Methods for the localization of a leak in open water channels

  • Received: 01 November 2008 Revised: 01 January 2009
  • Primary: 35L40, 35B37; Secondary: 93C95.

  • In this paper, we present two methods for determining the position of a leak in an open water channel. The available measurements are the water level and the gate position at the upstream and downstream end of a channel reach. We assume that the size of the leak and the time it started are already estimated by a leak-detection method. Both of the proposed methods make use of a nonlinear Saint-Venant equation model of the channel where the leak is modelled as a lateral outflow. The first method makes use of a bank of $N$ models corresponding to $N$ possible positions of the leak along the channel. The estimated position of the leak is determined by the model which minimizes a quadratic cost function. The second method is based on the same principle except that it uses observers instead of pure models. The methods are tested on both real and simulated data from the Coleambally Channel 6 in Australia. It is further shown that the determination of the position of a leak is an inherently difficult problem.

    Citation: Nadia Bedjaoui, Erik Weyer, Georges Bastin. Methods for the localization of a leak in open water channels[J]. Networks and Heterogeneous Media, 2009, 4(2): 189-210. doi: 10.3934/nhm.2009.4.189

    Related Papers:

  • In this paper, we present two methods for determining the position of a leak in an open water channel. The available measurements are the water level and the gate position at the upstream and downstream end of a channel reach. We assume that the size of the leak and the time it started are already estimated by a leak-detection method. Both of the proposed methods make use of a nonlinear Saint-Venant equation model of the channel where the leak is modelled as a lateral outflow. The first method makes use of a bank of $N$ models corresponding to $N$ possible positions of the leak along the channel. The estimated position of the leak is determined by the model which minimizes a quadratic cost function. The second method is based on the same principle except that it uses observers instead of pure models. The methods are tested on both real and simulated data from the Coleambally Channel 6 in Australia. It is further shown that the determination of the position of a leak is an inherently difficult problem.


    加载中
  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3997) PDF downloads(53) Cited by(20)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog