Loading [Contrib]/a11y/accessibility-menu.js
Research article Special Issues

What Could Be Future Scenarios?—Lessons from the History of Public Health Surveillance for the Future

  • Received: 18 August 2014 Accepted: 02 March 2015 Published: 09 March 2015
  • This article provides insights into the future based on a review of the past and present of public health surveillance—the ongoing systematic collection, analysis, interpretation, and dissemination of health data for the planning, implementation, and evaluation of public health action. Public health surveillance dates back to the first recorded epidemic in 3180 BC in Egypt. A number of lessons and items of interest are summarised from a review of historical perspectives in the past 5,000 years and the current practice of surveillance. Some future scenarios are presented: exploring new frontiers|enhancing computer technology|improving epidemic investigations|improving data collection, analysis, dissemination and use|building on lessons from the past|building capacity|and enhancing global surveillance. It is concluded that learning from the past, reflecting on the present, and planning for the future can further enhance public health surveillance.

    Citation: Bernard C.K. Choi. What Could Be Future Scenarios?—Lessons from the History of Public Health Surveillance for the Future[J]. AIMS Public Health, 2015, 2(1): 27-43. doi: 10.3934/publichealth.2015.1.27

    Related Papers:

    [1] Eunha Shim, Beth Kochin, Alison Galvani . Insights from epidemiological game theory into gender-specific vaccination against rubella. Mathematical Biosciences and Engineering, 2009, 6(4): 839-854. doi: 10.3934/mbe.2009.6.839
    [2] Hyun Mo Yang, André Ricardo Ribas Freitas . Biological view of vaccination described by mathematical modellings: from rubella to dengue vaccines. Mathematical Biosciences and Engineering, 2019, 16(4): 3195-3214. doi: 10.3934/mbe.2019159
    [3] Lili Liu, Xi Wang, Yazhi Li . Mathematical analysis and optimal control of an epidemic model with vaccination and different infectivity. Mathematical Biosciences and Engineering, 2023, 20(12): 20914-20938. doi: 10.3934/mbe.2023925
    [4] Pannathon Kreabkhontho, Watchara Teparos, Thitiya Theparod . Potential for eliminating COVID-19 in Thailand through third-dose vaccination: A modeling approach. Mathematical Biosciences and Engineering, 2024, 21(8): 6807-6828. doi: 10.3934/mbe.2024298
    [5] Eunha Shim . Optimal strategies of social distancing and vaccination against seasonal influenza. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1615-1634. doi: 10.3934/mbe.2013.10.1615
    [6] Majid Jaberi-Douraki, Seyed M. Moghadas . Optimal control of vaccination dynamics during an influenza epidemic. Mathematical Biosciences and Engineering, 2014, 11(5): 1045-1063. doi: 10.3934/mbe.2014.11.1045
    [7] Xunyang Wang, Canyun Huang, Yuanjie Liu . A vertically transmitted epidemic model with two state-dependent pulse controls. Mathematical Biosciences and Engineering, 2022, 19(12): 13967-13987. doi: 10.3934/mbe.2022651
    [8] Hamed Karami, Pejman Sanaei, Alexandra Smirnova . Balancing mitigation strategies for viral outbreaks. Mathematical Biosciences and Engineering, 2024, 21(12): 7650-7687. doi: 10.3934/mbe.2024337
    [9] Lan Zou, Jing Chen, Shigui Ruan . Modeling and analyzing the transmission dynamics of visceral leishmaniasis. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1585-1604. doi: 10.3934/mbe.2017082
    [10] Hai-Feng Huo, Tian Fu, Hong Xiang . Dynamics and optimal control of a Zika model with sexual and vertical transmissions. Mathematical Biosciences and Engineering, 2023, 20(5): 8279-8304. doi: 10.3934/mbe.2023361
  • This article provides insights into the future based on a review of the past and present of public health surveillance—the ongoing systematic collection, analysis, interpretation, and dissemination of health data for the planning, implementation, and evaluation of public health action. Public health surveillance dates back to the first recorded epidemic in 3180 BC in Egypt. A number of lessons and items of interest are summarised from a review of historical perspectives in the past 5,000 years and the current practice of surveillance. Some future scenarios are presented: exploring new frontiers|enhancing computer technology|improving epidemic investigations|improving data collection, analysis, dissemination and use|building on lessons from the past|building capacity|and enhancing global surveillance. It is concluded that learning from the past, reflecting on the present, and planning for the future can further enhance public health surveillance.


    [1] Brachman PS (2009) Chapter 2. Public health surveillance, In: Brachman PS, Abrutyn E, Eds., Bacterial Infections of Humans: Epidemiology and Control, New York: Springer, 51-67.
    [2] Merriam-Webster (1976) Merriam-Webster's Dictionary of English Usage, Springfield: Merriam-Webster.
    [3] Choi BCK (2012) The past, present, and future of public health surveillance. Scientifica Article ID 875253, 26 pages. Available from: http://dx.doi.org/10.6064/2012/875253.
    [4] Choi BCK, Pak AWP (2001) Lessons for surveillance in the 21st century: a historical perspective from the past five millennia. Soz Praventivmed 46: 361-368. doi: 10.1007/BF01321662
    [5] Waddell WG (1940) Manetho, Cambridge: Harvard University Press, Available from: http://www27.us.archive.org/stream/manethowithengli00maneuoft#page/n69/mode/2up.
    [6] Marks G, Beatty WK (1976) Epidemics, New York: C. Scribner's Sons.
    [7] Graunt J (1662) Natural and Political Observations Made Upon the Bills of Mortality, Baltimore: The Johns Hopkins University Press, 1939.
    [8] 9. Choi BCK, Pak AWP, Ottoson JM (2012) Understanding the basic concepts of public health surveillance. J Epidemiol Community Health 56: 402.
    [9] 10. Thacker SB, Stroup DF, Rothenberg RB, et al. (15) Public health surveillance for chronic conditions: a scientific basis for decisions. Stat Med 14: 629-641. doi: 10.1002/sim.4780140520
    [10] 11. Baker EL, Matte TP (1992) Chapter 13. Surveillance of occupational illness and injury, In: Halperin W, Baker EL,. Monson RR, Eds., Public Health Surveillance, New York: Van Nostrand Reinhold, 178-194.
    [11] 12. Thacker SB, Stroup DF, Parrish G, et al. (1996) Surveillance in environmental public health: Issues, systems, and sources. Am J Public Health 86: 633-638. doi: 10.2105/AJPH.86.5.633
    [12] 13. Wegman DH (1992) Chapter 6. Hazard surveillance, In: Halperin W, Baker EL, Monson RR, Eds., Public Health Surveillance, New York: Van Nostrand Reinhold, 62-75.
    [13] 14. Centers for Disease Control (1987) Preventing emerging infectious diseases: a strategy for the 21st century|overview of the updated CDC plan. Morbidity and Mortality Weekly Report 18:191-198.
    [14] 15. Graitcer PL (1992) Chapter 11. Injury surveillance, In: Halperin W, Baker EL, Monson RR, Eds., Public Health Surveillance, New York: Van Nostrand Reinhold, -156.
    [15] 16. Centers for Disease Control and Prevention (2004) Behavioral Risk Factor Surveillance System Operational and User's Guide, Version 3.0, Atlanta: US Department of Health and Human Services, CDC.
    [16] 17. Glass RI, Noji EK (1992) Chapter 14. Epidemiologic surveillance following disasters, In: Halperin W, Baker EL, Monson RR, Eds., Public Health Surveillance, New York: Van Nostrand Reinhold, 195-205.
    [17] 18. Tilson HH (1992) Chapter 15. Pharmacosurveillance: public health monitoring of medication, In: Halperin W, Baker EL, Monson RR, Eds., Public Health Surveillance, New York: Van Nostrand Reinhold, 206-230.
    [18] 19. Rosenberg ML, Hammond WR (1998) Surveillance the key to firearm injury prevention. Am J Prev Med 15: 1.
    [19] 20. Freeman EJ, Colpe J, Strine TW, et al. (2010) Public health surveillance for mental health. Prev Chronic Dis 7: A17.
    [20] 21. Longjohn M, Sheon AR, Card-Higginson P, et al. (0) Learning from state surveillance of childhood obesity. Health Aff (Millwood) 29: 463-472. doi: 10.1377/hlthaff.2009.0733
    [21] 22. Christakis NA, Fowler JH (2007) The spread of obesity in a large social network over 32 years. N Engl J Med 357: 370-379. doi: 10.1056/NEJMsa066082
    [22] 24. Thacker SB, Stroup DF (1994) Future directions for comprehensive public health surveillance and health information systems in the United States. Am J Epidemiol 140: 383-397.
    [23] 25. Eysenbach G (2009) Infodemiology and infoveillance: framework for an emerging set of public health informatics methods to analyze search, communication and publication behavior on the Internet. J Med Internet Res 11: e11. doi: 10.2196/jmir.1157
    [24] 26. van Dijck J (2014) Datafication, dataism and dataveillance: Big Data between scientific paradigm and ideology. Surveillance Society 12: 197-208.
    [25] 27. Yasnoff WA, O'Carroll PW, Koo D, et al. (2000) Public health informatics: improving and transforming public health in the information age. J Public Health Manag Pract 6: 67-75.
    [26] 28. Eysenbach G (2009) Infodemiology and infoveillance: framework for an emerging set of public health informatics methods to analyze search, communication and publication behavior on the Internet. J Med Internet Res 11: e11. doi: 10.2196/jmir.1157
    [27] 30. Ginsberg J, Mohebbi MH, Patel RS, et al. (2009) Detecting influenza epidemics using search engine query data Nature 457: 1012-1014.
    [28] 35. World Health Organization (2008) International Health Regulations (2005). 2 Eds. Geneva:World Health Organization, 74 pages.
    [29] 36. Brachman PS, Thacker SB (2011) Evolution of epidemic investigations and field epidemiology during the MMWR era at CDC—1961–2011. MMWR Surveill Summ 60: 22-26.
    [30] 40. Ezzati M, Martin H, Skjold S, et al. (2006) Trends in national and state-level obesity in the USA after correction for self-report bias: analysis of health surveys. J R Soc Med 99: 250-257. doi: 10.1258/jrsm.99.5.250
    [31] 41. Ezzati M, Oza S, Danaei G, et al. (2008) Trends and cardiovascular mortality effects of state-level blood pressure and uncontrolled hypertension in the United States. Circulation 117:905-914. doi: 10.1161/CIRCULATIONAHA.107.732131
    [32] 42. Thacker SB (2010) Chapter 1. Historical development, In: Lee LM, Teutsch SM, Thacker SB, St. Louise ME, Principles & Practice of Public Health Surveillance, Eds., NewYork: Oxford University Press, 1-17.
    [33] 43. Stroup DF, Wharton M, Kafadar K, et al. (1993) Evaluation of a method for detecting aberrations in public health surveillance data. Am J Epidemiol 137: 373-380.
    [34] 44. Sullivan PS, McKenna MT, Waller LA, et al. (2010) Chapter 6. Analysing and interpreting public health surveillance data, In: Lee LM,Teutsch SM,Thacker SB, St. Louise ME, Principles & Practice of Public Health Surveillance, Eds., New York: Oxford University Press, 88-145.
    [35] 45. Battaglia MP, Frankel MR, Link MW (2008) Improving standard poststratification techniques for random digit-dialed telephone surveys. Survey Research Methods 2: 11-19.
    [36] 46. Frankel MR, Srinath K, Hoglin DC, et al. (2003) Adjustments for nontelephone bias in random-digit-dialing surveys. Stat Med 22: 1611-1626. doi: 10.1002/sim.1515
    [37] 48. Castillo-Salgado C (2010) Trends and directions of global public health surveillance. Epidemiologic Reviews 32: 93-109. doi: 10.1093/epirev/mxq008
    [38] 49. Centers for Disease Control and Prevention (1995) Notice to readers update: availability of electronic MMWR on Internet. MMWR 44: 759-759.
    [39] 50. Fairchild AL, Bayer R, Colgrove J (2007) Searching Eyes: Privacy, the State, and Disease Surveillance in America, Berkeley: University of California Press,.
    [40] 51. Stachenko S (2008) Challenges and opportunities for surveillance data to inform public health policy on chronic non-communicable diseases: Canadian perspectives. Public Health 122:1038-1041. doi: 10.1016/j.puhe.2008.05.006
    [41] 52. Thacker SB (2007) Public health surveillance and the prevention of injuries in sports: what gets measured gets done. J Athl Train 42: 171-172.
    [42] 53. Chambers LW, Ehrlich A, O'Connor KS, et al. (2006) Health surveillance: an essential tool to protect and promote the health of the public. Can J Public Health 97: 2-8.
    [43] 54. Brownson RC, Gurney JG, Land GH (1999) Evidence-based decision making in public health. J Public Health Manag Pract 5: 86-97. doi: 10.1097/00124784-199909000-00012
    [44] 55. Choi BCK, Pang T, Lin V, et al. (2005) Can scientists and policy makers work together? J Epidemiol Community Health. 59: 632-637. doi: 10.1136/jech.2004.031765
    [45] 56. Innvaer S, Vist G, Trommald M, et al. (2002) Health policy makers' perceptions of their use of evidence: a systematic review. J Health Serv Res Policy 7: 239-244. doi: 10.1258/135581902320432778
    [46] 60. Harris-Roxas B, Harris E (2010) Differing Forms, Differing Purposes: A Typology of Health Impact Assessment. Environ Impact Assess Rev 31: 396-403.
    [47] 61. Slocum N (2005) Participatory Methods Toolkit. A practitioner's manual. Method: Citizens Jury. Brussels, Belgium: King Bandouin Foundation. Available from: http://www.kbs-frb.be/uploadedFiles/KBS-FRB/Files/EN/PUB_1540_Toolkit_3_CitizensJury.pdf
    [48] 62. Seligman MEP (2008) Positive health. Applied Psychology 57: 3-18. doi: 10.1111/j.1464-0597.2008.00351.x
    [49] 63. Golder SA, Macy MW (2011) Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Science 333: 1878-81. doi: 10.1126/science.1202775
    [50] 64. Friedman DJ, Anderka M, Krieger JW, et al. (2001) Accessing population health information through interactive systems: lessons learned and future directions. Public Health Rep 116:132-147.
    [51] 66. Choi BCK, McQueen DV, Puska P, et al. (2008) Enhancing global capacity in the surveillance, prevention, and control of chronic diseases: seven themes to consider and build upon. J Epidemiol Community Health 62:
    [52] 67. Kman NE, Bachmann DJ (2012) Biosurveillance: a review and update. Adv Prev Med 2012:301408.
    [53] 68. Choi BCK, Bonita R, McQueen DV (2001) The need for global risk factor surveillance. J Epidemiol Community Health 55: 370. doi: 10.1136/jech.55.6.370
    [54] 69. Ackland M, Choi BCK, Puska P (2003) Rethinking the terms non-communicable disease and chronic disease. J Epidemiol Community Health 57: 838-839. doi: 10.1136/jech.57.11.838
    [55] 70. Campostrini S, McQueen DV, Evans L (2009) Health promotion and surveillance: the establishment of an IUHPE global working group. Glob Health Promot 16:
    [56] 72. Choi BCK, Corber SJ, McQueen DV, et al. (2005) Enhancing regional capacity in chronic disease surveillance in the Americas. PAJPH 17: 130-141.
  • This article has been cited by:

    1. Impact of vaccine arrival on the optimal control of a newly emerging infectious disease: A theoretical study, 2012, 9, 1551-0018, 539, 10.3934/mbe.2012.9.539
    2. Bruno Buonomo, Modeling ITNs Usage: Optimal Promotion Programs Versus Pure Voluntary Adoptions, 2015, 3, 2227-7390, 1241, 10.3390/math3041241
    3. Hamadjam Abboubakar, Jean Claude Kamgang, Leontine Nkague Nkamba, Daniel Tieudjo, Bifurcation thresholds and optimal control in transmission dynamics of arboviral diseases, 2018, 76, 0303-6812, 379, 10.1007/s00285-017-1146-1
    4. Benjamin Riche, Hélène Bricout, Marie-Laure Kürzinger, Sylvain Roche, Jean Iwaz, Jean-François Etard, René Ecochard, Modeling and predicting the long-term effects of various strategies and objectives of varicella-zoster vaccination campaigns, 2016, 15, 1476-0584, 927, 10.1080/14760584.2016.1183483
    5. Lingcai Kong, Jinfeng Wang, Weiguo Han, Zhidong Cao, Modeling Heterogeneity in Direct Infectious Disease Transmission in a Compartmental Model, 2016, 13, 1660-4601, 253, 10.3390/ijerph13030253
    6. Nkengafac Villyen Motaze, Zinhle E. Mthombothi, Olatunji Adetokunboh, C. Marijn Hazelbag, Enrique M. Saldarriaga, Lawrence Mbuagbaw, Charles Shey Wiysonge, The Impact of Rubella Vaccine Introduction on Rubella Infection and Congenital Rubella Syndrome: A Systematic Review of Mathematical Modelling Studies, 2021, 9, 2076-393X, 84, 10.3390/vaccines9020084
    7. BRUNO BUONOMO, ON THE OPTIMAL VACCINATION STRATEGIES FOR HORIZONTALLY AND VERTICALLY TRANSMITTED INFECTIOUS DISEASES, 2011, 19, 0218-3390, 263, 10.1142/S0218339011003853
    8. Bruno Buonomo, 2014, Chapter 3, 978-3-319-06922-7, 23, 10.1007/978-3-319-06923-4_3
    9. Chairat Modnak, Jin Wang, Zindoga Mukandavire, Simulating optimal vaccination times during cholera outbreaks, 2014, 07, 1793-5245, 1450014, 10.1142/S1793524514500144
    10. Drew Posny, Jin Wang, Zindoga Mukandavire, Chairat Modnak, Analyzing transmission dynamics of cholera with public health interventions, 2015, 264, 00255564, 38, 10.1016/j.mbs.2015.03.006
    11. Matt J. Keeling, Andrew Shattock, Optimal but unequitable prophylactic distribution of vaccine, 2012, 4, 17554365, 78, 10.1016/j.epidem.2012.03.001
    12. Bruno Buonomo, Cruz Vargas-De-León, Effects of Mosquitoes Host Choice on Optimal Intervention Strategies for Malaria Control, 2014, 132, 0167-8019, 127, 10.1007/s10440-014-9894-z
    13. Bruno Buonomo, Piero Manfredi, Alberto d’Onofrio, Optimal time-profiles of public health intervention to shape voluntary vaccination for childhood diseases, 2019, 78, 0303-6812, 1089, 10.1007/s00285-018-1303-1
    14. Adison Thongtha, Chairat Modnak, Optimal COVID-19 epidemic strategy with vaccination control and infection prevention measures in Thailand, 2022, 7, 24680427, 835, 10.1016/j.idm.2022.11.002
    15. Calvin Tadmon, Arnaud Feukouo Fossi, Berge Tsanou, A two–strain avian–human influenza model with environmental transmission: Stability analysis and optimal control strategies, 2024, 10075704, 107981, 10.1016/j.cnsns.2024.107981
    16. Gui Guan, Zhenyuan Guo, Yanyu Xiao, Dynamical behaviors of a network-based SIR epidemic model with saturated incidence and pulse vaccination, 2024, 137, 10075704, 108097, 10.1016/j.cnsns.2024.108097
    17. Samiullah Salim, Fazal Dayan, Muhammad Azizur Rehman, Husam A. Neamah, Optimization and Control in Rubella Transmission Dynamics: A Boundedness-Preserving Numerical Model with Vaccination, 2024, 23529148, 101595, 10.1016/j.imu.2024.101595
    18. Habtamu Ayalew Engida, Demeke Fisseha, Malaria and leptospirosis co-infection: A mathematical model analysis with optimal control and cost-effectiveness analysis, 2025, 24682276, e02517, 10.1016/j.sciaf.2024.e02517
    19. Giovanni Ziarelli, Stefano Pagani, Nicola Parolini, Francesco Regazzoni, Marco Verani, A model learning framework for inferring the dynamics of transmission rate depending on exogenous variables for epidemic forecasts, 2025, 437, 00457825, 117796, 10.1016/j.cma.2025.117796
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6141) PDF downloads(1522) Cited by(3)

Article outline

Figures and Tables

Figures(1)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog