Empirical results for pedestrian dynamics and their implications for modeling

  • Received: 01 December 2010 Revised: 01 May 2011
  • Primary: 90B20; 62-07; Secondary: 91C05,60-02.

  • The current status of empirical results for pedestrian dynamics is reviewd. Suprisingly even for basic quantities like the flow-density relation there is currently no consensus since the results obtained in various empirical and experimental studies deviate substantially. We report results from recent large-scale experiments for pedestrian flow in simple scenarios like long corridors and bottlenecks which have been performed under controlled laboratory conditions that are easily reproducible. Finally the implications of the unsatisfactory empirical situation for the modeling of pedestrian dynamics is discussed.

    Citation: Andreas Schadschneider, Armin Seyfried. Empirical results for pedestrian dynamics and their implications for modeling[J]. Networks and Heterogeneous Media, 2011, 6(3): 545-560. doi: 10.3934/nhm.2011.6.545

    Related Papers:

    [1] Andreas Schadschneider, Armin Seyfried . Empirical results for pedestrian dynamics and their implications for modeling. Networks and Heterogeneous Media, 2011, 6(3): 545-560. doi: 10.3934/nhm.2011.6.545
    [2] Dirk Hartmann, Isabella von Sivers . Structured first order conservation models for pedestrian dynamics. Networks and Heterogeneous Media, 2013, 8(4): 985-1007. doi: 10.3934/nhm.2013.8.985
    [3] Mohcine Chraibi, Ulrich Kemloh, Andreas Schadschneider, Armin Seyfried . Force-based models of pedestrian dynamics. Networks and Heterogeneous Media, 2011, 6(3): 425-442. doi: 10.3934/nhm.2011.6.425
    [4] Michael Fischer, Gaspard Jankowiak, Marie-Therese Wolfram . Micro- and macroscopic modeling of crowding and pushing in corridors. Networks and Heterogeneous Media, 2020, 15(3): 405-426. doi: 10.3934/nhm.2020025
    [5] Antoine Tordeux, Claudia Totzeck . Multi-scale description of pedestrian collective dynamics with port-Hamiltonian systems. Networks and Heterogeneous Media, 2023, 18(2): 906-929. doi: 10.3934/nhm.2023039
    [6] Fabio Camilli, Adriano Festa, Silvia Tozza . A discrete Hughes model for pedestrian flow on graphs. Networks and Heterogeneous Media, 2017, 12(1): 93-112. doi: 10.3934/nhm.2017004
    [7] Jérôme Fehrenbach, Jacek Narski, Jiale Hua, Samuel Lemercier, Asja Jelić, Cécile Appert-Rolland, Stéphane Donikian, Julien Pettré, Pierre Degond . Time-delayed follow-the-leader model for pedestrians walking in line. Networks and Heterogeneous Media, 2015, 10(3): 579-608. doi: 10.3934/nhm.2015.10.579
    [8] Cécile Appert-Rolland, Pierre Degond, Sébastien Motsch . Two-way multi-lane traffic model for pedestrians in corridors. Networks and Heterogeneous Media, 2011, 6(3): 351-381. doi: 10.3934/nhm.2011.6.351
    [9] Abdul M. Kamareddine, Roger L. Hughes . Towards a mathematical model for stability in pedestrian flows. Networks and Heterogeneous Media, 2011, 6(3): 465-483. doi: 10.3934/nhm.2011.6.465
    [10] Mary J. Bravo, Marco Caponigro, Emily Leibowitz, Benedetto Piccoli . Keep right or left? Towards a cognitive-mathematical model for pedestrians. Networks and Heterogeneous Media, 2015, 10(3): 559-578. doi: 10.3934/nhm.2015.10.559
  • The current status of empirical results for pedestrian dynamics is reviewd. Suprisingly even for basic quantities like the flow-density relation there is currently no consensus since the results obtained in various empirical and experimental studies deviate substantially. We report results from recent large-scale experiments for pedestrian flow in simple scenarios like long corridors and bottlenecks which have been performed under controlled laboratory conditions that are easily reproducible. Finally the implications of the unsatisfactory empirical situation for the modeling of pedestrian dynamics is discussed.


    [1] in [12], pp.39
    [2] D. Challet, M. Marsili and Y.-C. Zhang, Stylized facts of financial markets and market crashes in Minority Games, Physica A, 294 (2001), 514. doi: 10.1016/S0378-4371(01)00103-0
    [3] U. Chattaraj, A. Seyfried and P. Chakroborty, Comparison of pedestrian fundamental diagram across cultures, Adv. Comp. Sys., 12 (2009), 393. doi: 10.1142/S0219525909002209
    [4] W. Daamen and S. Hoogendoorn, Capacity of doors during evacuation conditions, Procedia Engineering, 3 (2010), 53-66. doi: 10.1016/j.proeng.2010.07.007
    [5] W. Daamen and S. Hoogendoorn, "Empirical Differences Between Time Mean Speed and Space Mean Speed," Traffic and Granular Flow '07, p. 351, Springer, 2009.
    [6] D. Dieckmann, "Die Feuersicherheit in Theatern," in German, Jung (München), 1911.
    [7] J. J. Fruin, "Pedestrian Planning and Design," Metropolitan Association of Urban Designers and Environmental Planners, New York, 1971.
    [8] D. Helbing, A. Johansson and H. Al Abideen, Dynamics of crowd disasters: an empirical study, Phys. Rev. E, 75 (2007), 046109. doi: 10.1103/PhysRevE.75.046109
    [9] S. Hoogendoorn and W. Daamen, Pedestrian behavior at bottlenecks, Transp. Sc., 39 (2005), 147-159. doi: 10.1287/trsc.1040.0102
    [10] in [38], 195.
    [11] B. S. Kerner, "The Physics of Traffic," Springer, Berlin, 2004.
    [12] W. Klingsch, C. Rogsch, A. Schadschneider and M. Schreckenberg, eds., "Pedestrian and Evacuation Dynamics 2008," Springer, 2010.
    [13] T. Kretz, A. Grünebohm and M. Schreckenberg, Experimental study of pedestrian flow through a bottleneck, J. Stat. Mech., (2006), P10014. doi: 10.1088/1742-5468/2006/10/P10014
    [14] W. Leutzbach, "Introduction to the Theory of Traffic Flow," Springer, Berlin, 1988.
    [15] J. Liddle, A. Seyfried, T. Rupprecht, W. Klingsch, A. Schadschneider and A. Winkens, "An Experimental Study of Pedestrian Congestions: Influence of Bottleneck Width and Length," Traffic and Granular Flow 2009, Springer, 2011.
    [16] M. Moussaid, D. Helbing, S. Garnier, A. Johanson, M. Combe and G. Theraulaz, Experimental study of the behavioral underlying mechanism underlying self-organization in human crowd, Proc. Royal Society B: Biol. Sci., 276 (2009), 2755-2762. doi: 10.1098/rspb.2009.0405
    [17] H. Muir, D. Bottomley and C. Marrison, Effects of motivation and cabin configuration on emergency aircraft evacuation behavior and rates of egress, Int. Jour. Aviation Psychology, 6 (1996), 57-77. doi: 10.1207/s15327108ijap0601_4
    [18] K. Müller, "Die Gestaltung und Bemessung von Fluchtwegen für die Evakuierung von Personen aus Gebäuden," Dissertation, Technische Hochschule Magdeburg, 1981.
    [19] R. Nagai, M. Fukamachi and T. Nagatani, Evacuation of crawlers and walkers from corridor through an exit, Physica A, 367 (2006), 449-460. doi: 10.1016/j.physa.2005.11.031
    [20] P. D. Navin and R. J. Wheeler, Pedestrian flow characteristics, Traffic Engineering, 39 (1969), 31-36.
    [21] H. E. Nelson and F. W. Mowrer, Emergency movement, in "SFPE Handbook of Fire Protection Engineering" (ed. P. J. DiNenno), Third edition, 2002.
    [22] D. Oeding, "Verkehrsbelastung und Dimensionierung von Gehwegen und anderen Anlagen des Fuβgängerverkehrs," Internal Report, 22 (in German), Technical University Braunschweig, 1963.
    [23] S. J. Older, Movement of pedestrians on footways in shopping streets, Traffic Engineering and Control, 10 (1968), 160-163.
    [24] V. Popkov and G. Schütz, Steady-state selection in driven diffusive systems with open boundaries, Europhys. Lett., 48 (1999), 257. doi: 10.1209/epl/i1999-00474-0
    [25] A. Portz and A. Seyfried, Modeling stop-and-go waves in pedestrian dynamics, in "PPAM 2009" (eds. R. Wyrzykowski, J. Dongarra, K. Karczewski and J. Wasniewski), Part II, Springer, (2010), 561-568.
    [26] V. M. Predtechenskii and A. I. Milinskii, "Planning for Foot Traffic Flow in Buildings," Amerind Publishing, New Dehli, 1978.
    [27] B. Pushkarev and J. M. Zupan, Capacity of walkways, Transp. Res. Rec., 538 (1975), 1-15.
    [28] A. Schadschneider, D. Chowdhury and K. Nishinari, "Stochastic Transport in Complex Systems," Elsevier, 2010.
    [29] A. Schadschneider, W. Klingsch, H. Klüpfel, T. Kretz, C. Rogsch and A. Seyfried, Evacuation dynamics: Empirical results, modeling and applications, Encyclopedia of Complexity and System Science, (2009), 3142.
    [30] in [38], 27.
    [31] in preparation.
    [32] in [12], 145-156.
    [33] A. Seyfried. O. Passon, B. Steffen, M. Boltes, T. Rupprecht and W. Klingsch, New insights into pedestrian flow through bottlenecks, Transp. Sc., 43 (2009), 395-406. doi: 10.1287/trsc.1090.0263
    [34] A. Seyfried, A. Portz and A. Schadschneider, Phase coexistence in congested states of pedestrian dynamics, in "Cellular Automata" (eds. S. Bandini, S. Manzoni, H. Umeo and G. Vizzari), LNCS 6350, Springer, (2010), 496-505. doi: 10.1007/978-3-642-15979-4_53
    [35] A. Seyfried and A. Schadschneider, Validation of cellular automata models of pedestrian dynamics using controlled large-scale experiments, Cybernetics and Systems, 40 (2009), 367.
    [36] A. Seyfried, B. Steffen, W. Klingsch and M. Boltes, The fundamental diagram of pedestrian movement revisited, J. Stat. Mech., (2005), P10002.
    [37] B. Steffen and A. Seyfried, Methods for measuring pedestrian density, flow, speed and direction with minimal scatter, Physica A, 389 (2010), 1902-1910. doi: 10.1016/j.physa.2009.12.015
    [38] H. Timmermans, ed., "Pedestrian Behavior," Emerald, 2009.
    [39] P. A. Thompson and E. W. Marchant, A computer model for the evacuation of large building populations, Fire Safety Journal, 24 (1995), 131-148. doi: 10.1016/0379-7112(95)00019-P
    [40] M. Treiber, A. Kesting and D. Helbing, Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts, Transp. Res. B, 44 (2010), 8983. doi: 10.1016/j.trb.2010.03.004
    [41] U. Weidmann, "Transporttechnik der Fussgänger," Schriftenreihe des IVT, 90, ETH Zürich, 1993.
    [42] J. Zhang, W. Klingsch, A. Schadschneider and A. Seyfried, Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions, J. Stat. Mech., (2011) P06004. doi: 10.1088/1742-5468/2011/06/P06004
  • This article has been cited by:

    1. Charitha Dias, Majid Sarvi, Omid Ejtemai, Martin Burd, Elevated Desired Speed and Change in Desired Direction, 2015, 2490, 0361-1981, 65, 10.3141/2490-08
    2. Michael J Seitz, Gerta Köster, How update schemes influence crowd simulations, 2014, 2014, 1742-5468, P07002, 10.1088/1742-5468/2014/07/P07002
    3. J. P. Agnelli, F. Colasuonno, D. Knopoff, A kinetic theory approach to the dynamics of crowd evacuation from bounded domains, 2015, 25, 0218-2025, 109, 10.1142/S0218202515500049
    4. Shao Bo Liu, 2019, Discrete and continuous evacuation simulation models for rail tunnel evacuation: a comparison study, 978-1-7281-0489-8, 1433, 10.1109/ICTIS.2019.8883778
    5. Michael J. Seitz, Felix Dietrich, Gerta Köster, The effect of stepping on pedestrian trajectories, 2015, 421, 03784371, 594, 10.1016/j.physa.2014.11.064
    6. Bouchra Aylaj, Nicola Bellomo, Livio Gibelli, Damián Knopoff, 2021, Chapter 4, 978-3-031-01300-3, 51, 10.1007/978-3-031-02428-3_4
    7. Antoine Tordeux, Guillaume Costeseque, Michael Herty, Armin Seyfried, From Traffic and Pedestrian Follow-the-Leader Models with Reaction Time to First Order Convection-Diffusion Flow Models, 2018, 78, 0036-1399, 63, 10.1137/16M110695X
    8. Maik Boltes, Jun Zhang, Antoine Tordeux, Andreas Schadschneider, Armin Seyfried, 2019, Chapter 706, 978-1-4939-8762-7, 671, 10.1007/978-1-4939-8763-4_706
    9. Bouchra Aylaj, Nicola Bellomo, Livio Gibelli, Damián Knopoff, 2021, Chapter 2, 978-3-031-01300-3, 17, 10.1007/978-3-031-02428-3_2
    10. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 4, 978-3-319-06619-6, 73, 10.1007/978-3-319-06620-2_4
    11. Yongxiang Zhao, Tuantuan Lu, Meifang Li, Peng Wu, The microscopic characteristics of escape behaviours from a three-dimensional lecture theatre under conditions of good and zero visibility, 2019, 118, 09257535, 641, 10.1016/j.ssci.2019.05.054
    12. G. Albi, N. Bellomo, L. Fermo, S.-Y. Ha, J. Kim, L. Pareschi, D. Poyato, J. Soler, Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives, 2019, 29, 0218-2025, 1901, 10.1142/S0218202519500374
    13. Gregory Dobler, Jordan Vani, Trang Tran Linh Dam, Patterns of urban foot traffic dynamics, 2021, 89, 01989715, 101674, 10.1016/j.compenvurbsys.2021.101674
    14. Daewa Kim, Annalisa Quaini, 2022, Chapter 9, 978-3-030-96561-7, 265, 10.1007/978-3-030-96562-4_9
    15. Asja Jelić, Cécile Appert-Rolland, Samuel Lemercier, Julien Pettré, Properties of pedestrians walking in line: Fundamental diagrams, 2012, 85, 1539-3755, 10.1103/PhysRevE.85.036111
    16. Daewa Kim, Annalisa Quaini, 2021, Chapter 7, 978-3-030-91645-9, 157, 10.1007/978-3-030-91646-6_7
    17. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 3, 978-3-319-06619-6, 53, 10.1007/978-3-319-06620-2_3
    18. Michael J. Seitz, Gerta Köster, Natural discretization of pedestrian movement in continuous space, 2012, 86, 1539-3755, 10.1103/PhysRevE.86.046108
    19. Chikashi Arita, Julien Cividini, Cécile Appert-Rolland, Two dimensional outflows for cellular automata with shuffle updates, 2015, 2015, 1742-5468, P10019, 10.1088/1742-5468/2015/10/P10019
    20. Kevin Rio, William H. Warren, 2014, Chapter 47, 978-3-319-02446-2, 561, 10.1007/978-3-319-02447-9_47
    21. Paul Geoerg, Florian Berchtold, Steven Gwynne, Karen Boyce, Stefan Holl, Anja Hofmann, Engineering egress data considering pedestrians with reduced mobility, 2019, 43, 0308-0501, 759, 10.1002/fam.2736
    22. Jamal Hannun, Charitha Dias, Alaa Hasan Taha, Abdulaziz Almutairi, Wael Alhajyaseen, Majid Sarvi, Salim Al-Bosta, Jing Zhao, Pedestrian flow characteristics through different angled bends: Exploring the spatial variation of velocity, 2022, 17, 1932-6203, e0264635, 10.1371/journal.pone.0264635
    23. Qiang Chen, Guoliang Luo, Yang Tong, Xiaogang Jin, Zhigang Deng, A linear wave propagation‐based simulation model for dense and polarized crowds, 2021, 32, 1546-4261, 10.1002/cav.1977
    24. N. Bellomo, D. Clarke, L. Gibelli, P. Townsend, B.J. Vreugdenhil, Human behaviours in evacuation crowd dynamics: From modelling to “big data” toward crisis management, 2016, 18, 15710645, 1, 10.1016/j.plrev.2016.05.014
    25. Sudipto Mukherjee, Debdipta Goswami, Sarthak Chatterjee, A Lagrangian Approach to Modeling and Analysis of a Crowd Dynamics, 2015, 45, 2168-2216, 865, 10.1109/TSMC.2015.2389763
    26. Maik Boltes, Jun Zhang, Antoine Tordeux, Andreas Schadschneider, Armin Seyfried, 2018, Chapter 706-1, 978-3-642-27737-5, 1, 10.1007/978-3-642-27737-5_706-1
    27. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 1, 978-3-319-06619-6, 3, 10.1007/978-3-319-06620-2_1
    28. Zhijian Fu, Lin Luo, Yue Yang, Yifan Zhuang, Peitong Zhang, Lizhong Yang, Hongtai Yang, Jian Ma, Kongjin Zhu, Yanlai Li, Effect of speed matching on fundamental diagram of pedestrian flow, 2016, 458, 03784371, 31, 10.1016/j.physa.2016.03.060
    29. N. Bellomo, D. Clarke, L. Gibelli, P. Townsend, B.J. Vreugdenhil, Crowd dynamics and safety, 2016, 18, 15710645, 55, 10.1016/j.plrev.2016.08.014
    30. Felix Dietrich, Gerta Köster, Michael Seitz, Isabella von Sivers, Bridging the gap: From cellular automata to differential equation models for pedestrian dynamics, 2014, 5, 18777503, 841, 10.1016/j.jocs.2014.06.005
    31. Jeongyun Kim, Sehyun Tak, Michel Bierlaire, Hwasoo Yeo, Trajectory Data Analysis on the Spatial and Temporal Influence of Pedestrian Flow on Path Planning Decision, 2020, 12, 2071-1050, 10419, 10.3390/su122410419
    32. N. BELLOMO, D. KNOPOFF, J. SOLER, ON THE DIFFICULT INTERPLAY BETWEEN LIFE, "COMPLEXITY", AND MATHEMATICAL SCIENCES, 2013, 23, 0218-2025, 1861, 10.1142/S021820251350053X
    33. Isabella von Sivers, Gerta Köster, Dynamic stride length adaptation according to utility and personal space, 2015, 74, 01912615, 104, 10.1016/j.trb.2015.01.009
    34. Dirk Hartmann, Isabella von Sivers, Structured first order conservation models for pedestrian dynamics, 2013, 8, 1556-181X, 985, 10.3934/nhm.2013.8.985
    35. Nicola Bellomo, Livio Gibelli, Annalisa Quaini, Alessandro Reali, Towards a mathematical theory of behavioral human crowds, 2022, 32, 0218-2025, 321, 10.1142/S0218202522500087
    36. N. Bellomo, L. Gibelli, Behavioral crowds: Modeling and Monte Carlo simulations toward validation, 2016, 141, 00457930, 13, 10.1016/j.compfluid.2016.04.022
    37. Yanghui Hu, Nikolai W. F. Bode, A systematic review and meta-analysis on the effect social groups have on the egress times of pedestrian crowds, 2023, 19, 2324-9935, 10.1080/23249935.2021.1998243
    38. Ilias Panagiotopoulos, Jens Starke, Wolfram Just, Control of collective human behavior: Social dynamics beyond modeling, 2022, 4, 2643-1564, 10.1103/PhysRevResearch.4.043190
    39. Xiaoting Cui, Jingwei Ji, Xuehe Bai, Yin Cao, Tong Wu, Research and realization of parallel algorithms for large scale crowd evacuation in emergency, 2022, 193, 03784754, 713, 10.1016/j.matcom.2021.10.026
    40. Ahmed Elaiw, Yusuf Al-Turki, Mohamed Alghamdi, A Critical Analysis of Behavioural Crowd Dynamics—From a Modelling Strategy to Kinetic Theory Methods, 2019, 11, 2073-8994, 851, 10.3390/sym11070851
    41. Litao Wang, Shifei Shen, A decay model for the fundamental diagram of pedestrian movement, 2019, 531, 03784371, 121739, 10.1016/j.physa.2019.121739
    42. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 2, 978-3-319-06619-6, 29, 10.1007/978-3-319-06620-2_2
    43. Qiancheng Xu, Mohcine Chraibi, Antoine Tordeux, Jun Zhang, Generalized collision-free velocity model for pedestrian dynamics, 2019, 535, 03784371, 122521, 10.1016/j.physa.2019.122521
    44. Paul Geoerg, Jette Schumann, Stefan Holl, Anja Hofmann, The Influence of Wheelchair Users on Movement in a Bottleneck and a Corridor, 2019, 2019, 0197-6729, 1, 10.1155/2019/9717208
    45. N. Bellomo, S. Berrone, L. Gibelli, A. B. Pieri, 2016, Chapter 23, 978-3-319-40825-5, 295, 10.1007/978-3-319-40827-9_23
    46. 2021, 978-3-031-01300-3, 10.1007/978-3-031-02428-3
    47. Rinaldo M Colombo, Elena Rossi, Modelling crowd movements in domains with boundaries, 2019, 84, 0272-4960, 833, 10.1093/imamat/hxz017
    48. Pierre Degond, Silke Henkes, Hui Yu, Self-organized hydrodynamics with density-dependent velocity, 2017, 10, 1937-5077, 193, 10.3934/krm.2017008
    49. Mohcine Chraibi, Ulrich Kemloh, Andreas Schadschneider, Armin Seyfried, Force-based models of pedestrian dynamics, 2011, 6, 1556-181X, 425, 10.3934/nhm.2011.6.425
    50. Maria Davidich, Gerta Köster, Tobias Preis, Predicting Pedestrian Flow: A Methodology and a Proof of Concept Based on Real-Life Data, 2013, 8, 1932-6203, e83355, 10.1371/journal.pone.0083355
    51. Michael J. Seitz, Anne Templeton, John Drury, Gerta Köster, Andrew Philippides, Parsimony versus Reductionism: How Can Crowd Psychology be Introduced into Computer Simulation?, 2017, 21, 1089-2680, 95, 10.1037/gpr0000092
    52. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 6, 978-3-319-06619-6, 137, 10.1007/978-3-319-06620-2_6
    53. Daewa Kim, Annalisa Quaini, Coupling kinetic theory approaches for pedestrian dynamics and disease contagion in a confined environment, 2020, 30, 0218-2025, 1893, 10.1142/S0218202520400126
    54. Jie Liao, Liwen Zhou, A kinetic modeling of crowd evacuation with several groups in complex venues, 2022, 32, 0218-2025, 1785, 10.1142/S0218202522500415
    55. Nicola Bellomo, Livio Gibelli, Toward a mathematical theory of behavioral-social dynamics for pedestrian crowds, 2015, 25, 0218-2025, 2417, 10.1142/S0218202515400138
    56. Nicola Bellomo, Livio Gibelli, 2018, Chapter 1, 978-3-030-05128-0, 1, 10.1007/978-3-030-05129-7_1
    57. Ignacio Martínez, Ana Olmeda, 2014, Chapter 64, 978-3-319-02446-2, 761, 10.1007/978-3-319-02447-9_64
    58. Lin Luo, Xiaobo Liu, Zhijian Fu, Jian Ma, Fanxiao Liu, Modeling following behavior and right-side-preference in multidirectional pedestrian flows by modified FFCA, 2020, 550, 03784371, 124149, 10.1016/j.physa.2020.124149
    59. Litao Wang, Shifei Shen, A pedestrian dynamics model based on heuristics considering contact force information and static friction, 2019, 7, 2168-0566, 1117, 10.1080/21680566.2019.1568926
    60. Estêvão Testa, Rodrigo C. Barros, Soraia Raupp Musse, CrowdEst: a method for estimating (and not simulating) crowd evacuation parameters in generic environments, 2019, 35, 0178-2789, 1119, 10.1007/s00371-019-01684-9
    61. Pierre Degond, Michael Herty, Jian-Guo Liu, Flow on Sweeping Networks, 2014, 12, 1540-3459, 538, 10.1137/130927061
    62. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 5, 978-3-319-06619-6, 109, 10.1007/978-3-319-06620-2_5
    63. Vincius J. Cassol, Estevao Smania Testa, Claudio Rosito Jung, Muhammad Usman, Petros Faloutsos, Glen Berseth, Mubbasir Kapadia, Norman I. Badler, Soraia Raupp Musse, Evaluating and Optimizing Evacuation Plans for Crowd Egress, 2017, 37, 0272-1716, 60, 10.1109/MCG.2017.3271454
    64. Nicola Bellomo, Abdelghani Bellouquid, Damian Knopoff, From the Microscale to Collective Crowd Dynamics, 2013, 11, 1540-3459, 943, 10.1137/130904569
    65. Weichen Liao, Antoine Tordeux, Armin Seyfried, Mohcine Chraibi, Kevin Drzycimski, Xiaoping Zheng, Ying Zhao, Measuring the steady state of pedestrian flow in bottleneck experiments, 2016, 461, 03784371, 248, 10.1016/j.physa.2016.05.051
    66. Andreas Schadschneider, Johannes Schmidt, Vladislav Popkov, 2016, Chapter 51, 978-3-319-33481-3, 403, 10.1007/978-3-319-33482-0_51
    67. Andreas Schadschneider, Mohcine Chraibi, Armin Seyfried, Antoine Tordeux, Jun Zhang, 2018, Chapter 4, 978-3-030-05128-0, 63, 10.1007/978-3-030-05129-7_4
    68. Francisco Martinez-Gil, Miguel Lozano, Fernando Fernández, Strategies for simulating pedestrian navigation with multiple reinforcement learning agents, 2015, 29, 1387-2532, 98, 10.1007/s10458-014-9252-6
    69. Marion Gödel, Rainer Fischer, Gerta Köster, Sensitivity Analysis for Microscopic Crowd Simulation, 2020, 13, 1999-4893, 162, 10.3390/a13070162
    70. Felix Dietrich, Gerta Köster, Gradient navigation model for pedestrian dynamics, 2014, 89, 1539-3755, 10.1103/PhysRevE.89.062801
    71. Sensen Xing, Cheng Wang, Wei Wang, Rui Feng Cao, Anthony Chun Yin Yuen, Eric Wai Ming Lee, Guan Heng Yeoh, Qing Nian Chan, A fine discrete floor field cellular automaton model with natural step length for pedestrian dynamics, 2024, 130, 1569190X, 102841, 10.1016/j.simpat.2023.102841
    72. Jana Vacková, Marek Bukáček, Kernel estimates as general concept for the measuring of pedestrian density, 2023, 2324-9935, 1, 10.1080/23249935.2023.2236236
    73. Nicola Bellomo, Seung-Yeal Ha, Jie Liao, Wook Yoon, Behavioral swarms: A mathematical theory toward swarm intelligence, 2024, 34, 0218-2025, 2305, 10.1142/S0218202524500490
    74. Jie Liao, Yi’ang Ren, Wenbin Yan, Kinetic modeling of a leader–follower system in crowd evacuation with collective learning, 2023, 33, 0218-2025, 1099, 10.1142/S0218202523500240
    75. Jie Liao, Huilin Meng, Yi’ang Ren, Wenbin Yan, 2023, Chapter 8, 978-3-031-46358-7, 201, 10.1007/978-3-031-46359-4_8
    76. NICOLA BELLOMO, BENEDETTO PICCOLI, ANDREA TOSIN, MODELING CROWD DYNAMICS FROM A COMPLEX SYSTEM VIEWPOINT, 2012, 22, 0218-2025, 10.1142/S0218202512300049
    77. Nicola Bellomo, Jie Liao, Annalisa Quaini, Lucia Russo, Constantinos Siettos, Human behavioral crowds review, critical analysis and research perspectives, 2023, 33, 0218-2025, 1611, 10.1142/S0218202523500379
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5214) PDF downloads(305) Cited by(77)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog