Citation: Leonid Berlyand, Volodymyr Rybalko, Nung Kwan Yip. Renormalized Ginzburg-Landau energy and location of near boundary vortices[J]. Networks and Heterogeneous Media, 2012, 7(1): 179-196. doi: 10.3934/nhm.2012.7.179
| [1] | N. André and I. Shafrir, On the minimizers of a Ginzburg-Landau-type energy when the boundary condition has zeros, Adv. Differential Equations, 9 (2004), 891-960. |
| [2] |
P. Bauman, N. N. Carlson and D. Phillips, On the zeros of solutions to Ginzburg-Landau type systems, SIAM J. Math. Anal., 24 (1993), 1283-1293. doi: 10.1137/0524073
|
| [3] |
F. Bethuel, H. Brezis and F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional, Calculus of Variations and PDEs, 1 (1993), 123-148. doi: 10.1007/BF01191614
|
| [4] | F. Bethuel, H. Brezis and F. Hélein, "Ginzburg-Landau Vortices," Progress in Nonlinear Differential Equations and their Applications, 13, Birkhäuser Boston, Inc., Boston, MA, 1994. |
| [5] |
A. Boutet de Monvel-Berthier, V. Georgescu and R. Purice, A boundary value problem related to the Ginzburg-Landau model, Comm. Math. Phys., 142 (1991), 1-23. doi: 10.1007/BF02099170
|
| [6] |
L. Berlyand and P. Mironescu, Ginzburg-Landau minimizers with prescribed degrees. Capacity of the domain and emergence of vortices, J. Funct. Anal., 239 (2006), 76-99. doi: 10.1016/j.jfa.2006.03.006
|
| [7] |
L. Berlyand and V. Rybalko, Solutions with vortices of a semi-stiff boundary value problem for the Ginzburg-Landau equation, J. Eur. Math. Soc., 12 (2010), 1497-1531. doi: 10.4171/JEMS/239
|
| [8] | L. Berlyand and K. Voss, Symmetry breaking in annular domains for a Ginzburg-Landau superconductivity model, in "Proceedings of IUTAM 99/4 Symposium," Sydney, Australia, Kluwer Acad. Publ., (2001), 189-200. |
| [9] |
R. L. Jerrard, Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math. Anal., 30 (1999), 721-746. doi: 10.1137/S0036141097300581
|
| [10] | M. Kurzke, Boundary vortices in thin magnetic films, Calc. Var. Partial Differential Equations, 26 (2006), 1-28. |
| [11] | P. Mironescu, Explicit bounds for solutions to a Ginzburg-Landau type equations, Rev. Roumain Math. Pure Appl., 41 (1996), 263-271. |
| [12] | W.-M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281. |
| [13] |
B. White, Homotopy classes in Sobolev spaces and the existence of energy minimizing maps, Acta Math., 160 (1988), 1-17. doi: 10.1007/BF02392271
|