\varepsilon}_{i}(t, x) $, $ u^{h\varepsilon}_{j}(t, x)) $, the following condition holds:

    $ infuaiU([0,T]×Ω)T0Ωni=1(A2i(Saεi,j+Iaεi,j)+12ςi(uai+uaεi)Saεi,jpε1iIaεi,jpε2i)(uaiuaεi)dxdtCεη3,infuhjU([0,T]×Ω)T0Ωnj=1(A4jIhεi,j+12ϱj(uhj+uhεj)cIhεi,jpε4j1+α2Ihεi,j)(uhjuhεj)dxdtCεη3.
    $

    Proof. We have that $ J(0, \phi(0, x);u^{a}_{i}(t, x), u^{h}_{j}(t, x)) $:$ \mathcal{U}([0, T]\times\Omega) \rightarrow \mathbb{R} $ is continuous under the metric $ d $, therefore, by using Ekeland's Principle 5.2, we can choose $ \iota = \varepsilon^{\frac{2}{3}} $, there exists an admissible pair ($ S^{a\varepsilon}_{i, j} $, $ I^{a\varepsilon}_{i, j} $, $ S^{h\varepsilon}_{i, j} $, $ I^{h\varepsilon}_{i, j} $, $ u^{a\varepsilon}_{i} $, $ u^{h\varepsilon}_{j} $) such that $ d(u^{\varepsilon}, \widetilde{u}^{\varepsilon}) < \varepsilon^{\frac{2}{3}} $, and $ \widetilde{J}(0, \phi(0, x); \widetilde{u}^{\varepsilon}) \leq\widetilde{J}(0, \phi(0, x); u), \forall u\in\mathcal{U}([0, T]\times\Omega) $, where $ \widetilde{J}(0, \phi(0, x); u(t, x)) = J(0, \phi(0, x); u(t, x))+\varepsilon^{\frac{1}{3}} d(u^{\varepsilon}, \widetilde{u}^{\varepsilon}) $. This show that $ (S^{a\varepsilon}_{i, j}, I^{a\varepsilon}_{i, j}, S^{h\varepsilon}_{i, j}, I^{h\varepsilon}_{i, j}, u^{a\varepsilon}_{i}, u^{h\varepsilon}_{j}) $ is an optimal pair for the objective function $ \widetilde{J}(0, \phi(0, x); u(t, x)) $. Next, we will use the spike variation technique to derive a "maximum principle" for $ (S^{a\varepsilon}_{i, j}, I^{a\varepsilon}_{i, j}, S^{h\varepsilon}_{i, j}, I^{h\varepsilon}_{i, j}, u^{a\varepsilon}_{i}, u^{h\varepsilon}_{j}) $. Let $ \overline{t}\in[0, T], \; \delta > 0 $, and $ u(t, x))\in\mathcal{U}([0, T]\times\Omega) $, we define $ u^{\delta}(t, x)\in\mathcal{U}([0, T]\times\Omega) $ as follows

    $ uδ(t,x)={u(t,x),if(t,x)[¯t,¯t+δ]×Ω,˜uε(t,x),if(t,x)[0,T][¯t,¯t+δ]×Ω.
    $

    Then, we have

    $ ˜J(0,ϕ(0,x);˜uε(t,x))˜J(0,ϕ(0,x);uδ(t,x)),d(uδ(t,x),˜uε(t,x))δ.
    $
    (5.12)

    Thus $ J(0, \phi(0, x);\widetilde{u}^{\varepsilon}(t, x)) = \widetilde{J}(0, \phi(0, x); \widetilde{u}^{\varepsilon}(t, x))\leq\widetilde{J}(0, \phi(0, x); u^{\delta}(t, x)) = J(0, \phi(0, x); u^{\delta}(t, x))+\delta\varepsilon^{\frac{1}{3}} $. It follows from (5.12), Lemma 5.5 and Taylor's expansion, we can obtain that

    $ δε13J(0,ϕ(0,x);uδ(t,x))J(0,ϕ(0,x);˜uε(t,x))T0Ωni=1A2iuai(Saδi,j˜Saεi,j)+(A1i+A2iuai)(Iaδi,j˜Iaεi,j)dxdt+T0Ωnj=1(A3j+A4juhj)(Ihδi,j˜Ihεi,j)dxdt+¯t+δ¯tΩni=1(A2i(Sai,j+Iai,j)(uai˜uaεi)+12ςi(uai˜uaεi)(uai+˜uaεi))dxdt+¯t+δ¯tΩnj=1(A4jIhi,j(uhj˜uhεj)+12ϱj(uhj˜uhεj)(uhj+˜uhεj))dxdt+(δ).
    $
    (5.13)

    Using the Itô's formula to $ Q(t, x) = \widetilde{p}^{\varepsilon}_{1i} (S^{a\delta}_{i, j} -\widetilde{S}^{a\varepsilon}_{i, j}) + \widetilde{p}^{\varepsilon}_{2i} (I^{a\delta}_{i, j} -\widetilde{I}^{a\varepsilon}_{i, j}) + \widetilde{p}^{\varepsilon}_{3j} (S^{h\delta}_{i, j} -\widetilde{S}^{h\varepsilon}_{i, j})+ \widetilde{p}^{\varepsilon}_{4j} (I^{h\delta}_{i, j} -\widetilde{I}^{h\varepsilon}_{i, j}) $, and from Lemmas 5.3 and 5.4, we can obtain that

    $ T0Ωni=1A2iuai(Saδi,j˜Saεi,j)+(A1i+A2iuai)(Iaδi,j˜Iaεi,j)dxdt+T0Ωnj=1(A3j+A4juhj)(Ihδi,j˜Ihεi,j)dxdt¯t+δ¯tΩni=1(uaδiSaδi,j˜uaεi˜Saεi,j)˜pε1i(uaδiIaδi,j˜uaεi˜Iaεi,j)˜pε2idxdt¯t+δ¯tΩnj=1(uhδj˜uhεj)˜pε4jdxdt.
    $
    (5.14)

    Substituting (5.14) into (5.13), we have

    $ δε13J(0,ϕ(0,x);uδ(t,x))J(0,ϕ(0,x);˜uε(t,x))¯t+δ¯tΩni=1(A2i(Sai,j+Iai,j)(uai˜uaεi)+12ςi(uai˜uaεi)(uai+˜uaεi))dxdt+¯t+δ¯tΩnj=1(A4jIhi,j(uhj˜uhεj)+12ϱj(uhj˜uhεj)(uhj+˜uhεj))dxdt+(δ)¯t+δ¯tΩni=1((uaδiSaδi,j˜uaεi˜Saεi,j)˜pε1i+(uaδiIaδi,j˜uaεi˜Iaεi,j)˜pε2i)dxdt¯t+δ¯tΩnj=1(uhδj˜uhεj)˜pε4jdxdt.
    $
    (5.15)

    Dividing (5.15) by $ \delta $ and letting $ \delta\rightarrow0 $, we can get

    $ ε13Ωni=1(A2i(Sai,j(¯t)+Iai,j(¯t))(uai(¯t)˜uaεi(¯t))+12ςi(uai(¯t)˜uaεi(¯t))(uai(¯t)+˜uaεi(¯t))[uaδi(¯t)Saδi,j(¯t)˜uaεi(¯t)˜Saεi,j(¯t)]˜pε1i(¯t)[uaδi(¯t)Iaδi,j(¯t)˜uaεi(¯t)˜Iaεi,j(¯t)]˜pε2i(¯t))dx+Ωnj=1A4jIhi,j(¯t)(uhj(¯t)˜uhεj(¯t))+12ϱj(uhj(¯t)˜uhεj(¯t))(uhj(¯t)+˜uhεj(¯t))[uhδj(¯t)˜uhεj(¯t)]˜pε4j(¯t))dx.
    $
    (5.16)

    Now, we will derive an estimate for the right side of (5.16) with all the $ (\widetilde{S}^{a\varepsilon}_{i, j}, \widetilde{I}^{a\varepsilon}_{i, j}, \widetilde{S}^{h\varepsilon}_{i, j}, \widetilde{I}^{h\varepsilon}_{i, j}, \widetilde{u}^{a\varepsilon}_{i}, \widetilde{u}^{h\varepsilon}_{j}) $ replaced by $ (S^{a\varepsilon}_{i, j}, I^{a\varepsilon}_{i, j}, S^{h\varepsilon}_{i, j}, I^{h\varepsilon}_{i, j}, u^{a\varepsilon}_{i}, u^{h\varepsilon}_{j}) $. To achieve this goal, we first estimate the following difference:

    $ T0Ωni=1([uaδiSaδi,j˜uaεi˜Saεi,j]˜pε1i[uaδiSaδi,juaεiSaεi,j]pε1i)dxdt=T0Ωni=1(˜pε1ipε1i)(uaδiSaδi,juaεiSaεi,j)dxdt+T0Ωni=1˜pε1i(uaεiSaεi,j˜uaεi˜Saεi,j)dxdt.
    $

    From Lemma 5.6 and due to $ d(u^{\varepsilon}, \widetilde{u}^{\varepsilon}) < \varepsilon^{\frac{2}{3}} $, we have that for any $ 1 < \eta < 2 $, and $ 0 < \kappa < 1 $ satisfying $ (1+\kappa)\eta < 2 $, and

    $ T0Ωni=1(˜pε1ipε1i)(uaδiSaδi,juaεiSaεi,j)dxdt(T0Ωni=1|˜pε1ipε1i|ηdxdt)1η(T0Ωni=1|uaδiSaδi,juaεiSaεi,j|ηη1dxdt)η1ηC(d(uai,˜uai)κη2)1η(T0Ωni=1|uaδiSaδi,j|ηη1+|uaεiSaεi,j|ηη1dxdt)η1ηCεη3,
    $

    similarly, we have

    $ T0Ωni=1˜pε1i(uaεiSaεi,j˜uaεi˜Saεi,j)dxdtC(T0Ωni=1|˜pε1i|2dxdt)12(T0Ωni=1|uaεi˜uaεi|2χuaεi˜uaεidxdt)12C(T0Ωni=1|uaεi|4+|˜uaεi|4dxdt)14(T0Ωni=1χuaεi˜uaεidxdt)14C(d(uaεi,˜uaεi))14Cεη3.
    $

    Thus

    $ T0Ωni=1([uaδiSaδi,j˜uaεi˜Saεi,j]˜pε1i[uaδiSaδi,juaεiSaεi,j]pε1i)dxdtCεη3.
    $
    (5.17)

    By analogous calculation as (5.17), we have

    $ T0Ωni=1(A2i(Sai,j+Iai,j)(uai˜uaεi)+12ςi(uai˜uaεi)(uai+˜uaεi))dxdt+T0Ωnj=1(A4jIhi,j(uhj˜uhεj)+12ϱj(uhj˜uhεj)(uhj+˜uhεj))dxdtCεη3,
    $
    $ T0Ωni=1(uaδiIaδi,j˜uaεi˜Iaεi,j)˜pε2idxdtCεη3,T0Ωnj=1(uhδj˜uhεj)˜pε4jdxdtCεη3.
    $

    Combine the expression of Hamiltonian function (5.5), we can immediately obtain the conclusion.

    In this section, we present numerical simulations to demonstrate the results. Let $ [0, T]\times\Omega $ be the admissible control domain. We consider a near-optimal problem with the following objective function, simulations are based on a scale-free network with $ p(k) = (r-1)m^{(r-1)}k^{-r} $, where $ m $ represents the smallest degree on a scale-free network nodes, $ r $ is power exponent. Let $ m = 1, r = 3 $, the number of nodes on a scale-free network is $ N = 100 $, and we add each new node with 3 new edges. We choose degree $ k $ as $ k_{1} = 1, k_{2} = 2, k_{3} = 3, k_{4} = 4, k_{5} = 5, k_{6} = 6, k_{7} = 7, k_{8} = 8, k_{9} = 9 $. We get the average degree of complex network structure $ \langle k\rangle_{a}(\langle k^{2}\rangle_{a}) = 3.27(9.04) $ through simple calculation. The parameter values are chosen as follows:

    Example 6.1. For model (2.3) all parameters are positive constants, we choose degree $ k $ as $ k_{1} = 1, k_{2} = 2, k_{3} = 3, k_{4} = 4, k_{5} = 5, k_{6} = 6, k_{7} = 7, k_{8} = 8, k_{9} = 9 $. We get the average degree of complex network structure $ \langle k\rangle_{a}(\langle k^{2}\rangle_{a}) = 3.27(9.04) $ through simple calculation, when we choose $ \lambda_{a} = 7\times10^{-4} $, $ \mathcal{R}_{0} = 1.5246 > 1 $; when we choose $ \lambda_{a} = 3\times10^{-4} $, $ \mathcal{R}_{0} = 0.3689 < 1 $.

    Figure 1 shows the unique endemic equilibrium point is globally asymptotically stable, and the virus will persist. Figure 2 shows the unique disease-free equilibrium point $ E^{0} $ is globally asymptotically stable, and the virus will die out in the long run. Furthmore, we can obtain that the density of infected nodes increase with the degree k increase in Example 6.1. In other words, the lager the degree k is, the higher the density of infected nodes is, which indicates that the nodes having lots of relative neighbors are more likely to be infected by contacting frequently.

    Figure 1.  The density of susceptible and infected human nodes with different degree $ k = 1, 2, 3, 4, 5, 6, 7, 8, 9 $ when $ \mathcal{R}_{0} > 1 $.
    Figure 2.  The density of susceptible and infected poultry nodes with different degree $ k = 1, 2, 3, 4, 5, 6, 7, 8, 9 $ when $ \mathcal{R}_{0} < 1 $.

    Example 6.2. We analyzed the effects of slaughter rate and curative ratio on avian influenza control. Let's take a one-dimensional spatial variable, $ \Omega = [0, L] $. The control $ u^{a}_{i}(t, x), \; u^{h}_{j}(t, x) $ are measurable and for any $ (t, x)\in[0, T]\times[0, L], \; 0\leq u^{a}_{i}(t, x), \; u^{h}_{j}(t, x)\leq1 $. Without the loss of generality, for any fixes time $ T $, we give step size $ \Delta t\in(0, 1) $ and for any fixes space $ L $, we give step size $ \Delta x\in(0, 1) $, we denote $ t_{m} = m\Delta t, \; x_{n} = n\Delta t $, $ m = 0, 1, \cdots, [\frac{T}{\Delta t}], \; n = 0, 1, \cdots, [\frac{L}{\Delta x} $]. For the numerical simulations of model (5.1) and adjoint Eq (5.3), we use the Milstein's method [33]. Thus, model (5.1) and (5.3) can be rewritten as the following discrete equations:

    $ {Sai,j(tm+1,xn)=Sai,j(tm,xn)+(Di1(tm,xn)Sai,j(tm,xn+1)2Sai,j(tm,xn)+Sai,j(tm,xn1)(Δx)2+Λaλa(i)Sai,j(tm,xn)Θa(tm,xn)1+α1Θa(tm,xn)μaSai,j(tm,xn)uai(tm,xn)Sai,j(tm,xn))Δt,Iai,j(tm+1,xn)=Iai,j(tm,xn)+(Di1(tm,xn)Iai,j(tm,xn+1)2Iai,j(tm,xn)+Iai,j(tm,xn1)(Δx)2+λa(i)Sai,j(tm,xn)Θa(tm,xn)1+α1Θa(tm,xn)δaIai,j(tm,xn)μaIai,j(tm,xn)uai(tm,xn)Iai,j(tm,xn))Δt,Shi,j(tm+1,xn)=Shi,j(tm,xn)+(G1j(tm,xn)Shi,j(tm,xn+1)2Shi,j(tm,xn)+Shi,j(tm,xn1)(Δx)2+Λhλah(j)Shi,j(tm,xn)Θah(tm,xn)μhShi,j(tm,xn))Δt,Ihi,j(tm+1,xn)=Ihi,j(tm,xn)+(G1j(tm,xn)Ihi,j(tm,xn+1)2Ihi,j(tm,xn)+Ihi,j(tm,xn1)(Δx)2+λah(j)Shi,j(tm,xn)Θah(tm,xn)γhIhi,j(tm,xn)δhShi,j(tm,xn)μhShi,j(tm,xn)cuhj(tm,xn)Shi,j(tm,xn)1+α2Shi,j(tm,xn))Δt,
    $
    (6.1)
    $ {p1i(tm+1,xn)=p1i(tm,xn)+(Di1(tm,xn)p1i(tm,xn+1)2p1i(tm,xn)+p1i(tm,xn1)(Δx)2+μap1i(tm,xn)+uai(tm,xn)p1i(tm,xn)+λa(i)Θa(tm,xn)1+α1Θa(tm,xn)λa(i)Θa(tm,xn)1+α1Θa(tm,xn)p2i(tm,xn)A2iuai(tm,xn))Δt,p2i(tm+1,xn)=p2i(tm,xn)+(Di1(tm,xn)p2i(tm,xn+1)2p2i(tm,xn)+p2i(tm,xn1)(Δx)2A2iuai(tm,xn)+λa(i)f(i)Sai,j(tm,xn)(1+α1Θa(tm,xn))2p1i(tm,xn)+δap2i(tm,xn)+μap2i(tm,xn)+uai(tm,xn)p2i(tm,xn)A1iλa(i)f(i)Sai,j(tm,xn)p2i(tm,xn)(1+α1Θa(tm,xn))2+λah(j)g(j)Shi,j(tm,xn)p3j(tm,xn)λah(j)g(j)Shi,j(tm,xn)p4j(tm,xn))Δt,p3j(tm+1,xn)=p3j(tm,xn)+(D3j(tm,xn)p3j(tm,xn+1)2p3j(tm,xn)+p3j(tm,xn1)(Δx)2+μhp3j(tm,xn)+λah(j)Θah(tm,xn)p3j(tm,xn)λah(j)Θah(tm,xn)p4j(tm,xn))Δt,p4j(tm+1,xn)=p4j(tm,xn)+(D4j(tm,xn)p4j(tm,xn+1)2p4j(tm,xn)+p4j(tm,xn1)(Δx)2+γhp4j(tm,xn)+δhp4j(tm,xn)+μhp4j(tm,xn)+cuhj(tm,xn)p4j(tm,xn)(1+α2Ihi,j(tm,xn))2A3jA4juhj(tm,xn))Δt,
    $
    (6.2)

    in order to find the optimal control of $ u^{a}_{i} $, $ u^{h}_{j} $, we give the nonlinear conjugate gradient algorithm [40] as follows:

    Step 1: Choose an initial $ u^{a}_{i0} $, $ u^{h}_{j0} $, an initial step size $ s_{0} $ and stopping tolerances $ Tol_{1} $ and $ Tol_{2} $, initial states $ (S^{a}_{i, j}(0) $, $ I^{a}_{i, j}(0) $, $ S^{h}_{i, j}(0) $, $ I^{h}_{i, j}(0)) $ by solving Eq (6.1), initial adjoints $ p_{0} $ = ($ p_{1i}(0) $, $ p_{2i}(0) $, $ p_{3j}(0) $, $ p_{4j}(0)) $ by solving Eq (6.2), gradient of $ J $, i.e., $ g_{i, 0} = \varsigma_{i} u^{a}_{i0} + (p_{1i}(0)-A_{2i})S^{a\ast}_{i, j}(0) +p_{2i}(0)I^{a\ast}_{i, j}(0) $, $ h_{j, 0} = (1+\alpha_{2}I^{h\ast}_{i, j}(0) u^{h}_{j0} + cp_{4j}(0)I^{h\ast}_{i, j}(0) -A_{4j}I^{h\ast}_{i, j}(0) (1+\alpha_{2}I^{h\ast}_{i, j}(0)) $, anti-gradient of $ J $, i.e., $ d^{*}_{0} = -g_{i, 0} $, $ d_{0} = -h_{j, 0} $.

    Step 2: control, i.e., $ u_{k+1} = u_{k} + s_{k}d_{k} $, states $ (S^{a}_{i, \cdot, k+1} $, $ I^{a}_{i, \cdot, k+1} $, $ S^{h}_{\cdot, j, k+1} $, $ I^{h}_{\cdot, j, k+1}) $ = ($ S^{a}_{i, \cdot, u_{k+1}} $, $ I^{a}_{i, \cdot, u_{k+1}} $, $ S^{h}_{\cdot, j, u_{k+1}} $, $ I^{h}_{\cdot, j, u_{k+1}}) $ by solving Eq (6.1) $ (p_{1i, k+1} $, $ p_{2i, k+1} $, $ p_{3j, k+1} $, $ p_{4j, k+1}) $ = $ (p_{1i, S^{a}_{i, \cdot, k+1}} $, $ p_{2i, I^{a}_{i, \cdot, k+1}} $, $ p_{3j, S^{h}_{\cdot, j, k+1}} $, $ p_{4j, I^{h}_{\cdot, j, u_{k+1}}}) $ by solving Eq (6.2), gradient of $ J $, i.e., $ g_{i, k+1} = \varsigma_{i} u^{a}_{i, k+1} + (p_{1i, k+1}-A_{2i})S^{a\ast}_{i, \cdot, k+1} +p_{2i, k+1}I^{a\ast}_{i, \cdot, k+1} $, $ h_{j, k+1} = (1+\alpha_{2}I^{h\ast}_{\cdot, j, k+1} u^{h}_{j, k+1} + cp_{4j, k+1}I^{h\ast}_{\cdot, j, k+1} -A_{4j}I^{h\ast}_{\cdot, j, k+1} (1+\alpha_{2}I^{h\ast}_{\cdot, j, k+1}) $.

    Step 3: Stop if $ \|g_{i, k+1}\| < Tol_{1} $, $ \|h_{j, k+1}\| < Tol_{1} $ or $ \|J_{k+1} - J_{k}\| \leq Tol_{2} $.

    Compute the conjugate direction $ \varpi_{k+1} $ according to one of the updated formulas [41].

    $ d_{k+1} = -g_{i, k+1} + \varpi_{k+1}d_{k} $. aselect step size $ s_{k+1} $ in terms of some standard options.

    Set $ k: = k+1 $ and go to Step 1.

    Figure 3 shows the solution of model (2.3) curves representing the variation of populations for susceptible poultry, infected poultry, susceptible human, infected human. Figure 4 shows the solution of model (5.1) curves representing the variation of populations for susceptible poultry, infected poultry, susceptible human, infected human. The comparison between Figure 4 and Figure 3 shows that the proportion of slaughtered susceptible poultry and infected poultry can effectively prevent the outbreak of avian influenza; With limited medical resources, treatment of infected humans can reduce the spread of avian influenza among humans. Figure 6, we can see that in order to prevent the spread of avian influenza and reduce the economic loss it brings, the slaughter rate of poultry should be gradually reduced over time. In order to reduce the risk of the spread of avian influenza, the proportion of treatment for infected humans should be gradually increased over time. However, because of limited medical resources, after the treatment rate reaches a peak for infected humans, it will gradually decrease. Figure 7 shows the optimal control $ u^{a\ast}_{i}, u^{h\ast}_{j} $ and the near-optimal control $ u^{a\varepsilon}_{i}, u^{h\varepsilon}_{j} $, respectively. The optimal control $ u^{a\ast}_{i} $ indicates that the optimal slaughter rate for the poultry gradually decreases; the optimal control $ u^{h\ast}_{j} $ denotes that the optimal treatment rate of the human is different in different times. The results show that the error of numerical simulation results of optimal control and near-optimal control is less than 0.2.

    Figure 3.  The density of susceptible and infected nodes.
    Figure 4.  The density of susceptible and infected nodes without control.
    Figure 5.  The path of $ I^{a}_{i, j} $ and $ I^{h}_{i, j} $ of with and without control.
    Figure 6.  The optimal control of slaughtering $ u^{a}_{i} $ and treatment $ u^{h}_{j} $ with time-space.
    Figure 7.  Taking $ \varepsilon = 0.2 $ and $ 0.5 $, we obtained optimal control $ u^{a\ast}_{i}, u^{h\ast}_{j} $ and near-optimal control $ u^{a\varepsilon}_{i}, u^{h\varepsilon}_{j} $.

    The optimal control problem is usually composed of a group of state equations and adjoint equations, but these equations have difficulties obtaining an exact solution. Therefore, we concerned the near-optimal control and threshold behavior of an avian influenza model with saturation on heterogenous complex networks in this paper. We first give the basic reproduction number $ \mathcal{R}_{0} $, which can be used to govern the threshold dynamics of influenza disease. In addition, we obtained the sufficient and necessary conditions for the near-optimality. Lastly, numerical simulations were performed to illustrate the results and confirm that the treatment control resulted in a substantial reduction in the level of infected population while the treatment cost was minimized. In this paper, we assumed that the parameters are all precisely known, however, they may not be true due to the unavoidable errors and the lack of sufficient information in the measurement process and so on. How uncertain parameter values and Lévy noise affect the near-optimality of this epidemic model remains unclear and deserves further investigation. We will study the near optimal control of the avian influenza model on complex network with Lévy noise and imprecise parameters in the future work. Firstly, we give the method of parameter estimates of the avian influenza model. According to the Lévy-It$ \hat{o} $'s decomposition theorem, we have $ \widetilde{L}(t) = \sigma B(t)+\int_{Y}\nu \widetilde{N}(t, d\nu) $. Then, by using Ekeland's principle and Hamiltonian function, we obtain the sufficient and necessary conditions of near optimal of the avian influenza model with Lévy noise and imprecise parameters.

    The research was supported by the Ningxia Natural Science Foundation Project (2020AAC03048) and by the Graduate Innovation Project of North Minzu University, China (No.YCX21164).

    This work does not have any conflict of interest.

    Proof. Integrating both sides of the first equation of (5.3) from $ t $ to $ T $, we get

    $ p1i(t)=p1i(T)Tt([μa+uai+λa(i)Θa1+α1Θalk=1xkDikxk]p1iλa(i)Θa1+α1Θap2iA2iuai)ds.
    $

    By squaring the sides of the above equation, we have

    $ |p1i(t)|2C|p1i(T)|2+C(Tt)Tt|([μa+uai+λa(i)Θa1+α1Θalk=1xkDikxk]p1iλa(i)Θa1+α1Θap2iA2iuai)|2dsC|p1i(T)|2+C(Tt)Tt|p1i(s)|2+|p2i(s)|2ds,
    $
    (A1)

    similarly, we have

    $ |p2i(t)|2C|p2i(T)|2+C(Tt)Tt|(λa(i)f(i)Sai,j(1+α1Θa)2p1i+[δa+μa+uaiλa(i)f(i)Sai,j(1+α1Θa)2lk=1xkDikxk]p2i+λah(j)g(j)Shi,jp3jλah(j)g(j)Shi,jp4jA1iA2iuai)|2dsC|p2i(T)|2+C(Tt)Tt(|p1i(s)|2+|p2i(s)|2+|p3j(s)|2+|p4j(s)|2)ds,
    $
    (A2)
    $ |p3j(t)|2C|p3j(T)|2+C(Tt)Tt|([μh+λah(j)Θahlk=1xkDikxk]p3jλah(j)Θahp4j)|2C|p3j(T)|2+C(Tt)Tt|p3j(s)|2+|p4j(s)|2ds,
    $
    (A3)
    $ |p4j(t)|2C|p4j(T)|2+C(Tt)Tt|([γh+δh+μh+cuhj(1+α2Ihi,j)2lk=1xkDikxk]p4jA3jA4juhj)|2C|p4j(T)|2+C(Tt)Tt|p4j(s)|2ds.
    $
    (A4)

    It follows from (A1)-(A4) that

    $ |p1i(t,x)|2+|p2i(t,x)|2+|p3j(t,x)|2+|p4j(t,x)|2C(|p1i(T,x)|2+|p2i(T,x)|2+|p3j(T,x)|2+|p4j(T,x)|2)+C(Tt)Tt(|p1i(s,x)|2+|p2i(s,x)|2+|p3j(s,x)|2+|p4j(s,x)|2)ds,
    $
    (A5)

    where $ t\in[T-\epsilon, T] $ with $ \epsilon = \frac{1}{C} $. Using Gronwall's inequality [31], we derive from (A5) that

    $ sup0tT|p1i(t,x)|2+|p2i(t,x)|2+|p3j(t,x)|2+|p4j(t,x)|2C,fort[Tϵ,T].
    $
    (A6)

    We apply the same method to (A1)–(A2) in $ [T-\epsilon, T] $, and we can see that for any $ t\in[T-2\epsilon, T] $, (A6) holds. Repeating a finite number of steps, we know that for any $ t\in[0, T] $, the estimate (A6) holds.

    Proof. If $ \eta\geq1 $. For any $ r > 0 $, an estimate of $ |S^{a}_{i, j}-\widetilde{S}^{a}_{i, j}|^{2\eta} $ can be obtained as follows:

    $ sup0tr|Sai,j˜Sai,j|2ηCr0(lk=1|xk(Dik(Sai,j˜Sai,j)xk)|2η+λ2ηa(i)|˜Sai,j˜Θa1+α1˜ΘaSai,jΘa1+α1Θa|2η+μ2ηa|(˜Sai,jSai,j)|2η+|˜uai˜Sai,juaiSai,j|2η)dtCr0(lk=1|xk(Dik(Sai,j˜Sai,j)xk)|2η+λ2ηa(i)|˜Θa|2η|Sai,j˜Sai,j|2η+|˜Sai,j|2η|Θa˜Θa|2η+μ2ηa|(˜Sai,jSai,j)|2η+|uai|2η|Sai,j˜Sai,j|2η+|uai˜uai|2η)dtCr0(|Sai,j˜Sai,j|2η+|Iai,j˜Iai,j|2η)dt+C(r0Xuai˜uaidt)κηC(r0(|Sai,j˜Sai,j|2η+|Iai,j˜Iai,j|2η)dt+d(uai,˜uai)κη),
    $
    $ sup0tr|Iai,j˜Iai,j|2ηCr0(lk=1|xk(Dik(Iai,j˜Iai,j)xk)|2η+λ2ηa(i)|Sai,jΘa1+α1Θa˜Sai,j˜Θa1+α1˜Θa|2η+(δa+μa)2η|(˜Iai,jIai,j)|2η+|˜uai˜Iai,juaiIai,j|2η)dtC(r0(|Sai,j˜Sai,j|2η+|Iai,j˜Iai,j|2η)dt+d(uai,˜uai)κη),
    $
    $ sup0tr|Shi,j˜Shi,j|2ηCr0(lk=1|xk(Gkj(Shi,j˜Shi,j)xk)|2η+λ2ηah(j)|˜Shi,j˜ΘahShi,jΘah|2η+μ2ηh|˜Shi,jShi,j|2η)dtC(r0(|Sai,j˜Sai,j|2η+|Iai,j˜Iai,j|2η)dt),sup0tr|Ihi,j˜Ihi,j|2ηCr0(lk=1|xk(Gkj(Ihi,j˜Ihi,j)xk)|2η+λ2ηah(j)|λah(j)Shi,jΘah˜Shi,j˜Θah|2η+(μh+δh+γh)2η|˜Ihi,jIhi,j|2η+c˜uhj˜Ihi,j1+α2˜Ihi,jcuhjIhi,j1+α2Ihi,j)dtC(r0(|Sai,j˜Sai,j|2η+|Iai,j˜Iai,j|2η)dt+d(uhj,˜uhj)κη),
    $

    so, we have

    $ sup0tr|Sai,j˜Sai,j|2η+|Iai,j˜Iai,j|2η+|Shi,j˜Shi,j|2η+|Shi,j˜Shi,j|2ηC(r0sup0ts(|Sai,j˜Sai,j|2η+|Shi,j˜Shi,j|2η+|Iai,j˜Iai,j|2η+|Ihi,j˜Ihi,j|2η)ds+d(uai,˜uai)κη+d(uhj,˜uhj)κη).
    $

    We have the result using Gronwall's inequality. Next considering $ 0\leq\eta < 1 $, by using Cauchy-Schwartz's inequality, we have

    $ sup0tT|Sai,j˜Sai,j|2η+|Iai,j˜Iai,j|2η+|Shi,j˜Shi,j|2η+|Shi,j˜Shi,j|2ηC[d(uai,˜uai)κη+d(uhj,˜uhj)κη].
    $

    This proof is complete.

    Proof. We let $ \widehat{p}_{1i} = p_{1i} -\widetilde{p}_{1i}, \; \widehat{p}_{2i} = p_{2i} -\widetilde{p}_{2i}, \; \widehat{p}_{3j} = p_{3j} -\widetilde{p}_{3j} $, $ \widehat{p}_{4j} = p_{4j} -\widetilde{p}_{4j} $. Then according to adjoint Eq (5.3), we can see

    $ {dˆp1i=((μaλa(i)Θa1+α1Θa+lk=1xkDikxk)ˆp1i+λa(i)Θa1+α1Θaˆp2i+ˆf1i)dt,dˆp2i=(λa(i)f(i)Sai,j(1+α1Θa)2ˆp1i+(δaμa+λa(i)f(i)Sai,j(1+α1Θa)2+lk=1xkDikxk)ˆp2iλah(j)g(j)Shi,jˆp3j+λah(j)g(j)Shi,jˆp4j+ˆf2i)dt,dˆp3j=((μhλah(j)Θah+lk=1xkDikxk)ˆp3j+ˆf3j)dt,dˆp4j=((γhδhμhcuhj(1+α2Ihi,j)2+lk=1xkDikxk)ˆp4j+ˆf4j)dt,
    $
    (C1)

    where

    $ {ˆf1i=λa(i)(Θa1+α1Θa˜Θa1+α1˜Θa)(˜p2i˜p1i)+A2i(uai˜uai)+˜uai˜p1iuaip1i,ˆf2i=λa(i)f(i)(Sai,j(1+α1Θa)2˜Sai,j(1+α1˜Θa)2)(˜p2i˜p1i)+λah(j)g(j)(Shi,j˜Shi,j)(˜p4j˜p3j)+A2i(uai˜uai)+˜uai˜p2iuaip2i,ˆf3j=λah(j)(Θah˜Θah)(˜p4j˜p3j),ˆf4j=(c˜uhj(1+α2˜Ihi,j)2cuhj(1+α2Ihi,j)2)˜p4j+A4j(uhj˜uhj).
    $
    (C2)

    We assume that $ \varphi = (\varphi_{1i}, \; \varphi_{2i}, \; \varphi_{3j}, \; \varphi_{4j})^{T} $ is the following linear differential equation:

    $ {dφ1i=((μaλa(i)Θa1+α1Θa+lk=1xkDikxk)φ1iλa(i)f(i)Sai,j(1+α1Θa)2φ2i+|ˆp1i|η1sgn(ˆp1i))dt,dφ2i=(λa(i)Θa1+α1Θaφ1i+(δaμa+λa(i)f(i)Sai,j(1+α1Θa)2+lk=1xkDikxk)φ2i+|ˆp2i|η1sgn(ˆp2i))dt,dφ3j=(λah(j)g(j)Shi,jφ2i+(μhλah(j)Θah+lk=1xkDikxk)φ3j+|ˆp3j|η1sgn(ˆp3j))dt,dφ4j=(λah(j)g(j)Shi,jφ2i+(γhδhμhcuhj(1+α2Ihi,j)2+lk=1xkDikxk)φ4j+|ˆp4j|η1sgn(ˆp4j))dt,
    $
    (C3)

    where $ sgn(\cdot) $ is a symbolic function. According to assumption and Lemma 5.5, the existence and uniqueness of solution of (C1) can be verified, and we have

    $ T0Ω(||ˆp1i|η1sgn(ˆp1i)|2+||ˆp2i|η1sgn(ˆp2i)|2+||ˆp3j|η1sgn(ˆp3j)|2+||ˆp4j|η1sgn(ˆp4j)|2)dxdt<+.
    $

    Because $ 1 < \eta < 2 $, thus there exist $ \eta_{1} > 2 $ such that $ \frac{1}{\eta_{1}}+\frac{1}{\eta} = 1 $. So, using Cauchy-Schwartz's inequality, we have

    $ sup0tT(|φ1i|η1+|φ2i|η1+|φ3j|η1+|φ4j|η1)T0Ω(|ˆp1i|η+|ˆp2i|η+|ˆp3j|η+|ˆp4j|η)dxdtC(T0Ω(|ˆf1i|η+|ˆf2i|η+|ˆf3j|η+|ˆf4j|η)dxdt).
    $

    Using Cauchy-Schwartz's inequality, we have

    $ T0Ω|ˆf1i|ηdxdtC(T0Ω|Iai,j˜Iai,j|η(|˜p1i|η+|˜p2i|η)dxdt+Cd(uai,˜uai)κη2)C((T0Ω|Iai,j˜Iai,j|2η2ηdxdt)1η2(T0Ω(|˜p1i|2+|˜p2i|2)dxdt)η2+Cd(uai,˜uai)κη2).
    $

    Note that $ \frac{2\eta}{1-\eta} < 1, \; 1-\frac{\eta}{2} > \frac{\kappa\eta}{2} $ and $ d(u, \widetilde{u}) < 1 $. It follows from $ \int_{0}^{T}\int_{\Omega}|\widehat{f}_{1i}|^{\eta}dxdt\leq Cd(u^{a}_{i}, \widetilde{u}^{a}_{i})^ {\frac{\kappa\eta}{2}} $. In the same way, we get $ \int_{0}^{T}\int_{\Omega}| \widehat{f}_{2i}|^{\eta}dxdt\leq Cd(u^{a}_{i}, \widetilde{u}^{a}_{i})^ {\frac{\kappa\eta}{2}} $, $ \int_{0}^{T}\int_{\Omega}|\widehat{f}_{3j}|^{\eta}dxdt\leq Cd(u^{h}_{j}, \widetilde{u}^{h}_{j})^ {\frac{\kappa\eta}{2}} $, $ \int_{0}^{T}\int_{\Omega}|\widehat{f}_{4j}|^{\eta}dxdt\leq Cd(u^{h}_{j}, \widetilde{u}^{h}_{j})^ {\frac{\kappa\eta}{2}} $. So, we have

    $ T0Ω(|ˆp1i|η+|ˆp2i|η+|ˆp3j|η+|ˆp4j|η)dxdtC(T0Ω(|ˆf1i|η+|ˆf2i|η+|ˆf3j|η+|ˆf4j|η)dxdt)C(d(uai,˜uai)κη2+d(uhj,˜uhj)κη2).
    $

    This completes the proof.

    [1] Chen LM (2007) Imaging of pain. Int Anesthesiol Clin 45: 39-57. doi: 10.1097/AIA.0b013e31803419d3
    [2] Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3: 655-666.
    [3] Kurth F, Zilles K, Fox PT, et al. (2010) A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct 214: 519-534. doi: 10.1007/s00429-010-0255-z
    [4] Mesulam MM, Mufson EJ. (1982) Insula of the old world monkey. III: Efferent cortical output and comments on function. J Comp Neurol 212: 38-52.
    [5] Mufson EJ, Mesulam MM. (1982) Insula of the old world monkey. II: Afferent cortical input and comments on the claustrum. J Comp Neurol 212: 23-37.
    [6] Nanetti L, Cerliani L, Gazzola V, et al. (2009) Group analyses of connectivity-based cortical parcellation using repeated k-means clustering. Neuroimage 47: 1666-1677. doi: 10.1016/j.neuroimage.2009.06.014
    [7] Uddin LQ, Supekar K, Amin H, et al. (2010) Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. Cereb Cortex20: 2636-2646.
    [8] van den Heuvel MP, Hulshoff Pol HE. (2010) Specific somatotopic organization of functional connections of the primary motor network during resting state. Hum Brain Mapp 31: 631-644.
    [9] Mesulam MM, Mufson EJ. (1982) Insula of the old world monkey. III: Efferent cortical output and comments on function. J Comp Neurol 212: 38-52.
    [10] Mufson EJ, Mesulam MM. (1982) Insula of the old world monkey. II: Afferent cortical input and comments on the claustrum. J Comp Neurol 212: 23-37.
    [11] Pritchard TC, Hamilton RB, Morse JR, et al. (1986) Projections of thalamic gustatory and lingual areas in the monkey, Macaca fascicularis. J Comp Neurol 244: 213-228. doi: 10.1002/cne.902440208
    [12] Mesulam MM, Mufson EJ. (1982) Insula of the old world monkey. III: Efferent cortical output and comments on function. J Comp Neurol 212: 38-52.
    [13] Mufson EJ, Mesulam MM (1982) Insula of the old world monkey. II: Afferent cortical input and comments on the claustrum. J Comp Neurol 212: 23-37.
    [14] Cereda C, Ghika J, Maeder P, et al. (2002) Strokes restricted to the insular cortex. Neurology 59:1950-1955. doi: 10.1212/01.WNL.0000038905.75660.BD
    [15] Fink JN, Selim MH, Kumar S, et al. (2005) Insular cortex infarction in acute middle cerebral artery territory stroke: predictor of stroke severity and vascular lesion. Arch Neurol 62:1081-1085. doi: 10.1001/archneur.62.7.1081
    [16] Penfield W, Faulk ME. (1955) The insula; further observations on its function. Brain 78:445-470. doi: 10.1093/brain/78.4.445
    [17] Ostrowsky K, Isnard J, Ryvlin P, et al. (2000) Functional mapping of the insula cortex: clinical implication in temporal lobe epilepsy. Epilepsia 41: 681-686. doi: 10.1111/j.1528-1157.2000.tb00228.x
    [18] Dupont S, Bouilleret V, Hasboun D, et al. (2003) Functional anatomy of the insula: new insights from imaging. Surg Radiol Anat 25: 113-119. doi: 10.1007/s00276-003-0103-4
    [19] Hausser-Hauw C, Bancaud J. (1987) Gustatory hallucinations in epileptic seizures. Electrophysiological, clinical and anatomical correlates. Brain 110 (Pt2): 339-359.
    [20] Skrap M, Mondani M, Tomasino B, et al. (2012) Surgery of insular non-enhancing gliomas: volumetric analysis of tumoral resection, clinical outcome and survival in a consecutive series of 66 cases. Neurosurgery 70(5):1081-1093.
    [21] Duffau H, Bauchet L, Lehericy S, et al. (2001) Functional compensation of the left dominant insula for language. Neuro Report 12: 2159-2163.
    [22] Duffau H, Taillandier L, Gatignol P, et al. (2006) The insular lobe and brain plasticity: Lessons from tumor surgery. Clin Neurol Neurosurg 108: 543-548. doi: 10.1016/j.clineuro.2005.09.004
    [23] McCarthy G, Gruetter R, Shulman RG, et al. (1993) Echo-planar magnetic resonance imaging studies of frontal cortex activation during word generation in humans. Proc Natl Acad Sci U. S. A90: 4952-4956.
    [24] Price CJ. (2000) The anatomy of language: contributions from functional neuroimaging. J Anat197: 335-359.
    [25] Bamiou DE, Musiek FE, Stow I, et al. (2006) Auditory temporal processing deficits in patients with insular stroke. Neurology 67: 614-619. doi: 10.1212/01.wnl.0000230197.40410.db
    [26] Ardila A. (1999) The role of insula in language: an unsettled question. Aphasiology 13: 79-87. doi: 10.1080/026870399402334
    [27] Dronkers NF. (1996) A new brain region for coordinating speech articulation. Nature 384:159-161. doi: 10.1038/384159a0
    [28] Carota A, Annoni JM, Marangolo P. (2007) Repeating through the insula: evidence from two consecutive strokes. Neuro Report 18: 1367-1370.
    [29] Bates E, Wilson SM, Saygin AP, et al. (2003) Voxel-based lesion-symptom mapping. Nature Neurosci 6: 448-450.
    [30] Eickhoff SB, Stephan KE, Mohlberg H, et al. (2009) A systems perspective on the effective connectivity of overt speech production. Philos Trans A Math Phys Eng Sci 367: 2399-2421. doi: 10.1098/rsta.2008.0287
    [31] Oh A, Duerden EG, Pang EW. (2014) The role of the insula in speech and language processing. Brain Lang 135: 96-103. doi: 10.1016/j.bandl.2014.06.003
    [32] Ibanez A, Gleichgerrcht E, Manes F. (2010) Clinical effects of insular damage in humans. Brain Struct Funct 214: 397-410. doi: 10.1007/s00429-010-0256-y
    [33] Jones CL, Ward J, Critchley HD. (2010) The neuropsychological impact of insular cortex lesions. J Neurol Neurosurg Psychiatr 81: 611-618. doi: 10.1136/jnnp.2009.193672
    [34] Stevenson RJ, Miller LA, Thayer ZC. (2008) Impairments in the perception of odor-induced tastes and their relationship to impairments in taste perception. J Exp Psychol Hum Percept Perform 34: 1183-1197. doi: 10.1037/0096-1523.34.5.1183
    [35] Fifer RC. (1993) Insular stroke causing unilateral auditory processing disorder: case report. J Am Acad Audiol 4: 364-369.
    [36] Habib M, Daquin G, Milandre L. (1995) Mutism and auditory agnosia due to bilateral insular damage—role of the insula in human communication. Neuropsychologia 33: 327-339. doi: 10.1016/0028-3932(94)00108-2
    [37] Karnath HO, Dieterich M. (2006) Spatial negelct—a vestibular disorder? Brain in Press.
    [38] Manes F, Paradiso S, Springer JA, et al. (1999) Neglect after right insular cortex infarction. Stroke 30: 946-948. doi: 10.1161/01.STR.30.5.946
    [39] Manes F, Paradiso S, Robinson RG. (1999) Neuropsychiatric effects of insular stroke. J Nerv Ment Dis 187: 707-712. doi: 10.1097/00005053-199912000-00001
    [40] Eickhoff S, Stephan KE, Mohlberg H. (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25: 1325-1335. doi: 10.1016/j.neuroimage.2004.12.034
    [41] Oldfield RC. (1971) The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia 9: 97-113. doi: 10.1016/0028-3932(71)90067-4
    [42] Basso A, Capitani E, Laiacona M, et al. (1987) Raven's coloured progressive matrices: normative values on 305 adult normal controls. Funct Neurol 2: 189-194.
    [43] Orsini A, Grossi D, Capitani E, et al. (1987) Verbal and spatial immediate memory span: normative data from 1355 adults and 1112 children. Italian J Neurol Sci 8: 539-548.
    [44] Spinnler M, Tognoni G. (1987) Standardizzazione e taratura italiana di test neuropsicologici. Italian J Neurol Sci Suppl 8: 1-120.
    [45] De Renzi E, Motti F, Nichelli P. (1980) Imitating gestures. A quantitative approach to ideomotor apraxia. Arch Neurol 37: 6-10.
    [46] De Renzi E, Faglioni P. (1978) Normative data and screening power of a shortened version of the Token Test. Cortex 14: 41-49. doi: 10.1016/S0010-9452(78)80006-9
    [47] Miceli G, Laudanna A, Burani C, et al. (1994) Batteria per l'analisi dei deficit afasici. B. A. D. A. In: B. A. D. A. A battery for the assessment of aphasic disorders. Roma: CEPSAG.
    [48] Novelli G, Papagno C, Capitani E, et al. (1996) Tre test clinici di ricerca e produzione lessicale. Taratura su soggetti normali. Arch Psicol Neurol Psichiatr 47: 477-505.
    [49] 50. Wilson BA, Cockburn J, Halligan PW. (1987) Behavioral inattention test (BIT). London: Thames Valley Test Company.
    [50] 51. Giovagnoli AR, Del Pesce M, Mascheroni S, et al. (1996) Trail making test: normative values from 287 normal adult controls. Italian J Neurol Sci 17: 305-309. doi: 10.1007/BF01997792
    [51] 52. Bechara A, Damasio A. (2014) The somatic marker hypothesis: a neural theory of economic decision. Games Econ Behav 52: 336-372.
    [52] 53. Craig AD. (2009) How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci 10: 59-70.
    [53] 54. Takahashi T, Malhi GS, Wood SJ, et al (2010) Insular cortex volume in established bipolar affective disorder: a preliminary MRI study. Psychiatr Res 182: 187-190. doi: 10.1016/j.pscychresns.2010.01.006
    [54] 55. Takahashi T, Yucel M, Lorenzetti, et al (2010) Volumetric MRI study of the insular cortex in individuals with current and past major depression. J Affect Disord 121: 231-238. doi: 10.1016/j.jad.2009.06.003
    [55] 56. Chen S, Li L, Xu B, et al. (2009) Insular cortex involvement in declarative memory deficits in patients with post-traumatic stress disorder. BMC Psychiatr 9: 39. doi: 10.1186/1471-244X-9-39
    [56] 57. Drevets WC. (2000) Neuroimaging studies of mood disorders. Biol Psychiatr 48: 813-829. doi: 10.1016/S0006-3223(00)01020-9
    [57] 58. Klumpp H, Post D, Angstadt M, et al (2013) Anterior cingulate cortex and insula response during indirect and direct processing of emotional faces in generalized social anxiety disorder. Biol Mood Anxiety Disord 3: 7. doi: 10.1186/2045-5380-3-7
    [58] 59. Paulus MP, Stein MB. (2006) An insular view of anxiety. Biol Psychiatr 60: 383-387. doi: 10.1016/j.biopsych.2006.03.042
    [59] 60. Kringelbach ML, de Araujo IE, Rolls ET. (2004) Taste-related activity in the human dorsolateral prefrontal cortex. Neuroimage 21: 781-788. doi: 10.1016/j.neuroimage.2003.09.063
    [60] 61. Poellinger A, Thomas R, Lio P, et al (2001) Activation and habituation in olfaction—an fMRI study. Neuroimage 13: 547-5
    [61] 62. Royet JP, Plailly J (2004) Lateralization of olfactory processes. Chem Senses 29: 731-745. doi: 10.1093/chemse/bjh067
    [62] 63. Pritchard TC, Macaluso DA, Eslinger PJ, et al (1999) Taste perception in patients with insular cortex lesions. Behav Neurosci 113: 663-671. doi: 10.1037/0735-7044.113.4.663
    [63] 64. Mak YE, Simmons KB, Gitelman DR, et al (2005) Taste and olfactory intensity perception changes following left insular stroke. Behav. Neurosci 119: 1693-1700. doi: 10.1037/0735-7044.119.6.1693
    [64] 65. Binkofski F, Schnitzler A, Enck P, et al.(1998) Somatic and limbic cortex activation in esophageal distention: a functional magnetic resonance imaging study. Ann Neurol 44: 811-815.
    [65] 66. Fink GR, Frackowiak RS, Pietrzyk U, et al (1997) Multiple nonprimary motor areas in the human cortex 2. J Neurophysiol 77: 2164-2174.
    [66] 67. Ostrowsky K, Isnard J, Ryvlin P, et al. (2000) Functional mapping of the insular cortex: clinical implication in temporal lobe epilepsy. Epilepsia 41: 681-686. doi: 10.1111/j.1528-1157.2000.tb00228.x
    [67] 68. Wise RJ, Greene J, Buchel C, et al. (1999) Brain regions involved in articulation. Lancet 353:1057-1061. doi: 10.1016/S0140-6736(98)07491-1
    [68] 69. Hillis AE, Work M, Barker PB, et al. (2004) Re-examining the brain regions crucial for orchestrating speech articulation. Brain 127: 1479-1487. doi: 10.1093/brain/awh172
    [69] 70. Crepaldi D, Berlingeri M, Paulesu E, et al. (2011) A place for nouns and a place for verbs? A critical review of neurocognitive data on grammatical-class effects. Brain Lang 116: 33-49.
    [70] 71. Crepaldi D, Berlingheri M, Cattinelli I, et al. (2013) Clustering the Lexicon in the brain: a meta-analysis of the neurofunctional evidence on noun and verb processing. Frontiers Human Neurosci 7: 303.
  • This article has been cited by:

    1. Driss Bouggar, Mohamed El Fatini, Bouchra Nasri, Roger Petersson, Idriss Sekkak, Stochastic near-optimal controls for treatment and vaccination in a COVID-19 model with transmission incorporating Lévy jumps, 2024, 96, 1744-2508, 887, 10.1080/17442508.2024.2320846
    2. Shuangyan Yang, Qimin Zhang, Exponential stability and fixed-time control of a stochastic avian influenza model with spatial diffusion and nonlocal delay, 2024, 34, 1054-1500, 10.1063/5.0225874
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6014) PDF downloads(1018) Cited by(10)

Figures and Tables

Figures(3)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog