Loading [MathJax]/jax/output/SVG/jax.js

A derivation of linear elastic energies from pair-interaction atomistic systems

  • Received: 01 October 2006 Revised: 01 June 2007
  • Primary: 74B05, 49J45; Secondary: 46E39, 74B20.

  • Pair-interaction atomistic energies may give rise, in the framework of the passage from discrete systems to continuous variational problems, to nonlinear energies with genuinely quasiconvex integrands. This phenomenon takes place even for simple harmonic interactions as shown by an example by Friesecke and Theil [19]. On the other hand, a rigorous derivation of linearly elastic energies from energies with quasiconvex integrands can be obtained by Γ-convergence following the method by Dal Maso, Negri and Percivale [14]. We show that the derivation of linear theories by Γ-convergence can be obtained directly from lattice interactions in the regime of small deformations. Our proof relies on a lower bound by comparison with the continuous result, and on a direct Taylor expansion for the upper bound. The computation is carried over for a family of lattice energies comprising interactions on the triangular lattice in dimension two.

    Citation: Andrea Braides, Margherita Solci, Enrico Vitali. A derivation of linear elastic energies from pair-interaction atomistic systems[J]. Networks and Heterogeneous Media, 2007, 2(3): 551-567. doi: 10.3934/nhm.2007.2.551

    Related Papers:

    [1] Andrea Braides, Margherita Solci, Enrico Vitali . A derivation of linear elastic energies from pair-interaction atomistic systems. Networks and Heterogeneous Media, 2007, 2(3): 551-567. doi: 10.3934/nhm.2007.2.551
    [2] Bernd Schmidt . On the derivation of linear elasticity from atomistic models. Networks and Heterogeneous Media, 2009, 4(4): 789-812. doi: 10.3934/nhm.2009.4.789
    [3] Hirofumi Notsu, Masato Kimura . Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks and Heterogeneous Media, 2014, 9(4): 617-634. doi: 10.3934/nhm.2014.9.617
    [4] Julian Braun, Bernd Schmidt . On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth. Networks and Heterogeneous Media, 2013, 8(4): 879-912. doi: 10.3934/nhm.2013.8.879
    [5] Manuel Friedrich, Bernd Schmidt . On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Networks and Heterogeneous Media, 2015, 10(2): 321-342. doi: 10.3934/nhm.2015.10.321
    [6] Marco Cicalese, Antonio DeSimone, Caterina Ida Zeppieri . Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers. Networks and Heterogeneous Media, 2009, 4(4): 667-708. doi: 10.3934/nhm.2009.4.667
    [7] Franco Cardin, Alberto Lovison . Finite mechanical proxies for a class of reducible continuum systems. Networks and Heterogeneous Media, 2014, 9(3): 417-432. doi: 10.3934/nhm.2014.9.417
    [8] Mustapha El Jarroudi, Youness Filali, Aadil Lahrouz, Mustapha Er-Riani, Adel Settati . Asymptotic analysis of an elastic material reinforced with thin fractal strips. Networks and Heterogeneous Media, 2022, 17(1): 47-72. doi: 10.3934/nhm.2021023
    [9] Hervé Le Dret, Annie Raoult . Homogenization of hexagonal lattices. Networks and Heterogeneous Media, 2013, 8(2): 541-572. doi: 10.3934/nhm.2013.8.541
    [10] Laura Sigalotti . Homogenization of pinning conditions on periodic networks. Networks and Heterogeneous Media, 2012, 7(3): 543-582. doi: 10.3934/nhm.2012.7.543
  • Pair-interaction atomistic energies may give rise, in the framework of the passage from discrete systems to continuous variational problems, to nonlinear energies with genuinely quasiconvex integrands. This phenomenon takes place even for simple harmonic interactions as shown by an example by Friesecke and Theil [19]. On the other hand, a rigorous derivation of linearly elastic energies from energies with quasiconvex integrands can be obtained by Γ-convergence following the method by Dal Maso, Negri and Percivale [14]. We show that the derivation of linear theories by Γ-convergence can be obtained directly from lattice interactions in the regime of small deformations. Our proof relies on a lower bound by comparison with the continuous result, and on a direct Taylor expansion for the upper bound. The computation is carried over for a family of lattice energies comprising interactions on the triangular lattice in dimension two.


  • This article has been cited by:

    1. Jean-Jacques Alibert, Alessandro Della Corte, Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof, 2015, 66, 0044-2275, 2855, 10.1007/s00033-015-0526-x
    2. Ada Amendola, On the Optimal Prediction of the Stress Field Associated with Discrete Element Models, 2020, 187, 0022-3239, 613, 10.1007/s10957-019-01572-1
    3. R. Alicandro, L. De Luca, G. Lazzaroni, M. Palombaro, M. Ponsiglione, Coarse-Graining of a Discrete Model for Edge Dislocations in the Regular Triangular Lattice, 2023, 33, 0938-8974, 10.1007/s00332-023-09888-z
    4. Edoardo Mainini, Ulisse Stefanelli, Crystallization in Carbon Nanostructures, 2014, 328, 0010-3616, 545, 10.1007/s00220-014-1981-5
    5. V. A. Malyshev, S. A. Muzychka, Dynamical phase transition in the simplest molecular chain model, 2014, 179, 0040-5779, 490, 10.1007/s11232-014-0157-y
    6. Florian Theil, Surface energies in a two-dimensional mass-spring model for crystals, 2011, 45, 0764-583X, 873, 10.1051/m2an/2010106
    7. A. Braides, M.S. Gelli, Asymptotic analysis of microscopic impenetrability constraints for atomistic systems, 2016, 96, 00225096, 235, 10.1016/j.jmps.2016.07.016
    8. Malena I. Español, Dmitry Golovaty, J. Patrick Wilber, A discrete-to-continuum model of weakly interacting incommensurate two-dimensional lattices: The hexagonal case, 2023, 173, 00225096, 105229, 10.1016/j.jmps.2023.105229
    9. Manuel Friedrich, Griffith energies as small strain limit of nonlinear models for nonsimple brittle materials, 2020, 2, 2640-3501, 75, 10.3934/mine.2020005
    10. Malena I. Español, Dmitry Golovaty, J. Patrick Wilber, Discrete-to-continuum modelling of weakly interacting incommensurate two-dimensional lattices, 2018, 474, 1364-5021, 20170612, 10.1098/rspa.2017.0612
    11. Вадим Александрович Малышев, Vadim Aleksandrovich Malyshev, Степан Андреевич Музычка, Stepan Andreevich Muzychka, Динамический фазовый переход в простейшей модели цепочки молекул, 2014, 179, 0564-6162, 123, 10.4213/tmf8608
    12. Giuliano Lazzaroni, Mariapia Palombaro, Anja Schlömerkemper, Rigidity of three-dimensional lattices and dimension reduction in heterogeneous nanowires, 2017, 10, 1937-1179, 119, 10.3934/dcdss.2017007
    13. Roberto Alicandro, Marco Cicalese, Antoine Gloria, Integral Representation Results for Energies Defined on Stochastic Lattices and Application to Nonlinear Elasticity, 2011, 200, 0003-9527, 881, 10.1007/s00205-010-0378-7
    14. Manuel Friedrich, Bernd Schmidt, An Atomistic-to-Continuum Analysis of Crystal Cleavage in a Two-Dimensional Model Problem, 2014, 24, 0938-8974, 145, 10.1007/s00332-013-9187-0
    15. Manuel Friedrich, A Derivation of Linearized Griffith Energies from Nonlinear Models, 2017, 225, 0003-9527, 425, 10.1007/s00205-017-1108-1
    16. Riccardo Scala, Ulisse Stefanelli, Linearization for finite plasticity under dislocation-density tensor regularization, 2021, 33, 0935-1175, 179, 10.1007/s00161-020-00898-w
    17. Giovanni Scilla, Motion of Discrete Interfaces on the Triangular Lattice, 2020, 88, 1424-9286, 315, 10.1007/s00032-020-00316-5
    18. Giuliano Lazzaroni, Mariapia Palombaro, Anja Schlömerkemper, Dislocations in nanowire heterostructures: from discrete to continuum, 2013, 13, 16177061, 541, 10.1002/pamm.201310260
    19. Stefan Müller, Stefan Neukamm, On the Commutability of Homogenization and Linearization in Finite Elasticity, 2011, 201, 0003-9527, 465, 10.1007/s00205-011-0438-7
    20. Leonard C. Kreutz, Paolo Piovano, Microscopic Validation of a Variational Model of Epitaxially Strained Crystalline Films, 2021, 53, 0036-1410, 453, 10.1137/19M1240010
    21. Manuel Friedrich, Leonard Kreutz, Konstantinos Zemas, From atomistic systems to linearized continuum models for elastic materials with voids, 2023, 36, 0951-7715, 679, 10.1088/1361-6544/aca5de
    22. Andrea Braides, Leonard Kreutz, An Integral-Representation Result for Continuum Limits of Discrete Energies with MultiBody Interactions, 2018, 50, 0036-1410, 1485, 10.1137/17M1121433
    23. Manuel Friedrich, Bernd Schmidt, On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime, 2015, 10, 1556-1801, 321, 10.3934/nhm.2015.10.321
    24. Roberto Alicandro, Giuliano Lazzaroni, Mariapia Palombaro, On the effect of interactions beyond nearest neighbours on non-convex lattice systems, 2017, 56, 0944-2669, 10.1007/s00526-017-1129-5
    25. Roberto Alicandro, Gianni Dal Maso, Giuliano Lazzaroni, Mariapia Palombaro, Derivation of a Linearised Elasticity Model from Singularly Perturbed Multiwell Energy Functionals, 2018, 230, 0003-9527, 1, 10.1007/s00205-018-1240-6
    26. Roberto Alicandro, Giuliano Lazzaroni, Mariapia Palombaro, Derivation of Linear Elasticity for a General Class of Atomistic Energies, 2021, 53, 0036-1410, 5060, 10.1137/21M1397179
    27. Andrea Braides, Andrey Piatnitski, Overall Properties of a Discrete Membrane with Randomly Distributed Defects, 2008, 189, 0003-9527, 301, 10.1007/s00205-008-0114-8
    28. Andrea Braides, Maria Stella Gelli, Analytical treatment for the asymptotic analysis of microscopic impenetrability constraints for atomistic systems, 2017, 51, 0764-583X, 1903, 10.1051/m2an/2017011
    29. Rufat Badal, Manuel Friedrich, Martin Kružík, Nonlinear and Linearized Models in Thermoviscoelasticity, 2023, 247, 0003-9527, 10.1007/s00205-022-01834-9
    30. Andrea Braides, Anneliese Defranceschi, Enrico Vitali, A compactness result for a second-order variational discrete model, 2012, 46, 0764-583X, 389, 10.1051/m2an/2011043
    31. Stefano Almi, Elisa Davoli, Manuel Friedrich, Non-interpenetration conditions in the passage from nonlinear to linearized Griffith fracture, 2023, 00217824, 10.1016/j.matpur.2023.05.001
    32. Roberto Alicandro, Lucia De Luca, Mariapia Palombaro, Marcello Ponsiglione, Γ-convergence analysis of the nonlinear self-energy induced by edge dislocations in semi-discrete and discrete models in two dimensions, 2024, 0, 1864-8258, 10.1515/acv-2023-0053
    33. NICOLAS MEUNIER, OLIVIER PANTZ, ANNIE RAOULT, ELASTIC LIMIT OF SQUARE LATTICES WITH THREE-POINT INTERACTIONS, 2012, 22, 0218-2025, 10.1142/S0218202512500327
    34. Manuel Friedrich, Manuel Seitz, Ulisse Stefanelli, Discrete-to-continuum linearization in atomistic dynamics, 2024, 0, 1078-0947, 0, 10.3934/dcds.2024115
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4324) PDF downloads(191) Cited by(34)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog