Research article Special Issues

Automatic COVID-19 disease diagnosis using 1D convolutional neural network and augmentation with human respiratory sound based on parameters: cough, breath, and voice

  • Received: 25 January 2021 Accepted: 07 March 2021 Published: 10 March 2021
  • Citation: Kranthi Kumar Lella, Alphonse Pja. Automatic COVID-19 disease diagnosis using 1D convolutional neural network and augmentation with human respiratory sound based on parameters: cough, breath, and voice[J]. AIMS Public Health, 2021, 8(2): 240-264. doi: 10.3934/publichealth.2021019

    Related Papers:


  • Abbreviations

    CNN

    Convolutional Neural Network

    DDAE

    Data De-Noising Auto Encoder

    MFCC

    Mel-frequency Cepstral Coefficient

    DL

    Deep Learning

    ML

    Machine Learning

    AI

    Artificial Intelligence

    SVM

    Support Vector Machine

    LVQ

    Learning Vector Quantization

    MLR

    Multivariate Linear Regression

    MRI

    Magnetic Resonance Imaging

    SSP

    Speech Signal Processing

    LSTM

    Long Short-Term Memory

    TDSN

    Tensor Deep Stacking Network

    CRD

    Compression of Range Dynamically

    BN

    Background Noise

    ST

    Stretching Time

    SP

    Shift Pitch

    ReLU

    Rectified Linear Unit

    MUDA

    Musical Data Augmentation

    JAMS

    JSON Annotated Music Specification

    加载中

    Acknowledgments



    We would like to express our sincere gratitude to Prof. Cecilia Mascolo, clinical scientists at Cambridge University, for sharing the dataset. We acknowledge everyone who is trying to stop the COVID-19 pandemic.

    Author contributions



    All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version. The authors have not been submitted this article too nor under review to any journal or publishing body.

    Conflict of interest



    The authors have declared no conflict of interest.

    [1] World Health Organization. Coronavirus disease 2019 (covid-19) (2020) .Available from: https://www.who.int/.
    [2] Wang Y, Hu M, Li Q, et al. (2020) Abnormal respiratory patterns classifier may contribute to large-scale screening of people infected with COVID-19 in an accurate and unobtrusive manner. arXiv:2002.05534 [cs.LG] .
    [3] Jiang Z, Hu M, Lei F, et al. (2020) Combining Visible Light and Infrared Imaging for Efficient Detection of Respiratory Infections Such as Covid-19 on Portable Device. arXiv:2004.06912 [cs.CV] .
    [4] Imran A, Posokhova I, Qureshi HN, et al. (2020) AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough samples via an app. Inform Med Unlocked 20: 100378. doi: 10.1016/j.imu.2020.100378
    [5] Shuja J, Alanazi E, Alasmary W, et al. (2020) COVID-19 open source data sets: a comprehensive survey. Appl Intell 21: 1-30.
    [6] Rasheed J, Jamil A, Hameed AA, et al. (2020) A survey on artificial intelligence approaches in supporting frontline workers and decision makers for the COVID-19 pandemic. Chaos Solitons Fractals 141: 110337. doi: 10.1016/j.chaos.2020.110337
    [7] Alafif T, Tehame AM, Bajaba S, et al. (2021) Machine and Deep Learning towards COVID-19 Diagnosis and Treatment: Survey, Challenges, and Future Directions. Int J Environ Res Public Health 18: 1117. doi: 10.3390/ijerph18031117
    [8] Ritwik KVS, Shareef BK, Deepu V (2020) Covid-19 Patient Detection from Telephone Quality Speech Data. arXiv:2011.04299v1 [cs.SD] .
    [9] Kranthi KL, Alphonse PJA (2021) A literature review on COVID-19 disease diagnosis from respiratory sound data. AIMS Bioeng 8: 140-153. doi: 10.3934/bioeng.2021013
    [10] Huang Y, Meng S, Zhang Y, et al. (2020) The respiratory sound features of COVID-19 patients fill gaps between clinical data and screening methods. medRxiv 2020.04.07.20051060 .
    [11] Shi J, Zheng X, Li Y, et al. (2018) Multimodal Neuroimaging Feature Learning With Multimodal Stacked Deep Polynomial Networks for Diagnosis of Alzheimer's Disease. IEEE J Biomed Health Inform 22: 173-183. doi: 10.1109/JBHI.2017.2655720
    [12] Brabenec L, Mekyska J, Galaz Z, et al. (2017) Speech disorders in Parkinson's disease: early diagnostics and effects of medication and brain stimulation. J Neural Transm (Vienna) 124: 303-334. doi: 10.1007/s00702-017-1676-0
    [13] Erdogdu SB, Serbes G, Sakar CO (2017) Analyzing the effectiveness of vocal features in early telediagnosis of Parkinson's disease. PLoS ONE 12: e0182428. doi: 10.1371/journal.pone.0182428
    [14] Li F, Liu M, Zhao Y, et al. (2019) Feature extraction and classification of heart sound using 1D convolutional neural networks. EURASIP J Adv Signal Process 59.
    [15] Klára V, Viktor I, Krisztina M (2011) Voice Disorder Detection on the Basis of Continuous Speech. 5th European Conference of the International Federation for Medical and Biological Engineering Berlin, Heidelberg: IFMBE Proceedings, Springer.
    [16] Verde L, De Pietro D, Sannino G (2018) Voice Disorder Identification by Using Machine Learning Techniques. IEEE Access 6: 16246-16255. doi: 10.1109/ACCESS.2018.2816338
    [17] Bader M, Shahin I, Hassan A (2020) Studying the Similarity of COVID-19 Sounds based on Correlation Analysis of MFCC. arXiv:2010.08770 [cs.SD] .
    [18] Sahidullah Md, Saha G (2012) Design, analysis and experimental evaluation of block-based transformation in MFCC computation for speaker recognition. Speech Commun 54: 543-565. doi: 10.1016/j.specom.2011.11.004
    [19] Srinivasamurthy RS (2018) Understanding 1D Convolutional Neural Networks Using Multiclass Time-Varying Signals. All Thesis. Available from: https://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=3918&context=all_theses.
    [20] Zhao W, Singh R (2020) Speech-Based Parameter Estimation of an Asymmetric Vocal Fold Oscillation Model and its Application in Discriminating Vocal Fold Pathologies. ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) Barcelona, Spain.
    [21] Kumar A, Gupta PK, Srivastava A (2020) A review of modern technologies for tackling COVID-19 pandemic. Diabetes Metab Syndr 14: 569-573. doi: 10.1016/j.dsx.2020.05.008
    [22] Deshpande G, Schuller B (2020) An Overview on Audio, Signal, Speech, & Language Processing for COVID-19. arXiv:2005.08579 [cs.CY] .
    [23] Brown C, Chauhan J, Grammenos A, et al. (2020) Exploring Automatic Diagnosis of COVID-19 from Crowdsourced Respiratory Sound Data. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining .
    [24] Han J, Qian K, Song M, et al. (2020) An Early Study on Intelligent Analysis of Speech under COVID-19: Severity, Sleep Quality, Fatigue, and Anxiety. arXiv:2005.00096v2 [eess.AS] .
    [25] Orlandic L, Teijeiro T, Atienza D (2020) The COUGHVID crowdsourcing dataset: A corpus for the study of large scale cough analysis algorithms. arXiv:2009.11644v1 [cs.SD] .
    [26] Singh R (2019) Production and Perception of Voice. Profiling Humans from their Voice Singapore: Springer. doi: 10.1007/978-981-13-8403-5
    [27] Hassan A, Shahin I, Alsabek MB (2020) COVID-19 Detection System using Recurrent Neural Networks. 2020 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI) Sharjah, United Arab Emirates.
    [28] Chaudhari G, Jiang X, Fakhry A, et al. (2021) Virufy: Global Applicability of Crowdsourced and Clinical Datasets for AI Detection of COVID-19 from Cough. arXiv. PPR: PPR272849 .
    [29] Ismail MA, Deshmukh S, Rita S (2020) Detection of COVID-19 through the Analysis of Vocal Fold Oscillations. arXiv:2010.10707v1 [eess.AS] .
    [30] Laguarta J, Hueto F, Subirana B (2020) COVID-19 Artificial Intelligence Diagnosis Using Only Cough Recordings. IEEE Open J Eng Med Biol 1: 275-281. doi: 10.1109/OJEMB.2020.3026928
    [31] Wang L, Lin ZQ, Wong A (2020) COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Sci Rep 10: 19549. doi: 10.1038/s41598-020-76550-z
    [32] Quartieri TF, Talker T, Palmer JS (2020) A Framework for Biomarkers of COVID-19 Based on Coordination of Speech-Production Subsystems. IEEE Open J Eng Med Biol 1: 203-206. doi: 10.1109/OJEMB.2020.2998051
    [33] Sajjad A, Patrick C, Alessandro LK (2019) End-to-end environmental sound classification using a 1D convolutional neural network. Expert Sys Appl 136: 252-263. doi: 10.1016/j.eswa.2019.06.040
    [34] Li Y, Baidoo C, Cai T, et al. (2019) Speech Emotion Recognition Using 1D CNN with No Attention. 2019 23rd International Computer Science and Engineering Conference (ICSEC) Phuket, Thailand.
    [35] Serkan K, Onur A, Osama A, et al. (2019) 1D Convolutional Neural Networks and Applications: A Survey. Mech Sys Signal Proc 151: 107398.
    [36] Kiranyaz S, Ince T, Abdeljaber O, et al. (2019) 1-D Convolutional Neural Networks for Signal Processing Applications. ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) Brighton, UK.
    [37] Salamon J, Bello JP (2017) Deep Convolutional Neural Networks and Data Augmentation for Environmental Sound Classification. IEEE Signal Proc Lett 24: 279-283. doi: 10.1109/LSP.2017.2657381
    [38] Aditya K, Deepak G, Nguyen NG, et al. (2019) Sound Classification Using Convolutional Neural Network and Tensor Deep Stacking Network. IEEE Access 7: 7717-7727. doi: 10.1109/ACCESS.2018.2888882
    [39] Chen X, Kopsaftopoulos F, Wu Q, et al. (2019) A Self-Adaptive 1D Convolutional Neural Network for Flight-State Identification. Sensors 19: 275. doi: 10.3390/s19020275
    [40] Pons J, Serra X (2019) Randomly Weighted CNNs for (Music) Audio Classification. ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) Brighton, UK.
    [41] Aykanat M, Kılıç O, Kurt B, et al. (2017) Classification of lung sounds using convolutional neural networks. J Image Video Proc 65. doi: 10.1186/s13640-017-0213-2
    [42] Ismael AM, Abdulkadir S (2021) Deep learning approaches for COVID-19 detection based on chest X-ray images. Expert Sys Appl 164: 114054. doi: 10.1016/j.eswa.2020.114054
    [43] Minaee S, Abdolrashidi A, Su H, et al. (2021) Biometrics Recognition Using Deep Learning: A Survey. arXiv:1912.00271 [cs.CV] .
    [44] Yazdani S, Minaee S, Kafieh R, et al. (2020) COVID CT-Net: Predicting Covid-19 from Chest CT Images Using Attentional Convolutional Network. arXiv:2009.05096 [eess.IV] .
    [45] Jain R, Gupta M, Taneja S, et al. (2021) Deep learning-based detection and analysis of COVID-19 on chest X-ray images. Appl Intell 51: 1690-1700. doi: 10.1007/s10489-020-01902-1
    [46] Khan AI, Shah JL, Bhat MM (2020) CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest X-ray images. Comput Methods Programs Biomed 196: 105581. doi: 10.1016/j.cmpb.2020.105581
    [47] Wu Y, Yang F, Liu Y, et al. (2018) A Comparison of 1-D and 2-D Deep Convolutional Neural Networks in ECG Classification. arXiv:1810.07088v1 [cs.CV] .
    [48] Ioffe S, Szegedy C (2015) Batch Normalization: Accelerating the deep network training by reducing internal covariate shift, Proceedings of the 32nd International Conference on Machine Learning. Proceed Mach Learn Res 37: 448-456.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5418) PDF downloads(426) Cited by(48)

Article outline

Figures and Tables

Figures(10)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog