Citation: Laura Caravenna, Laura V. Spinolo. New interaction estimates for the Baiti-Jenssen system[J]. Networks and Heterogeneous Media, 2016, 11(2): 263-280. doi: 10.3934/nhm.2016.11.263
| [1] |
L. Ambrosio and C. De Lellis, A note on admissible solutions of 1D scalar conservation laws and 2D Hamilton-Jacobi equations, J. Hyperbolic Differ. Equ., 1 (2004), 813-826. doi: 10.1142/S0219891604000263
|
| [2] | preparation. |
| [3] |
P. Baiti and H. K. Jenssen, Blowup in $L^\infty$ for a class of genuinely nonlinear hyperbolic systems of conservation laws, Discrete Contin. Dynam. Systems, 7 (2001), 837-853. doi: 10.3934/dcds.2001.7.837
|
| [4] |
S. Bianchini and L. Caravenna, SBV regularity for genuinely nonlinear, strictly hyperbolic systems of conservation laws in one space dimension, Comm. Math. Phys., 313 (2012), 1-33. doi: 10.1007/s00220-012-1480-5
|
| [5] | A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem, vol. 20 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2000. |
| [6] |
A. Bressan and G. M. Coclite, On the boundary control of systems of conservation laws, SIAM J. Control Optim., 41 (2002), 607-622. doi: 10.1137/S0363012901392529
|
| [7] | A. Bressan and R. M. Colombo, Decay of positive waves in nonlinear systems of conservation laws, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 133-160, URL http://www.numdam.org/item?id=ASNSP_1998_4_26_1_133_0. |
| [8] |
A. Bressan and P. Goatin, Oleinik type estimates and uniqueness for $n\times n$ conservation laws, J. Differential Equations, 156 (1999), 26-49. doi: 10.1006/jdeq.1998.3606
|
| [9] |
A. Bressan and T. Yang, A sharp decay estimate for positive nonlinear waves, SIAM J. Math. Anal., 36 (2004), 659-677. doi: 10.1137/S0036141003427774
|
| [10] | L. Caravenna, A note on regularity and failure of regularity for systems of conservation laws via Lagrangian formulation, Bull. Braz. Math. Soc. (N.S.), 47 (1) (2016), Also arXiv:1505.00531. |
| [11] | Indiana Univ. Math. J., to appear, Also arXiv:1505.00609. |
| [12] |
C. Christoforou and K. Trivisa, Sharp decay estimates for hyperbolic balance laws, J. Differential Equations, 247 (2009), 401-423. doi: 10.1016/j.jde.2009.03.013
|
| [13] |
C. M. Dafermos, Wave fans are special, Acta Math. Appl. Sin. Engl. Ser., 24 (2008), 369-374. doi: 10.1007/s10255-008-8010-4
|
| [14] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, vol. 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 3rd edition, Springer-Verlag, Berlin, 2010, doi: 10.1007/978-3-642-04048-1
|
| [15] |
R. J. DiPerna, Global solutions to a class of nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math., 26 (1973), 1-28. doi: 10.1002/cpa.3160260102
|
| [16] |
J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math., 18 (1965), 697-715. doi: 10.1002/cpa.3160180408
|
| [17] | J. Glimm and P. D. Lax, Decay of Solutions of Systems of Nonlinear Hyperbolic Conservation Laws, Memoirs of the American Mathematical Society, No. 101, American Mathematical Society, Providence, R.I., 1970. |
| [18] |
H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, vol. 152 of Applied Mathematical Sciences, Springer-Verlag, New York, 2002, doi: 10.1007/978-3-642-56139-9
|
| [19] |
H. K. Jenssen, Blowup for systems of conservation laws, SIAM J. Math. Anal., 31 (2000), 894-908. doi: 10.1137/S0036141099352339
|
| [20] | S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (123) (1970), 228-255. |
| [21] |
P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math., 10 (1957), 537-566. doi: 10.1002/cpa.3160100406
|
| [22] | T. P. Liu, Decay to $N$-waves of solutions of general systems of nonlinear hyperbolic conservation laws, Comm. Pure Appl. Math., 30 (1977), 586-611. |
| [23] | O. A. Oleĭnik, Discontinuous solutions of non-linear differential equations, Uspehi Mat. Nauk (N.S.), 12 (1957), 3-73. |
| [24] |
D. G. Schaeffer, A regularity theorem for conservation laws, Advances in Math., 11 (1973), 368-386. doi: 10.1016/0001-8708(73)90018-2
|