Loading [MathJax]/jax/output/SVG/jax.js

Explicit solutions of some linear-quadratic mean field games

  • Received: 01 November 2011 Revised: 01 March 2012
  • Primary: 91A13, 49N70; Secondary: 93E20, 91A06, 49N10.

  • We consider $N$-person differential games involving linear systems affected by white noise, running cost quadratic in the control and in the displacement of the state from a reference position, and with long-time-average integral cost functional. We solve an associated system of Hamilton-Jacobi-Bellman and Kolmogorov-Fokker-Planck equations and find explicit Nash equilibria in the form of linear feedbacks. Next we compute the limit as the number $N$ of players goes to infinity, assuming they are almost identical and with suitable scalings of the parameters. This provides a quadratic-Gaussian solution to a system of two differential equations of the kind introduced by Lasry and Lions in the theory of Mean Field Games [22]. Under a natural normalization the uniqueness of this solution depends on the sign of a single parameter. We also discuss some singular limits, such as vanishing noise, cheap control, vanishing discount. Finally, we compare the L-Q model with other Mean Field models of population distribution.

    Citation: Martino Bardi. Explicit solutions of some linear-quadratic mean field games[J]. Networks and Heterogeneous Media, 2012, 7(2): 243-261. doi: 10.3934/nhm.2012.7.243

    Related Papers:

    [1] Martino Bardi . Explicit solutions of some linear-quadratic mean field games. Networks and Heterogeneous Media, 2012, 7(2): 243-261. doi: 10.3934/nhm.2012.7.243
    [2] Olivier Guéant . New numerical methods for mean field games with quadratic costs. Networks and Heterogeneous Media, 2012, 7(2): 315-336. doi: 10.3934/nhm.2012.7.315
    [3] Yves Achdou, Victor Perez . Iterative strategies for solving linearized discrete mean field games systems. Networks and Heterogeneous Media, 2012, 7(2): 197-217. doi: 10.3934/nhm.2012.7.197
    [4] Fabio Camilli, Francisco Silva . A semi-discrete approximation for a first order mean field game problem. Networks and Heterogeneous Media, 2012, 7(2): 263-277. doi: 10.3934/nhm.2012.7.263
    [5] Fabio Camilli, Italo Capuzzo Dolcetta, Maurizio Falcone . Preface. Networks and Heterogeneous Media, 2012, 7(2): i-ii. doi: 10.3934/nhm.2012.7.2i
    [6] Diogo A. Gomes, Hiroyoshi Mitake, Kengo Terai . The selection problem for some first-order stationary Mean-field games. Networks and Heterogeneous Media, 2020, 15(4): 681-710. doi: 10.3934/nhm.2020019
    [7] Pierre Cardaliaguet, Jean-Michel Lasry, Pierre-Louis Lions, Alessio Porretta . Long time average of mean field games. Networks and Heterogeneous Media, 2012, 7(2): 279-301. doi: 10.3934/nhm.2012.7.279
    [8] Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado . A-priori estimates for stationary mean-field games. Networks and Heterogeneous Media, 2012, 7(2): 303-314. doi: 10.3934/nhm.2012.7.303
    [9] Yves Achdou, Manh-Khang Dao, Olivier Ley, Nicoletta Tchou . A class of infinite horizon mean field games on networks. Networks and Heterogeneous Media, 2019, 14(3): 537-566. doi: 10.3934/nhm.2019021
    [10] András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon . Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks and Heterogeneous Media, 2012, 7(1): 43-58. doi: 10.3934/nhm.2012.7.43
  • We consider $N$-person differential games involving linear systems affected by white noise, running cost quadratic in the control and in the displacement of the state from a reference position, and with long-time-average integral cost functional. We solve an associated system of Hamilton-Jacobi-Bellman and Kolmogorov-Fokker-Planck equations and find explicit Nash equilibria in the form of linear feedbacks. Next we compute the limit as the number $N$ of players goes to infinity, assuming they are almost identical and with suitable scalings of the parameters. This provides a quadratic-Gaussian solution to a system of two differential equations of the kind introduced by Lasry and Lions in the theory of Mean Field Games [22]. Under a natural normalization the uniqueness of this solution depends on the sign of a single parameter. We also discuss some singular limits, such as vanishing noise, cheap control, vanishing discount. Finally, we compare the L-Q model with other Mean Field models of population distribution.


    [1] Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem, SIAM J. Control Opt., 50 (2012), 77-109. doi: 10.1137/100790069
    [2] Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods, SIAM J. Numer. Anal., 48 (2010), 1136-1162. doi: 10.1137/090758477
    [3] O. Alvarez and M. Bardi, Ergodic problems in differential games, in "Advances in Dynamic Game Theory," Ann. Internat. Soc. Dynam. Games, 9, Birkhäuser Boston, Boston, MA, (2007), 131-152.
    [4] O. Alvarez and M. Bardi, Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations, Mem. Amer. Math. Soc., 204 (2010), vi+77 pp.
    [5] R. J. Aumann, Markets with a continuum of traders, Econometrica, 32 (1964), 39-50. doi: 10.2307/1913732
    [6] M. Bardi and I. Capuzzo Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations," With appendices by Maurizio Falcone and Pierpaolo Soravia, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1997.
    [7] T. Başar and G. J. Olsder, "Dynamic Noncooperative Game Theory," Second edition, Academic Press, Ltd., London, 1995.
    [8] A. Bensoussan and J. Frehse, "Regularity Results for Nonlinear Elliptic Systems and Applications," Applied Mathematical Sciences, 151, Springer-Verlag, Berlin, 2002.
    [9] P. Cardaliaguet, "Notes on Mean Field Games," from P.-L. Lions' lectures at Collège de France, 2010.
    [10] J. C. Engwerda, "Linear Quadratic Dynamic Optimization and Differential Games," Wiley, Chichester, 2005.
    [11] W. H. Fleming and H. M. Soner, "Controlled Markov Processes and Viscosity Solutions," 2nd edition, Stochastic Modelling and Applied Probability, 25, Springer, New York, 2006.
    [12] D. A. Gomes, J. Mohr and R. R. Souza, Discrete time, finite state space mean field games, J. Math. Pures Appl. (9), 93 (2010), 308-328.
    [13] O. Guéant, "Mean Field Games and Applications to Economics," Ph.D. Thesis, Université Paris-Dauphine, 2009.
    [14] O. Guéant, A reference case for mean field games models, J. Math. Pures Appl. (9), 92 (2009), 276-294.
    [15] O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications, in "Paris-Princeton Lectures on Mathematical Finance 2010" (eds. R. A. Carmona, et al.), Lecture Notes in Math., 2003, Springer, Berlin, (2011), 205-266.
    [16] R. Z. Has'minskiĭ, "Stochastic Stability of Differential Equations," Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis, 7, Sijthoff & Noordhoff, Alphen aan den Rijn-Germantown, Md., 1980.
    [17] M. Huang, P. E. Caines and R. P. Malhamé, Individual and mass behaviour in large population stochastic wireless power control problems: Centralized and Nash equilibrium solutions, in "Proc. the 42nd IEEE Conference on Decision and Control," Maui, Hawaii, December, (2003), 98-103.
    [18] M. Huang, P. E. Caines and R. P. Malhamé, Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Commun. Inf. Syst., 6 (2006), 221-251.
    [19] M. Huang, P. E. Caines and R. P. Malhamé, Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized $\epsilon$-Nash equilibria, IEEE Trans. Automat. Control, 52 (2007), 1560-1571. doi: 10.1109/TAC.2007.904450
    [20] M. Huang, P. E. Caines and R. P. Malhamé, An invariance principle in large population stochastic dynamic games, J. Syst. Sci. Complex., 20 (2007), 162-172. doi: 10.1007/s11424-007-9015-4
    [21] A. Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics, Math. Models Methods Appl. Sci., 20 (2010), 567-588. doi: 10.1142/S0218202510004349
    [22] J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire, C. R. Acad. Sci. Paris, 343 (2006), 619-625. doi: 10.1016/j.crma.2006.09.019
    [23] J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal, C. R. Acad. Sci. Paris, 343 (2006), 679-684. doi: 10.1016/j.crma.2006.09.018
    [24] J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math., 2 (2007), 229-260.
  • This article has been cited by:

    1. Minyi Huang, Yan Ma, 2019, Chapter 13, 978-3-030-25497-1, 283, 10.1007/978-3-030-25498-8_13
    2. René Carmona, François Delarue, 2018, Chapter 2, 978-3-319-56435-7, 107, 10.1007/978-3-319-56436-4_2
    3. Minyi Huang, Son Luu Nguyen, 2014, Mean field capital accumulation with stochastic depreciation, 978-1-4673-6090-6, 370, 10.1109/CDC.2014.7039409
    4. Thulasi Mylvaganam, Dario Bauso, Alessandro Astolfi, 2014, Mean-field games and two-point boundary value problems, 978-1-4673-6090-6, 2722, 10.1109/CDC.2014.7039806
    5. Dario Bauso, Tamer Basar, 2014, Opinion dynamics in coalitional games with transferable utilities, 978-1-4673-6090-6, 2094, 10.1109/CDC.2014.7039707
    6. Daniel Lacker, A general characterization of the mean field limit for stochastic differential games, 2016, 165, 0178-8051, 581, 10.1007/s00440-015-0641-9
    7. Yongxin Chen, Tryphon T. Georgiou, Michele Pavon, Steering the Distribution of Agents in Mean-Field Games System, 2018, 179, 0022-3239, 332, 10.1007/s10957-018-1365-7
    8. Guodong Zhao, Yuzhen Wang, Haitao Li, A matrix approach to modeling and optimization for dynamic games with random entrance, 2016, 290, 00963003, 9, 10.1016/j.amc.2016.05.012
    9. Peter E. Caines, Minyi Huang, Roland P. Malhamé, 2017, Chapter 7-1, 978-3-319-27335-8, 1, 10.1007/978-3-319-27335-8_7-1
    10. Jianhui Huang, Xun Li, Tianxiao Wang, Mean-Field Linear-Quadratic-Gaussian (LQG) Games for Stochastic Integral Systems, 2016, 61, 0018-9286, 2670, 10.1109/TAC.2015.2506620
    11. Hamidou Tembine, Dario Bauso, Tamer Basar, 2013, Robust linear quadratic mean-field games in crowd-seeking social networks, 978-1-4673-5717-3, 3134, 10.1109/CDC.2013.6760361
    12. Yuan-Hua Ni, Xun Li, Ji-Feng Zhang, Indefinite Mean-Field Stochastic Linear-Quadratic Optimal Control: From Finite Horizon to Infinite Horizon, 2016, 61, 0018-9286, 3269, 10.1109/TAC.2015.2509958
    13. Muhammad Aneeq Uz Zaman, Sujay Bhatt, Tamer Basar, 2021, Adversarial Linear-Quadratic Mean-Field Games over Multigraphs, 978-1-6654-3659-5, 209, 10.1109/CDC45484.2021.9682820
    14. Rita Ferreira, Diogo Gomes, Existence of Weak Solutions to Stationary Mean-Field Games through Variational Inequalities, 2018, 50, 0036-1410, 5969, 10.1137/16M1106705
    15. Jianhui Huang, Kehan Si, Zhen Wu, Linear-Quadratic Mixed Stackelberg–Nash Stochastic Differential Game with Major–Minor Agents, 2021, 84, 0095-4616, 2445, 10.1007/s00245-020-09713-z
    16. M. H. M. Chau, Y. Lai, S. C. P. Yam, Discrete-Time Mean Field Partially Observable Controlled Systems Subject to Common Noise, 2017, 76, 0095-4616, 59, 10.1007/s00245-017-9437-x
    17. René Carmona, François Delarue, 2018, Chapter 4, 978-3-319-56435-7, 239, 10.1007/978-3-319-56436-4_4
    18. Minyi Huang, A Mean Field Capital Accumulation Game with HARA Utility, 2013, 3, 2153-0785, 446, 10.1007/s13235-013-0092-9
    19. Olivier Guéant, Existence and Uniqueness Result for Mean Field Games with Congestion Effect on Graphs, 2015, 72, 0095-4616, 291, 10.1007/s00245-014-9280-2
    20. Tyrone Duncan, Hamidou Tembine, Linear–Quadratic Mean-Field-Type Games: A Direct Method, 2018, 9, 2073-4336, 7, 10.3390/g9010007
    21. Yves Achdou, 2013, Chapter 1, 978-3-642-36432-7, 1, 10.1007/978-3-642-36433-4_1
    22. Alain Bensoussan, Jens Frehse, Phillip Yam, 2013, Chapter 5, 978-1-4614-8507-0, 31, 10.1007/978-1-4614-8508-7_5
    23. René Carmona, Mark Cerenzia, Aaron Zeff Palmer, The Dyson and Coulomb Games, 2020, 21, 1424-0637, 2897, 10.1007/s00023-020-00936-y
    24. Thibault Bonnemain, Thierry Gobron, Denis Ullmo, Schrödinger approach to Mean Field Games with negative coordination, 2020, 9, 2542-4653, 10.21468/SciPostPhys.9.4.059
    25. Dario Bauso, Hamidou Tembine, Crowd-Averse Cyber-Physical Systems: The Paradigm of Robust Mean-Field Games, 2016, 61, 0018-9286, 2312, 10.1109/TAC.2015.2492038
    26. Dario Bauso, Raffaele Pesenti, Mean Field Linear Quadratic Games with Set Up Costs, 2013, 3, 2153-0785, 89, 10.1007/s13235-012-0069-0
    27. A. Bensoussan, K. C. J. Sung, S. C. P. Yam, S. P. Yung, Linear-Quadratic Mean Field Games, 2016, 169, 0022-3239, 496, 10.1007/s10957-015-0819-4
    28. Dario Bauso, Xuan Zhang, Antonis Papachristodoulou, 2014, Density flow over networks: A mean-field game theoretic approach, 978-1-4673-6090-6, 3469, 10.1109/CDC.2014.7039927
    29. Xiao Ma, Bing‐Chang Wang, Huanshui Zhang, Discrete‐time indefinite mean field linear quadratic games with multiplicative noise, 2023, 1561-8625, 10.1002/asjc.3026
    30. Xin Guo, Renyuan Xu, Thaleia Zariphopoulou, Entropy Regularization for Mean Field Games with Learning, 2022, 47, 0364-765X, 3239, 10.1287/moor.2021.1238
    31. René Carmona, François Delarue, 2018, Chapter 3, 978-3-319-56435-7, 155, 10.1007/978-3-319-56436-4_3
    32. A. Bensoussan, K. C. J. Sung, S. C. P. Yam, Linear–Quadratic Time-Inconsistent Mean Field Games, 2013, 3, 2153-0785, 537, 10.1007/s13235-013-0090-y
    33. Damien Besancenot, Habib Dogguy, PARADIGM SHIFT: A MEAN FIELD GAME APPROACH, 2015, 67, 03073378, 289, 10.1111/boer.12024
    34. Minyi Huang, Son Luu Nguyen, Mean Field Games for Stochastic Growth with Relative Utility, 2016, 74, 0095-4616, 643, 10.1007/s00245-016-9395-8
    35. Yan Chen, Tao Li, Zhixian Xin, Risk-sensitive mean field games with major and minor players, 2023, 29, 1292-8119, 6, 10.1051/cocv/2022082
    36. Jianhui Huang, Minyi Huang, 2015, A mean field LQG game with soft-constrained disturbance as an adversarial player, 978-1-4799-7886-1, 4424, 10.1109/CDC.2015.7402910
    37. René Carmona, François Delarue, 2018, Chapter 6, 978-3-319-56435-7, 447, 10.1007/978-3-319-56436-4_6
    38. Casper T. Röling, Stefanny Ramirez, Dario Bauso, Hamidou Tembine, Stochastic programming with primal–dual dynamics: a mean-field game approach, 2022, 1862-4472, 10.1007/s11590-022-01910-9
    39. Beatris A. Escobedo-Trujillo, Discount-sensitive equilibria in zero-sum stochastic differential games, 2016, 3, 2164-6066, 25, 10.3934/jdg.2016002
    40. Yves Achdou, Francisco J. Buera, Jean-Michel Lasry, Pierre-Louis Lions, Benjamin Moll, Partial differential equation models in macroeconomics, 2014, 372, 1364-503X, 20130397, 10.1098/rsta.2013.0397
    41. Ying Hu, Jianhui Huang, Tianyang Nie, Linear-Quadratic-Gaussian Mixed Mean-Field Games with Heterogeneous Input Constraints, 2018, 56, 0363-0129, 2835, 10.1137/17M1151420
    42. Dario Bauso, Tamer Basar, 2012, Large networks of dynamic agents: Consensus under adversarial disturbances, 978-1-4673-5051-8, 714, 10.1109/ACSSC.2012.6489104
    43. Beatris A. Escobedo-Trujillo, Discount-sensitive equilibria in zero-sum stochastic differential games, 2016, 3, 2164-6066, 25, 10.3934/jdg.2016.3.25
    44. Alain Bensoussan, Jens Frehse, Phillip Yam, 2013, Chapter 1, 978-1-4614-8507-0, 1, 10.1007/978-1-4614-8508-7_1
    45. Marcel Nutz, Jaime San Martin, Xiaowei Tan, Convergence to the mean field game limit: A case study, 2020, 30, 1050-5164, 10.1214/19-AAP1501
    46. Leonardo Stella, Fabio Bagagiolo, Dario Bauso, Giacomo Como, 2013, Opinion dynamics and stubbornness through mean-field games, 978-1-4673-5717-3, 2519, 10.1109/CDC.2013.6760259
    47. Ioannis Kordonis, George P. Papavassilopoulos, LQ Nash Games With Random Entrance: An Infinite Horizon Major Player and Minor Players of Finite Horizons, 2015, 60, 0018-9286, 1486, 10.1109/TAC.2015.2396642
    48. René Carmona, François Delarue, 2018, Chapter 5, 978-3-319-56435-7, 323, 10.1007/978-3-319-56436-4_5
    49. Boualem Djehiche, Minyi Huang, A Characterization of Sub-game Perfect Equilibria for SDEs of Mean-Field Type, 2016, 6, 2153-0785, 55, 10.1007/s13235-015-0140-8
    50. Fabio Bagagiolo, Dario Bauso, Mean-Field Games and Dynamic Demand Management in Power Grids, 2014, 4, 2153-0785, 155, 10.1007/s13235-013-0097-4
    51. René Carmona, François Delarue, 2018, Chapter 3, 978-3-319-56437-1, 129, 10.1007/978-3-319-58920-6_3
    52. Dario Bauso, Tamer Basar, 2014, Mean-field interactions among robust dynamic coalitional games with transferable utilities, 978-1-4799-2890-3, 487, 10.1109/ISCCSP.2014.6877919
    53. Dario Bauso, Xuan Zhang, Antonis Papachristodoulou, Density Flow in Dynamical Networks via Mean-Field Games, 2017, 62, 0018-9286, 1342, 10.1109/TAC.2016.2584979
    54. Julien Claisse, Zhenjie Ren, Xiaolu Tan, Mean field games with branching, 2023, 33, 1050-5164, 10.1214/22-AAP1835
    55. Leonardo Stella, Dario Bauso, 2017, Stationary and initial-terminal value problem for collective decision making via mean-field games, 978-1-5090-4533-4, 1125, 10.1109/MED.2017.7984269
    56. Jianhui Huang, Minyi Huang, Robust Mean Field Linear-Quadratic-Gaussian Games with Unknown $L^2$-Disturbance, 2017, 55, 0363-0129, 2811, 10.1137/15M1014437
    57. Xin Guo, Renyuan Xu, Stochastic Games for Fuel Follower Problem: $N$ versus Mean Field Game, 2019, 57, 0363-0129, 659, 10.1137/17M1159531
    58. Denis Ullmo, Igor Swiecicki, Thierry Gobron, Quadratic mean field games, 2019, 799, 03701573, 1, 10.1016/j.physrep.2019.01.001
    59. René Carmona, François Delarue, Aimé Lachapelle, Control of McKean–Vlasov dynamics versus mean field games, 2013, 7, 1862-9679, 131, 10.1007/s11579-012-0089-y
    60. D. Bauso, T. Mylvaganam, A. Astolfi, 2014, Approximate solutions for crowd-averse robust mean-field games, 978-3-9524269-1-3, 1217, 10.1109/ECC.2014.6862413
    61. Minyi Huang, Son Luu Nguyen, 2016, Mean field games for stochastic growth with relative consumption, 978-1-5090-1837-6, 4528, 10.1109/CDC.2016.7798958
    62. H J Hilhorst, C Appert-Rolland, Mixed-strategy Nash equilibrium for a discontinuous symmetricN-player game, 2018, 51, 1751-8113, 095001, 10.1088/1751-8121/aaa883
    63. Silvia Faggian, Raffaele Pesenti, 2013, A linear quadratic control problem with mean field dependent fixed costs, 978-1-4673-5717-3, 3140, 10.1109/CDC.2013.6760362
    64. Juan Pablo Maldonado López, Discrete time mean field games: The short-stage limit, 2015, 2, 2164-6066, 89, 10.3934/jdg.2015.2.89
    65. Dario Bauso, Tamer Başar, Strategic thinking under social influence: Scalability, stability and robustness of allocations, 2016, 32, 09473580, 1, 10.1016/j.ejcon.2016.04.006
    66. Leonardo Stella, Dario Bauso, 2017, On the nonexistence of stationary solutions in bio-inspired collective decision making via mean-field game, 978-1-5090-2873-3, 787, 10.1109/CDC.2017.8263756
    67. Leonardo Stella, Fabio Bagagiolo, Dario Bauso, Raffaele Pesenti, 2013, Bandwagon effect in mean-field games, 978-1-4673-5717-3, 1192, 10.1109/CDC.2013.6760044
    68. Jianhui Huang, Na Li, Linear–Quadratic Mean-Field Game for Stochastic Delayed Systems, 2018, 63, 0018-9286, 2722, 10.1109/TAC.2018.2798807
    69. Xiang Chen, Minyi Huang, 2018, Linear-Quadratic Mean Field Control: The Hamiltonian Matrix and Invariant Subspace Method, 978-1-5386-1395-5, 4117, 10.1109/CDC.2018.8619172
    70. 2013, Mean field capital accumulation games: The long time behavior, 978-1-4673-5717-3, 2499, 10.1109/CDC.2013.6760256
    71. Sergio Grammatico, Francesca Parise, John Lygeros, 2015, Constrained linear quadratic deterministic mean field control: Decentralized convergence to Nash equilibria in large populations of heterogeneous agents, 978-1-4799-7886-1, 4412, 10.1109/CDC.2015.7402908
    72. Martino Bardi, Marco Cirant, 2018, Chapter 1, 978-3-030-01946-4, 1, 10.1007/978-3-030-01947-1_1
    73. Marcel Nutz, A Mean Field Game of Optimal Stopping, 2018, 56, 0363-0129, 1206, 10.1137/16M1078331
    74. Yongxin Chen, Tryphon Georgiou, Michele Pavon, 2018, Steering the Distribution of Agents in Mean-Field Games, 978-1-5386-1395-5, 4403, 10.1109/CDC.2018.8619807
    75. Alain Bensoussan, Jens Frehse, Phillip Yam, 2013, Chapter 3, 978-1-4614-8507-0, 11, 10.1007/978-1-4614-8508-7_3
    76. Igor Swiecicki, Thierry Gobron, Denis Ullmo, Schrödinger Approach to Mean Field Games, 2016, 116, 0031-9007, 10.1103/PhysRevLett.116.128701
    77. Martino Bardi, Fabio S. Priuli, 2013, LQG mean-field games with ergodic cost, 978-1-4673-5717-3, 2493, 10.1109/CDC.2013.6760255
    78. Dario Bauso, Raffaele Pesenti, Marco Tolotti, Opinion Dynamics and Stubbornness Via Multi-Population Mean-Field Games, 2016, 170, 0022-3239, 266, 10.1007/s10957-016-0874-5
    79. Gennaro Ciampa, Francesco Rossi, 2021, Vanishing viscosity for linear-quadratic mean-field control problems, 978-1-6654-3659-5, 185, 10.1109/CDC45484.2021.9683532
    80. Marcel Nutz, Yuchong Zhang, Mean Field Contest with Singularity, 2021, 1556-5068, 10.2139/ssrn.3799339
    81. Leonardo Stella, Dario Bauso, Patrizio Colaneri, Mean-Field Game for Collective Decision-Making in Honeybees via Switched Systems, 2022, 67, 0018-9286, 3863, 10.1109/TAC.2021.3110166
    82. Beatris Adriana Escobedo-Trujillo, José Daniel López-Barrientos, Nonzero-sum stochastic differential games with additive structure and average payoffs, 2014, 1, 2164-6074, 555, 10.3934/jdg.2014.1.555
    83. Kaivalya Bakshi, Piyush Grover, Evangelos A. Theodorou, On Mean Field Games for Agents With Langevin Dynamics, 2019, 6, 2325-5870, 1451, 10.1109/TCNS.2019.2896975
    84. François Delarue, Rinel Foguen Tchuendom, Selection of equilibria in a linear quadratic mean-field game, 2020, 130, 03044149, 1000, 10.1016/j.spa.2019.04.005
    85. Diogo A. Gomes, João Saúde, Mean Field Games Models—A Brief Survey, 2014, 4, 2153-0785, 110, 10.1007/s13235-013-0099-2
    86. Alain Bensoussan, Jens Frehse, Phillip Yam, 2013, Chapter 4, 978-1-4614-8507-0, 15, 10.1007/978-1-4614-8508-7_4
    87. Peter E. Caines, Minyi Huang, Roland P. Malhamé, 2018, Chapter 7, 978-3-319-44373-7, 345, 10.1007/978-3-319-44374-4_7
    88. A. Bensoussan, M. H. M. Chau, Y. Lai, S. C. P. Yam, Linear-Quadratic Mean Field Stackelberg Games with State and Control Delays, 2017, 55, 0363-0129, 2748, 10.1137/15M1052937
    89. Dario Bauso, Raffaele Pesenti, 2014, Opinion dynamics, stubbornness and mean-field games, 978-1-4673-6090-6, 3475, 10.1109/CDC.2014.7039928
    90. Jianhui Huang, Shujun Wang, Zhen Wu, Backward Mean-Field Linear-Quadratic-Gaussian (LQG) Games: Full and Partial Information, 2016, 61, 0018-9286, 3784, 10.1109/TAC.2016.2519501
    91. Jianhui Huang, Bing-Chang Wang, Jiongmin Yong, Social Optima in Mean Field Linear-Quadratic-Gaussian Control with Volatility Uncertainty, 2021, 59, 0363-0129, 825, 10.1137/19M1306737
    92. René Carmona, François Delarue, 2018, Chapter 1, 978-3-319-56435-7, 3, 10.1007/978-3-319-56436-4_1
    93. Bingchang Wang, Minyi Huang, 2015, Dynamic production output adjustment with sticky prices: A mean field game approach, 978-1-4799-7886-1, 4438, 10.1109/CDC.2015.7402912
    94. Guodong Zhao, Yuzhen Wang, Shihua Fu, 2016, Algebraic formulation of a class of dynamic games with random entrance, 978-9-8815-6391-0, 802, 10.1109/ChiCC.2016.7553183
    95. Marcel Nutz, Yuchong Zhang, Mean Field Contest with Singularity, 2022, 0364-765X, 10.1287/moor.2022.1297
    96. Martino Bardi, Markus Fischer, On non-uniqueness and uniqueness of solutions in finite-horizon Mean Field Games, 2019, 25, 1292-8119, 44, 10.1051/cocv/2018026
    97. Beatrice Acciaio, Julio Backhoff Veraguas, Junchao Jia, Cournot--Nash Equilibrium and Optimal Transport in a Dynamic Setting, 2021, 59, 0363-0129, 2273, 10.1137/20M1321462
    98. Martino Bardi, Ermal Feleqi, Nonlinear elliptic systems and mean-field games, 2016, 23, 1021-9722, 10.1007/s00030-016-0397-7
    99. Martino Bardi, Fabio S. Priuli, Linear-Quadratic $N$-person and Mean-Field Games with Ergodic Cost, 2014, 52, 0363-0129, 3022, 10.1137/140951795
    100. P. Jameson Graber, Linear Quadratic Mean Field Type Control and Mean Field Games with Common Noise, with Application to Production of an Exhaustible Resource, 2016, 74, 0095-4616, 459, 10.1007/s00245-016-9385-x
    101. Alain Bensoussan, Jens Frehse, Phillip Yam, 2013, Chapter 2, 978-1-4614-8507-0, 7, 10.1007/978-1-4614-8508-7_2
    102. Dario Bauso, Dynamic Demand and Mean-Field Games, 2017, 62, 0018-9286, 6310, 10.1109/TAC.2017.2705911
    103. Son Luu Nguyen, Minyi Huang, 2012, Mean field LQG games with mass behavior responsive to a major player, 978-1-4673-2066-5, 5792, 10.1109/CDC.2012.6425984
    104. D. Bauso, H. Tembine, T. Başar, Opinion Dynamics in Social Networks through Mean-Field Games, 2016, 54, 0363-0129, 3225, 10.1137/140985676
    105. Jianhui Huang, Shujun Wang, Zhen Wu, Backward-forward linear-quadratic mean-field games with major and minor agents, 2016, 1, 2367-0126, 10.1186/s41546-016-0009-9
    106. Kehan Si, Zhen Wu, Backward-forward linear-quadratic mean-field Stackelberg games, 2021, 2021, 1687-1847, 10.1186/s13662-021-03236-9
    107. Yuan-Hua Ni, Xun Li, Ji-Feng Zhang, Finite-Horizon Indefinite Mean-Field Stochastic Linear-Quadratic Optimal Control, 2015, 48, 24058963, 211, 10.1016/j.ifacol.2015.12.127
    108. Fabio S. Priuli, Linear-Quadratic N N -Person and Mean-Field Games: Infinite Horizon Games with Discounted Cost and Singular Limits, 2015, 5, 2153-0785, 397, 10.1007/s13235-014-0129-8
    109. René Carmona, François Delarue, 2018, Chapter 4, 978-3-319-56437-1, 215, 10.1007/978-3-319-58920-6_4
    110. René Carmona, François Delarue, 2018, Chapter 7, 978-3-319-56435-7, 541, 10.1007/978-3-319-56436-4_7
    111. Dario Bauso, Thulasi Mylvaganam, Alessandro Astolfi, Crowd-Averse Robust Mean-Field Games: Approximation via State Space Extension, 2016, 61, 0018-9286, 1882, 10.1109/TAC.2015.2479927
    112. Alain Bensoussan, Jens Frehse, Phillip Yam, 2013, Chapter 6, 978-1-4614-8507-0, 45, 10.1007/978-1-4614-8508-7_6
    113. Fabio Bagagiolo, Dario Bauso, Raffaele Pesenti, Mean-Field Game Modeling the Bandwagon Effect with Activation Costs, 2016, 6, 2153-0785, 456, 10.1007/s13235-015-0167-x
    114. Zhenhui Xu, Tielong Shen, Decentralized ϵϵ‐Nash strategy for linear quadratic mean field games using a successive approximation approach, 2023, 1561-8625, 10.1002/asjc.3085
    115. Zhenhui Xu, Tielong Shen, Minyi Huang, Model-free policy iteration approach to NCE-based strategy design for linear quadratic Gaussian games, 2023, 155, 00051098, 111162, 10.1016/j.automatica.2023.111162
    116. Zhenhui Xu, Tielong Shen, Model-free Computation Method in First-order Linear Quadratic Mean Field Games, 2023, 56, 24058963, 888, 10.1016/j.ifacol.2023.10.1677
    117. Zhixian Xin, Tao Li, Yan Chen, Mixed Mean Field Games with Risk-Sensitive Cost Functionals, 2023, 56, 24058963, 3429, 10.1016/j.ifacol.2023.10.1493
    118. Jiamin Jian, Peiyao Lai, Qingshuo Song, Jiaxuan Ye, The convergence rate of the equilibrium measure for the hybrid LQG Mean Field Game, 2024, 52, 1751570X, 101454, 10.1016/j.nahs.2023.101454
    119. Alpár R. Mészáros, Chenchen Mou, Mean Field Games Systems under Displacement Monotonicity, 2024, 56, 0036-1410, 529, 10.1137/22M1534353
    120. Yan Chen, Tao Li, 2023, A Large-Scale Stochastic Gradient Descent Algorithm Over a Graphon, 979-8-3503-0124-3, 4806, 10.1109/CDC49753.2023.10383833
    121. Célia Escribe, Josselin Garnier, Emmanuel Gobet, A Mean Field Game Model for Renewable Investment Under Long-Term Uncertainty and Risk Aversion, 2024, 2153-0785, 10.1007/s13235-024-00554-x
    122. Marco Cirant, Davide Francesco Redaelli, Some Remarks on Linear-Quadratic Closed-Loop Games with Many Players, 2024, 2153-0785, 10.1007/s13235-024-00568-5
    123. Min Li, Na Li, Zhen Wu, Linear–quadratic mean-field game for stochastic systems with partial observation, 2025, 171, 00051098, 111821, 10.1016/j.automatica.2024.111821
    124. Gökçe Dayanı, Mathieu Laurière, 2024, How can the tragedy of the commons be prevented?: Introducing Linear Quadratic Mixed Mean Field Games, 979-8-3503-1633-9, 6792, 10.1109/CDC56724.2024.10886681
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7850) PDF downloads(393) Cited by(124)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog