Citation: Boris Muha. A note on the Trace Theorem for domains which are locally subgraph of a Hölder continuous function[J]. Networks and Heterogeneous Media, 2014, 9(1): 191-196. doi: 10.3934/nhm.2014.9.191
| [1] | R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, 65, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. |
| [2] |
A. Chambolle, B. Desjardins, M. J. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, J. Math. Fluid Mech., 7 (2005), 368-404. doi: 10.1007/s00021-004-0121-y
|
| [3] |
C. H. A. Cheng and S. Shkoller, The interaction of the 3D Navier-Stokes equations with a moving nonlinear Koiter elastic shell, SIAM J. Math. Anal., 42 (2010), 1094-1155. doi: 10.1137/080741628
|
| [4] | to appear in Proceedings of the Fourteenth International Conference on Hyperbolic Problems: Theory, Numerics and Applications, American Institute of Mathematical Sciences (AIMS) Publications. |
| [5] |
Z. Ding, A proof of the trace theorem of Sobolev spaces on Lipschitz domains, Proc. Amer. Math. Soc., 124 (1996), 591-600. doi: 10.1090/S0002-9939-96-03132-2
|
| [6] |
C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, SIAM J. Math. Anal., 40 (2008), 716-737. doi: 10.1137/070699196
|
| [7] | P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. |
| [8] |
I. Kukavica and A. Tuffaha, Solutions to a fluid-structure interaction free boundary problem, DCDS-A, 32 (2012), 1355-1389. doi: 10.3934/dcds.2012.32.1355
|
| [9] |
D. Lengeler and M. Ružička, Weak solutions for an incompressible newtonian fluid interacting with a linearly elastic koiter shell, Arch. Ration. Mech. Anal., 211 (2014), 205-255. doi: 10.1007/s00205-013-0686-9
|
| [10] |
J. Lequeurre, Existence of strong solutions for a system coupling the Navier-Stokes equations and a damped wave equation, J. Math. Fluid Mech., 15 (2013), 249-271. doi: 10.1007/s00021-012-0107-0
|
| [11] | J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. I, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York, 1972. |
| [12] |
B. Muha and S. Čanić, Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls, Arch. Ration. Mech. Anal., 207 (2013), 919-968. doi: 10.1007/s00205-012-0585-5
|
| [13] |
B. Muha and S. Čanić, Existence of a solution to a fluid-multi-layered-structure interaction problem, J. of Diff. Equations, 256 (2014), 658-706. doi: 10.1016/j.jde.2013.09.016
|