Citation: Alessandro Gondolo, Fernando Guevara Vasquez. Characterization and synthesis of Rayleigh damped elastodynamic networks[J]. Networks and Heterogeneous Media, 2014, 9(2): 299-314. doi: 10.3934/nhm.2014.9.299
[1] | R. Bott and R. J. Duffin, Impedance synthesis without use of transformers, Journal of Applied Physics, 20 (1949), 816. |
[2] |
M. Camar-Eddine and P. Seppecher, Closure of the set of diffusion functionals with respect to the Mosco-convergence, Math. Models Methods Appl. Sci., 12 (2002), 1153-1176. doi: 10.1142/S0218202502002069
![]() |
[3] |
M. Camar-Eddine and P. Seppecher, Determination of the closure of the set of elasticity functionals, Arch. Ration. Mech. Anal., 170 (2003), 211-245. doi: 10.1007/s00205-003-0272-7
![]() |
[4] |
M. T. Chu and S.-F. Xu, Spectral decomposition of real symmetric quadratic $\lambda$-matrices and its applications, Math. Comp., 78 (2009), 293-313. doi: 10.1090/S0025-5718-08-02128-5
![]() |
[5] | T. J. Chung, General Continuum Mechanics, Cambridge University Press, Cambridge, 2007. |
[6] |
E. B. Curtis, D. Ingerman and J. A. Morrow, Circular planar graphs and resistor networks, Linear Algebra Appl., 283 (1998), 115-150. doi: 10.1016/S0024-3795(98)10087-3
![]() |
[7] |
R. M. Foster, A reactance theorem, The Bell System Technical Journal, 3 (1924), 259-267. doi: 10.1002/j.1538-7305.1924.tb01358.x
![]() |
[8] |
R. M. Foster, Theorems regarding the driving-point impedance of two-mesh circuits, The Bell System Technical Journal, 3 (1924), 651-685. doi: 10.1002/j.1538-7305.1924.tb00944.x
![]() |
[9] | I. Gohberg, P. Lancaster and L. Rodman, Matrix Polynomials, Computer Science and Applied Mathematics, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1982. |
[10] |
F. Guevara Vasquez, G. W. Milton and D. Onofrei, Complete characterization and synthesis of the response function of elastodynamic networks, J. Elasticity, 102 (2011), 31-54. doi: 10.1007/s10659-010-9260-y
![]() |
[11] |
G. W. Milton and P. Seppecher, Realizable response matrices of multi-terminal electrical, acoustic and elastodynamic networks at a given frequency, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 464 (2008), 967-986. doi: 10.1098/rspa.2007.0345
![]() |
[12] |
G. W. Milton and P. Seppecher, Electromagnetic circuits, Netw. Heterog. Media, 5 (2010), 335-360. doi: 10.3934/nhm.2010.5.335
![]() |
[13] | G. W. Milton and P. Seppecher, Hybrid electromagnetic circuits, Proceedings of the Eighth International Conference on Electrical Transport and Optical Properties of Inhomogeneous Media, ETOPIM-8, Physica B: Condensed Matter, 405 (2010), 2935-2937. |
[14] |
F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Rev., 43 (2001), 235-286. doi: 10.1137/S0036144500381988
![]() |