Force-based models of pedestrian dynamics

  • Received: 01 December 2010 Revised: 01 May 2011
  • Primary: 82C22, 97M99; Secondary: 990B20.

  • Force-based models describe the interactions of pedestrians in terms of physical and social forces. We discuss some intrinsic problems of this approach, like penetration of particles, unrealistic oscillations and velocities as well as conceptual problems related to violations of Newton's laws. We then present the generalized centrifugal force model which solves some of these problems. Furthermore we discuss the problem of choosing a realistic driving force to an exit. We illustrate this problem by investigating the behaviour of pedestrians at bottlenecks.

    Citation: Mohcine Chraibi, Ulrich Kemloh, Andreas Schadschneider, Armin Seyfried. Force-based models of pedestrian dynamics[J]. Networks and Heterogeneous Media, 2011, 6(3): 425-442. doi: 10.3934/nhm.2011.6.425

    Related Papers:

    [1] Mohcine Chraibi, Ulrich Kemloh, Andreas Schadschneider, Armin Seyfried . Force-based models of pedestrian dynamics. Networks and Heterogeneous Media, 2011, 6(3): 425-442. doi: 10.3934/nhm.2011.6.425
    [2] Andreas Schadschneider, Armin Seyfried . Empirical results for pedestrian dynamics and their implications for modeling. Networks and Heterogeneous Media, 2011, 6(3): 545-560. doi: 10.3934/nhm.2011.6.545
    [3] Antoine Tordeux, Claudia Totzeck . Multi-scale description of pedestrian collective dynamics with port-Hamiltonian systems. Networks and Heterogeneous Media, 2023, 18(2): 906-929. doi: 10.3934/nhm.2023039
    [4] Fabio Camilli, Adriano Festa, Silvia Tozza . A discrete Hughes model for pedestrian flow on graphs. Networks and Heterogeneous Media, 2017, 12(1): 93-112. doi: 10.3934/nhm.2017004
    [5] Dirk Hartmann, Isabella von Sivers . Structured first order conservation models for pedestrian dynamics. Networks and Heterogeneous Media, 2013, 8(4): 985-1007. doi: 10.3934/nhm.2013.8.985
    [6] Michael Fischer, Gaspard Jankowiak, Marie-Therese Wolfram . Micro- and macroscopic modeling of crowding and pushing in corridors. Networks and Heterogeneous Media, 2020, 15(3): 405-426. doi: 10.3934/nhm.2020025
    [7] Cécile Appert-Rolland, Pierre Degond, Sébastien Motsch . Two-way multi-lane traffic model for pedestrians in corridors. Networks and Heterogeneous Media, 2011, 6(3): 351-381. doi: 10.3934/nhm.2011.6.351
    [8] Christophe Chalons, Paola Goatin, Nicolas Seguin . General constrained conservation laws. Application to pedestrian flow modeling. Networks and Heterogeneous Media, 2013, 8(2): 433-463. doi: 10.3934/nhm.2013.8.433
    [9] Jérôme Fehrenbach, Jacek Narski, Jiale Hua, Samuel Lemercier, Asja Jelić, Cécile Appert-Rolland, Stéphane Donikian, Julien Pettré, Pierre Degond . Time-delayed follow-the-leader model for pedestrians walking in line. Networks and Heterogeneous Media, 2015, 10(3): 579-608. doi: 10.3934/nhm.2015.10.579
    [10] Abdul M. Kamareddine, Roger L. Hughes . Towards a mathematical model for stability in pedestrian flows. Networks and Heterogeneous Media, 2011, 6(3): 465-483. doi: 10.3934/nhm.2011.6.465
  • Force-based models describe the interactions of pedestrians in terms of physical and social forces. We discuss some intrinsic problems of this approach, like penetration of particles, unrealistic oscillations and velocities as well as conceptual problems related to violations of Newton's laws. We then present the generalized centrifugal force model which solves some of these problems. Furthermore we discuss the problem of choosing a realistic driving force to an exit. We illustrate this problem by investigating the behaviour of pedestrians at bottlenecks.


    [1] M. Asano, T. Iryo and M. Kuwahara, Microscopic pedestrian simulation model combined with a tactical model for route choice behaviour, Transportation Research Part C: Emerging Technologies, 18 (2010), 842-855. doi: 10.1016/j.trc.2010.01.005
    [2] J. V. Berg, M. Lin and D. Manocha, Reciprocal velocity obstacles for real-time multi-agent navigation, in "Robotics and Automation," IEEE International Conference on Robotics and Automation Pasadena, CA, USA, 2008.
    [3] Available from: http://paulbourke.net/geometry/pointline/.
    [4] in [27], 713-718.
    [5] M. Chraibi, A. Seyfried and A. Schadschneider, Generalized centrifugal force model for pedestrian dynamics, Phys. Rev. E, 82 (2010), 046111. doi: 10.1103/PhysRevE.82.046111
    [6] M. Chraibi, A. Seyfried, A. Schadschneider and W. Mackens, "Quantitative Description of Pedestrian Dynamics with a Force-Based Model," IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, 3, IEEE Computer Society, Los Alamitos, CA, USA, (2009), 583-586.
    [7] M. Chraibi, A. Seyfried, A. Schadschneider and W. Mackens, "Quantitative Verification of a Force-Based Model for Pedestrian Dynamics," Traffic and Granular Flow '09, 2009.
    [8] Z. Fang, J. P. Yuan, Y. C. Wang and S. M. Lo, Survey of pedestrian movement and development of a crowd dynamics model, Fire Safety Journal, 43 (2008), 459-465. doi: 10.1016/j.firesaf.2007.12.005
    [9] E. R. Galea, ed., "Pedestrian and Evacuation Dynamics 2003," CMS Press, London, 2003.
    [10] C. Gloor, L. Mauron and K. A. Nagel, "Pedestrian Simulation for Hiking in the Alps," Proceedings of Swiss Transport Research Conference (STRC), Monte Verita, 2003.
    [11] http://www.gnu.org/licenses/gpl.html.
    [12] D. Helbing, Collective phenomena and states in traffic and self-driven many-particle systems, Computational Materials Science, 30 (2004), 180-187. doi: 10.1016/j.commatsci.2004.01.026
    [13] D. Helbing and P. Molnár, Social force model for pedestrian dynamics, Phys. Rev. E, 51 (1995), 4282-4286. doi: 10.1103/PhysRevE.51.4282
    [14] in [44], 21-58.
    [15] M. Höcker, V. Berkhahn, A. Kneidl, A. Borrmann and W. Klein, "Graph-based Approaches for Simulating Pedestrian Dynamics in Building Models," 8th European Conference on Product & Process Modelling (ECPPM), University College Cork, Cork, Ireland, 2010.
    [16] S. Holl and A. Seyfried, Hermes - an evacuation assistant for mass events, inSiDe, 7 (2009), 60-61.
    [17] S. P. Hoogendoorn, "Walking Behavior in Bottlenecks and its Implications for Capacity," TRB 2004 Annual Meeting, 2004.
    [18] S. P. Hoogendoorn and W. Daamen, A novel calibration approach of microscopic pedestrian models, in "Pedestrian Behavior" (ed. H. Timmermans), Emerald, 2009, p. 195.
    [19] S. P. Hoogendoorn and W. Daamen, Pedestrian behavior at bottlenecks, Transportation Science, 39 (2005), 147-159. doi: 10.1287/trsc.1040.0102
    [20] S. P. Hoogendoorn, W. Daamen and P. H. L Bovy, "Extracting Microscopic Pedestrian Characteristics from Video Data," TRB 2004 Annual Meeting Washington DC: National Academy Press, 2003.
    [21] in [9], 89-100.
    [22] in [58], 253.
    [23] A. Johansson, D. Helbing and P. K. Shukla, Specification of the social force pedestrian model by evolutionary adjustment to video tracking data, Advances in Complex Systems, 10 (2007), 271-288. doi: 10.1142/S0219525907001355
    [24] A. Kirchner, "Modellierung und Statistische Physik biologischer und sozialer Systeme," Ph.D thesis, Universität zu Köln, Germany, 2003.
    [25] A. Kirchner and A. Schadschneider, Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics, Physica A, 312 (2002), 260-276. doi: 10.1016/S0378-4371(02)00857-9
    [26] A. Kirchner, K. Nishinari and A. Schadschneider, Friction effects and clogging in a cellular automaton model for pedestrian dynamics, Phys. Rev. E, 67 (2003), 056122. doi: 10.1103/PhysRevE.67.056122
    [27] W. Klingsch, C. Rogsch, A. Schadschneider and M. Schreckenberg, eds., "Pedestrian and Evacuation Dynamics 2008," Springer-Verlag, Berlin, Heidelberg, 2010.
    [28] T. Kretz, A. Grünebohm and M. Schreckenberg, Experimental study of pedestrian flow through a bottleneck, J. Stat. Mech., 10 (2006), P10014.
    [29] T. Kretz, S. Hengst and P. Vortisch, Pedestrian flow at bottlenecks - validation and calibration of Vissim's social force model of pedestrian traffic and its empirical foundations, in "International Symposium of Transport Simulation" (ed. M Sarvi), Monash University, Melbourne, Australia, 2008.
    [30] T. I. Lakoba, D. J. Kaup and N. M. Finkelstein, Modifications of the Helbing-Molnár-Farkas-Vicsek social force model for pedestrian evolution, Simulation, 81 (2005), 339-352. doi: 10.1177/0037549705052772
    [31] K. Lewin, "Field Theory in Social Science," Greenwood Press Publishers, 1951.
    [32] J. Liddle, A. Seyfried, T. Rupprecht, W. Klingsch, A. Schadschneider and A. Winkens, "An Experimental Study of Pedestrian Congestions: Influence of Bottleneck Width and Length," Traffic and Granular Flow '09, 2009, arXiv:0911.4350.
    [33] R. Löhner, On the modelling of pedestrian motion, Applied Mathematical Modelling, 34 (2010), 366-382. doi: 10.1016/j.apm.2009.04.017
    [34] K. Müller, "Zur Gestaltung und Bemessung von Fluchtwegen für die Evakuierung von Personen aus Bauwerken auf der Grundlage von Modellversuchen," Ph.D thesis, Magdeburg, Germany, 1981.
    [35] D. R. Parisi and C. O. Dorso, Morphological and dynamical aspects of the room evacuation process, Physica A, 385 (2007), 343-355. doi: 10.1016/j.physa.2007.06.033
    [36] D. R. Parisi, M. Gilman and H. Moldovan, A modification of the social force model can reproduce experimental data of pedestrian flows in normal conditions, Physica A, 388 (2009), 3600-3608. doi: 10.1016/j.physa.2009.05.027
    [37] J. Ondřej, J. Pettré, A. Olivier and S. Donikian, "A Synthetic-Vision-Based Steering Approach for Crowd Simulation," SIGGRAPH '10: ACM SIGGRAPH, 2010.
    [38] A. Schadschneider, I'm a football fan ... get me out of here, Physics World, 21, July 2010.
    [39] A. Schadschneider, W. Klingsch, H. Klüpfel, T. Kretz, C. Rogsch and A. Seyfried, Evacuation dynamics: Empirical results, modeling and applications, Encyclopedia of Complexity and System Science, 2009, 3142.
    [40] A. Schadschneider, H. Klüpfel, T. Kretz, C. Rogsch and A. Seyfried, Fundamentals of pedestrian and evacuation dynamics, in "Multi-Agent Systems for Traffic and Transportation Engineering" (eds. Ana Bazzan and Franziska Klügl), IGI Global, Hershey, Pennsylvania, USA, 2009, chapter 6, 124-154.
    [41] A. Schadschneider and A. Seyfried, Empirical results for pedestrian dynamics and their implications for modelling, Networks and Heterogeneous Media, 3 (2011), 545-560.
    [42] A. Schadschneider and A. Seyfried, "Modeling Pedestrian Dynamics - From Experiment to Theory and Back," Traffic and Granular Flow '09, 2009.
    [43] in [44], 303-314.
    [44] M. Schreckenberg and S. D. Sharma, eds., "Pedestrian and Evacuation Dynamics 2001," Springer, 2002.
    [45] W. Schroeder, K. Martin and B. Lorense, "Visualization Toolkit: An Object-Oriented Approach to 3D Graphics," 4th edition, Kitware Inc., 2006.
    [46] in [27], 145.
    [47] A. Seyfried, O. Passon, B. Steffen, M. Boltes, T. Rupprecht and W. Klingsch, New insights into pedestrian flow through bottlenecks, Transportation Science, 43 (2009), 395-406. doi: 10.1287/trsc.1090.0263
    [48] A. Seyfried, A. Portz and A. Schadschneider, Phase coexistence in congested states of pedestrian dynamics cellular automata, in "Cellular Automata" (eds. S. Bandini, S. Manzoni, H. Umeo and G. Vizzari), LNCS 6350, Springer, 2010, 496-505, arXiv:1006.3546.
    [49] A. Seyfried and A. Schadschneider, Validation of cellular automata models of pedestrian dynamics using controlled large-scale experiments, Cybernetics and Systems, 40 (2009), 367.
    [50] A. Seyfried, B. Steffen and T. Lippert, Basics of modelling the pedestrian flow, Physica A, 368 (2006), 232-238. doi: 10.1016/j.physa.2005.11.052
    [51] W. Shao and D. Terzopoulos, Autonomous pedestrians, in "Eurographics/ACM SIGGRAPH Symposium on Computer Animation" (eds. K. Anjyo and P. Faloutsos), 2005.
    [52] B. Steffen and A. Seyfried, Modelling of pedestrian movement around $90^\circ$ and $180^\circ$ bends, in "First International Conference on Soft Computing Technology in Civil" (eds. B. H. V. Topping and Y. Tsompanakis), Structural and environmental engineering, Civil-Comp Press, Stirlingshire, UK, 2009.
    [53] B. Steffen and A. Seyfried, The repulsive force in continous space models of pedestrian movement, arXiv:0803.1319v1, 2008.
    [54] A. Steiner, M. Philipp and A. Schmid, "Parameter Estimation for a Pedestrian Simulation Model," Swiss Transport Research Conference, 2007.
    [55] P. A. Thompson and E. W. Marchant, A computer model for the evacuation of large building populations, Fire Safety Journal, 24 (1995), 131-148. doi: 10.1016/0379-7112(95)00019-P
    [56] P. A. Thompson and E. W. Marchant, Testing and application of the computer model 'SIMULEX', Fire Safety Journal, 24 (1995), 149-166. doi: 10.1016/0379-7112(95)00020-T
    [57] H. Timmermans, ed., "Pedestrian Behavior," Emerald, 2009.
    [58] N. Waldau, P. Gattermann, H. Knoflacher and M. Schreckenberg, eds., "Pedestrian and Evacuation Dynamics 2005," Springer, 2007.
    [59] D. Yanagisawa, A. Kimura, A. Tomoeda, N. Ryosuke, Y. Suma, Kazumichi Ohtsuka and Katsuhiro Nishinari, Introduction of frictional and turning function for pedestrian outflow with an obstacle, Phys. Rev. E, 80 (2009), 036110. doi: 10.1103/PhysRevE.80.036110
    [60] W. J. Yu, L. Y. Chen, R. Dong and S. Q. Dai, Centrifugal force model for pedestrian dynamics, Phys. Rev. E, 72 (2005), 026112. doi: 10.1103/PhysRevE.72.026112
    [61] X. Liu, W. Song and J. Zhang, Extraction and quantitative analysis of microscopic evacuation characteristics based on digital image processing, Physica A, 388 (2009), 2717-2726. doi: 10.1016/j.physa.2009.03.017
    [62] X. Zheng and P. Palffy-Muhoray, Distance of closest approach of two arbitrary hard ellipses in two dimensions, Phys. Rev. E, 75 (2007), 061709. doi: 10.1103/PhysRevE.75.061709
  • This article has been cited by:

    1. Armel Ulrich Kemloh Wagoum, Armin Seyfried, Conception, Development, Installation and Evaluation of a Real Time Evacuation Assistant for Complex Buildings, 2013, 104, 18770428, 728, 10.1016/j.sbspro.2013.11.167
    2. Dirk Hartmann, Isabella von Sivers, Structured first order conservation models for pedestrian dynamics, 2013, 8, 1556-181X, 985, 10.3934/nhm.2013.8.985
    3. I.M. Sticco, G.A. Frank, F.E. Cornes, C.O. Dorso, A re-examination of the role of friction in the original Social Force Model, 2020, 121, 09257535, 42, 10.1016/j.ssci.2019.08.041
    4. Milad Haghani, The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact, 2021, 580, 03784371, 126145, 10.1016/j.physa.2021.126145
    5. Dirk Hartmann, Jana Mille, Alexander Pfaffinger, Christian Royer, 2014, Chapter 102, 978-3-319-02446-2, 1237, 10.1007/978-3-319-02447-9_102
    6. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 2, 978-3-319-06619-6, 29, 10.1007/978-3-319-06620-2_2
    7. Machi Zawidzki, 2016, Chapter 3, 978-981-10-1105-4, 53, 10.1007/978-981-10-1106-1_3
    8. Nirajan Shiwakoti, Understanding differences in emergency escape and experimental pedestrian crowd egress through quantitative comparison, 2016, 20, 22124209, 129, 10.1016/j.ijdrr.2016.11.002
    9. Martin Burger, Marco Di Francesco, Peter A. Markowich, Marie-Therese Wolfram, Mean field games with nonlinear mobilities in pedestrian dynamics, 2014, 19, 1553-524X, 1311, 10.3934/dcdsb.2014.19.1311
    10. Andreas Schadschneider, Christian Eilhardt, Stefan Nowak, Armel Ulrich Kemloh Wagoum, Armin Seyfried, 2013, Chapter 27, 978-3-642-39668-7, 287, 10.1007/978-3-642-39669-4_27
    11. Krithika Rathinakumar, Annalisa Quaini, A microscopic approach to study the onset of a highly infectious disease spreading, 2020, 329, 00255564, 108475, 10.1016/j.mbs.2020.108475
    12. Jieyu Chen, Tianxing Shi, Nan Li, Pedestrian evacuation simulation in indoor emergency situations: Approaches, models and tools, 2021, 142, 09257535, 105378, 10.1016/j.ssci.2021.105378
    13. Jarosław Wąs, Robert Lubaś, Towards realistic and effective Agent-based models of crowd dynamics, 2014, 146, 09252312, 199, 10.1016/j.neucom.2014.04.057
    14. Maria Davidich, Gerta Köster, Tobias Preis, Predicting Pedestrian Flow: A Methodology and a Proof of Concept Based on Real-Life Data, 2013, 8, 1932-6203, e83355, 10.1371/journal.pone.0083355
    15. Machi Zawidzki, Mohcine Chraibi, Katsuhiro Nishinari, Crowd-Z: The user-friendly framework for crowd simulation on an architectural floor plan, 2014, 44, 01678655, 88, 10.1016/j.patrec.2013.10.025
    16. Antoine Tordeux, Mohcine Chraibi, Armin Seyfried, 2016, Chapter 29, 978-3-319-33481-3, 225, 10.1007/978-3-319-33482-0_29
    17. Milad Haghani, Majid Sarvi, Crowd model calibration at strategic, tactical, and operational levels: Full-spectrum sensitivity analyses show bottleneck parameters are most critical, followed by exit-choice-changing parameters, 2023, 1942-7867, 1, 10.1080/19427867.2023.2195729
    18. Ziwei Cui, Ming Cai, Yao Xiao, Zheng Zhu, Mofeng Yang, Gongbo Chen, Forecasting the transmission trends of respiratory infectious diseases with an exposure-risk-based model at the microscopic level, 2022, 212, 00139351, 113428, 10.1016/j.envres.2022.113428
    19. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 6, 978-3-319-06619-6, 137, 10.1007/978-3-319-06620-2_6
    20. Xiao Song, Kai Chen, Xu Li, Jinghan Sun, Baocun Hou, Yong Cui, Baochang Zhang, Gang Xiong, Zilie Wang, Pedestrian Trajectory Prediction Based on Deep Convolutional LSTM Network, 2021, 22, 1524-9050, 3285, 10.1109/TITS.2020.2981118
    21. A. Kneidl, D. Hartmann, A. Borrmann, A hybrid multi-scale approach for simulation of pedestrian dynamics, 2013, 37, 0968090X, 223, 10.1016/j.trc.2013.03.005
    22. Daewa Kim, Annalisa Quaini, Coupling kinetic theory approaches for pedestrian dynamics and disease contagion in a confined environment, 2020, 30, 0218-2025, 1893, 10.1142/S0218202520400126
    23. Sibel Gokce, Ozhan Kayacan, Study on bi-directional pedestrian movement using ant algorithms, 2016, 25, 1674-1056, 010508, 10.1088/1674-1056/25/1/010508
    24. Zhe Zhang, Limin Jia, Direction-Decision Learning Based Pedestrian Flow Behavior Investigation, 2020, 8, 2169-3536, 15027, 10.1109/ACCESS.2020.2964001
    25. Sainan Zhang, Jun Zhang, Mohcine Chraibi, Weiguo Song, A speed-based model for crowd simulation considering walking preferences, 2021, 95, 10075704, 105624, 10.1016/j.cnsns.2020.105624
    26. Felix Dietrich, Gerta Köster, Michael Seitz, Isabella von Sivers, 2014, Chapter 62, 978-3-642-55194-9, 659, 10.1007/978-3-642-55195-6_62
    27. Xiao Yang, Binxu Wang, Zheng Qin, Floor Field Model Based on Cellular Automata for Simulating Indoor Pedestrian Evacuation, 2015, 2015, 1024-123X, 1, 10.1155/2015/820306
    28. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 5, 978-3-319-06619-6, 109, 10.1007/978-3-319-06620-2_5
    29. Maria Davidich, Florian Geiss, Hermann Georg Mayer, Alexander Pfaffinger, Christian Royer, Waiting zones for realistic modelling of pedestrian dynamics: A case study using two major German railway stations as examples, 2013, 37, 0968090X, 210, 10.1016/j.trc.2013.02.016
    30. Marija Bezbradica, Heather J. Ruskin, 2020, Chapter 9, 978-1-78985-041-3, 10.5772/intechopen.86801
    31. Alexander Aurell, Boualem Djehiche, Modeling tagged pedestrian motion: A mean-field type game approach, 2019, 121, 01912615, 168, 10.1016/j.trb.2019.01.011
    32. Junjie Wei, Qigen Deng, Lixin Zhang, Peng Li, Study on emergency evacuation in underground urban complexes, 2022, 17, 1932-6203, e0278521, 10.1371/journal.pone.0278521
    33. Sean Curtis, Dinesh Manocha, 2014, Chapter 73, 978-3-319-02446-2, 875, 10.1007/978-3-319-02447-9_73
    34. Zhe Zhang, ShuRong Yan, JianYuan Guo, 2022, Chapter 52, 978-981-16-9912-2, 467, 10.1007/978-981-16-9913-9_52
    35. Felix Dietrich, Gerta Köster, Gradient navigation model for pedestrian dynamics, 2014, 89, 1539-3755, 10.1103/PhysRevE.89.062801
    36. Francisco Martinez-Gil, Miguel Lozano, Ignacio García-Fernández, Fernando Fernández, Modeling, Evaluation, and Scale on Artificial Pedestrians, 2018, 50, 0360-0300, 1, 10.1145/3117808
    37. A. Garcimartín, J. M. Pastor, C. Martín-Gómez, D. Parisi, I. Zuriguel, Pedestrian collective motion in competitive room evacuation, 2017, 7, 2045-2322, 10.1038/s41598-017-11197-x
    38. Alessandro Corbetta, Federico Toschi, Physics of Human Crowds, 2023, 14, 1947-5454, 311, 10.1146/annurev-conmatphys-031620-100450
    39. Weili Wang, Jiayu Rong, Qinqin Fan, Jingjing Zhang, Xin Han, Beihua Cong, Nirajan Shiwakoti, Data-Driven Simulation of Pedestrian Movement with Artificial Neural Network, 2021, 2021, 2042-3195, 1, 10.1155/2021/5580910
    40. Michael J Seitz, Gerta Köster, How update schemes influence crowd simulations, 2014, 2014, 1742-5468, P07002, 10.1088/1742-5468/2014/07/P07002
    41. Armel Ulrich Kemloh Wagoum, Mohcine Chraibi, Jonas Mehlich, Armin Seyfried, Andreas Schadschneider, Efficient and validated simulation of crowds for an evacuation assistant, 2012, 23, 15464261, 3, 10.1002/cav.1420
    42. Na Li, Ren-Yong Guo, Simulation of bi-directional pedestrian flow through a bottleneck: Cell transmission model, 2020, 555, 03784371, 124542, 10.1016/j.physa.2020.124542
    43. Michael J. Seitz, Felix Dietrich, Gerta Köster, The effect of stepping on pedestrian trajectories, 2015, 421, 03784371, 594, 10.1016/j.physa.2014.11.064
    44. Xiao Song, Daolin Han, Jinghan Sun, Zenghui Zhang, A data-driven neural network approach to simulate pedestrian movement, 2018, 509, 03784371, 827, 10.1016/j.physa.2018.06.045
    45. Gerta Köster, Marion Gödel, 2015, Chapter 8, 978-3-319-10628-1, 63, 10.1007/978-3-319-10629-8_8
    46. Gerta Köster, Franz Treml, Marion Gödel, Avoiding numerical pitfalls in social force models, 2013, 87, 1539-3755, 10.1103/PhysRevE.87.063305
    47. Antoine Tordeux, Guillaume Costeseque, Michael Herty, Armin Seyfried, From Traffic and Pedestrian Follow-the-Leader Models with Reaction Time to First Order Convection-Diffusion Flow Models, 2018, 78, 0036-1399, 63, 10.1137/16M110695X
    48. Antoine Tordeux, Claudia Totzeck, Multi-scale description of pedestrian collective dynamics with port-Hamiltonian systems, 2023, 18, 1556-1801, 906, 10.3934/nhm.2023039
    49. Felix Dietrich, Gerta Köster, 2015, Chapter 7, 978-3-319-10628-1, 55, 10.1007/978-3-319-10629-8_7
    50. S. Liu, S. Lo, J. Ma, W. Wang, An Agent-Based Microscopic Pedestrian Flow Simulation Model for Pedestrian Traffic Problems, 2014, 15, 1524-9050, 992, 10.1109/TITS.2013.2292526
    51. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 4, 978-3-319-06619-6, 73, 10.1007/978-3-319-06620-2_4
    52. Dirk Hartmann, Peter Hasel, Efficient Dynamic Floor Field Methods for Microscopic Pedestrian Crowd Simulations, 2014, 16, 1815-2406, 264, 10.4208/cicp.200513.290114a
    53. Larkin Heintzman, Amanda Hashimoto, Nicole Abaid, Ryan K. Williams, 2021, Anticipatory Planning and Dynamic Lost Person Models for Human-Robot Search and Rescue, 978-1-7281-9077-8, 8252, 10.1109/ICRA48506.2021.9562070
    54. Saumya Gupta, Mohamed H. Zaki, Adan Vela, Generative Modeling of Pedestrian Behavior: A Receding Horizon Optimization-Based Trajectory Planning Approach, 2022, 10, 2169-3536, 81624, 10.1109/ACCESS.2022.3193671
    55. Mohcine Chraibi, Takahiro Ezaki, Antoine Tordeux, Katsuhiro Nishinari, Andreas Schadschneider, Armin Seyfried, Jamming transitions in force-based models for pedestrian dynamics, 2015, 92, 1539-3755, 10.1103/PhysRevE.92.042809
    56. Tianyi Wang, Yu Chen, The Negative Dependence of Evacuation Time on Group Size Under a Binding Mechanism, 2022, 9, 2296-424X, 10.3389/fphy.2021.798423
    57. Sean Curtis, Basim Zafar, Adnan Gutub, Dinesh Manocha, Right of way, 2013, 29, 0178-2789, 1277, 10.1007/s00371-012-0769-x
    58. Daewa Kim, Annalisa Quaini, 2021, Chapter 7, 978-3-030-91645-9, 157, 10.1007/978-3-030-91646-6_7
    59. Armel Ulrich Kemloh Wagoum, Mohcine Chraibi, Christian Eilhardt, Stefan Nowak, Igor Kulkov, Daniel Weber, Kathrin Sauer, Hubert Klüpfel, Andreas Schadschneider, 2014, Chapter 109, 978-3-319-02446-2, 1323, 10.1007/978-3-319-02447-9_109
    60. Yi Ma, Eric Wai Ming Lee, Richard Kwok Kit Yuen, An Artificial Intelligence-Based Approach for Simulating Pedestrian Movement, 2016, 17, 1524-9050, 3159, 10.1109/TITS.2016.2542843
    61. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 3, 978-3-319-06619-6, 53, 10.1007/978-3-319-06620-2_3
    62. Denis Shikhalev, Renat Khabibulin, Ulrich Kemloh, Sergey Gudin, 2017, Chapter 6, 978-3-319-62385-6, 122, 10.1007/978-3-319-62386-3_6
    63. Michael J. Seitz, Gerta Köster, Natural discretization of pedestrian movement in continuous space, 2012, 86, 1539-3755, 10.1103/PhysRevE.86.046108
    64. R. Borsche, A. Meurer, Microscopic and macroscopic models for coupled car traffic and pedestrian flow, 2019, 348, 03770427, 356, 10.1016/j.cam.2018.08.037
    65. Tobias Kretz, On oscillations in the Social Force Model, 2015, 438, 03784371, 272, 10.1016/j.physa.2015.07.002
    66. Martin Burger, Sabine Hittmeir, Helene Ranetbauer, Marie-Therese Wolfram, Lane Formation by Side-Stepping, 2016, 48, 0036-1410, 981, 10.1137/15M1033174
    67. Angelika Kneidl, Dirk Hartmann, André Borrmann, 2014, Chapter 85, 978-3-319-02446-2, 1029, 10.1007/978-3-319-02447-9_85
    68. Yunchao Qu, Ziyou Gao, Penina Orenstein, Jiancheng Long, Xingang Li, An effective algorithm to simulate pedestrian flow using the heuristic force-based model, 2015, 3, 2168-0566, 1, 10.1080/21680566.2014.943823
    69. Raphael Korbmacher, Antoine Tordeux, Review of Pedestrian Trajectory Prediction Methods: Comparing Deep Learning and Knowledge-Based Approaches, 2022, 23, 1524-9050, 24126, 10.1109/TITS.2022.3205676
    70. Samer Hani Hamdar, Alireza Talebpour, Kyla D’Sa, Victor Knoop, Winnie Daamen, Martin Treiber, Behavioral-Based Pedestrian Modeling Approach: Formulation, Sensitivity Analysis, and Calibration, 2022, 2676, 0361-1981, 334, 10.1177/03611981211059767
    71. Amanda Hashimoto, Larkin Heintzman, Robert Koester, Nicole Abaid, An agent-based model reveals lost person behavior based on data from wilderness search and rescue, 2022, 12, 2045-2322, 10.1038/s41598-022-09502-4
    72. S. B. Liu, S. M. Lo, K. L. Tsui, W. L. Wang, Modeling Movement Direction Choice and Collision Avoidance in Agent-Based Model for Pedestrian Flow, 2015, 141, 0733-947X, 10.1061/(ASCE)TE.1943-5436.0000762
    73. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2014, Chapter 1, 978-3-319-06619-6, 3, 10.1007/978-3-319-06620-2_1
    74. Lei Cao, Lin Wang, 2015, Analysis and intervention in pedestrian evacuation via a modified social force model, 978-1-4799-7017-9, 5924, 10.1109/CCDC.2015.7161870
    75. Felix Dietrich, Gerta Köster, Michael Seitz, Isabella von Sivers, Bridging the gap: From cellular automata to differential equation models for pedestrian dynamics, 2014, 5, 18777503, 841, 10.1016/j.jocs.2014.06.005
    76. M. Ramírez, B. A. Toledo, F. Torres, J. Rogan, J. A. Valdivia, P. Correa-Burrows, Pedestrian flow in two dimensions: Optimal psychological stress leads to less evacuation time and decongestion, 2021, 104, 2470-0045, 10.1103/PhysRevE.104.024312
    77. Armel Ulrich Kemloh Wagoum, Armin Seyfried, Frank Fiedrich, Ralph Majer, 2014, Chapter 20, 978-3-319-02446-2, 251, 10.1007/978-3-319-02447-9_20
    78. Libi Fu, Ying Zhang, Huigui Qin, Qingxin Shi, Qiyi Chen, Yunqian Chen, Yongqian Shi, A modified social force model for studying nonlinear dynamics of pedestrian-e-bike mixed flow at a signalized crosswalk, 2023, 174, 09600779, 113813, 10.1016/j.chaos.2023.113813
    79. Jakob Cordes, Mohcine Chraibi, Antoine Tordeux, Andreas Schadschneider, 2023, Chapter 6, 978-3-031-46358-7, 143, 10.1007/978-3-031-46359-4_6
    80. Amir Rafe, Patrick A. Singleton, Exploring the Complexity of Pedestrian Dynamics: Impact of Societal Behaviors and Personal Attributes in Urban Environments, 2024, 0361-1981, 10.1177/03611981241260707
    81. Rongyong Zhao, Arifur Rahman, Bingyu Wei, Cuiling Li, Yunlong Ma, Yuxing Cai, Lingchen Han, A literature review of contacting force measurement methods for pedestrian crowds, 2024, 10, 24058440, e39755, 10.1016/j.heliyon.2024.e39755
    82. Rudina Subaih, Antoine Tordeux, Modeling pedestrian single-file movement: Extending the interaction to the follower, 2024, 633, 03784371, 129394, 10.1016/j.physa.2023.129394
    83. Mengchen He, Yunfei Qiu, Xinru Ge, Ran Huang, Juan Chen, Qiao Wang, Jacquline Lo, Jian Ma, Effect of moving walkway arrangement on unidirectional crowd flow characteristics, 2024, 643, 03784371, 129789, 10.1016/j.physa.2024.129789
    84. Raphael Korbmacher, Alexandre Nicolas, Antoine Tordeux, Claudia Totzeck, 2023, Chapter 3, 978-3-031-46358-7, 55, 10.1007/978-3-031-46359-4_3
    85. Tobias Kretz, Laura Eckes, Dominic Lipp, Janis Diz, Sven Müller, Using Empirical Travel Time Distributions for Calibration of a Model of Pedestrian Dynamics, 2023, 1556-5068, 10.2139/ssrn.4369718
    86. Hua Wang, Xing-Yu Guo, Hao Tao, Ming-Liang Xu, Collective Movement Simulation: Methods and Applications, 2024, 21, 2731-538X, 452, 10.1007/s11633-022-1405-5
    87. Jakub Porzycki, Jarosław Wąs, Modeling spatial patterns in a moving crowd of people using data-driven approach—A concept of Interplay Floor Field, 2023, 167, 09257535, 106266, 10.1016/j.ssci.2023.106266
    88. Tiziana Campisi, Angela Ricciardello, Marianna Ruggieri, Giorgia Vitanza, 2024, Chapter 11, 978-3-031-65328-5, 168, 10.1007/978-3-031-65329-2_11
    89. Mingwei Liu, Guiliang Lu, Oeda Yoshinao, Analyzing factors causing deadlock events of bi-directional pedestrian flow when moving on stairs using a personal space model, 2024, 14, 2045-2322, 10.1038/s41598-024-61007-4
    90. Ruihang Xie, Sisi Zlatanova, Jinwoo (Brian) Lee, Mitko Aleksandrov, A Motion-Based Conceptual Space Model to Support 3D Evacuation Simulation in Indoor Environments, 2023, 12, 2220-9964, 494, 10.3390/ijgi12120494
    91. Zhomart Turarov, Claudia Totzeck, Gradient-based parameter calibration of an anisotropic interaction model for pedestrian dynamics, 2023, 0956-7925, 1, 10.1017/S0956792523000153
    92. Heng Ding, Qiao Wang, Juan Chen, Jacqueline T.Y. Lo, Jian Ma, Investigating pedestrian stepping characteristics via intrinsic trajectory, 2024, 652, 03784371, 130045, 10.1016/j.physa.2024.130045
    93. Priyanka Iyer, Rajendra Singh Negi, Andreas Schadschneider, Gerhard Gompper, Directed motion of cognitive active agents in a crowded three-way intersection, 2024, 7, 2399-3650, 10.1038/s42005-024-01860-x
    94. Jason Hindes, Kevin Daley, George Stantchev, Ira B Schwartz, Swarming network inference with importance clustering of relative interactions, 2024, 5, 2632-072X, 045009, 10.1088/2632-072X/ad9b63
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8817) PDF downloads(854) Cited by(94)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog