Citation: Michael W Patt, Lisa Conte, Mary Blaha, Balbina J Plotkin. Steroid hormones as interkingdom signaling molecules: Innate immune function and microbial colonization modulation[J]. AIMS Molecular Science, 2018, 5(1): 117-130. doi: 10.3934/molsci.2018.1.117
[1] | Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55: 165–199. doi: 10.1146/annurev.micro.55.1.165 |
[2] | Hastings JW, Greenberg EP (1999) Quorum sensing: The explanation of a curious phenomenon reveals a common characteristic of bacteria. J Bacteriol 181: 2667–2668. |
[3] | Horswill A, Stoodley P, Stewart PS, et al. (2007) The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities. Anal Bioanal Chem 387: 371–380. doi: 10.1007/s00216-006-0720-y |
[4] | Miller M, Bassler B (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55: 165–199. doi: 10.1146/annurev.micro.55.1.165 |
[5] | Reading N, Sperandio V (2006) Quorum sensing: The many languages of bacteria. FEMS Microbiol Lett 254: 1–11. doi: 10.1111/j.1574-6968.2005.00001.x |
[6] | Plotkin BJ, Viselli SM (2000) Effect of insulin on microbial growth. Curr Microbiol 41: 60–64. doi: 10.1007/s002840010092 |
[7] | Plotkin B, Wu Z, Ward K, et al. (2014) Effect of human insulin on the formation of catheter-associated E. coli biofilms. Open J Urol 4: 49–56. |
[8] | Sperandio V, Torres AG, Jarvis B, et al. (2003) Bacteria-host communication: The language of hormones. Proc Natl Acad Sci U.S.A 100: 8951–8956. doi: 10.1073/pnas.1537100100 |
[9] | Bjarnsholt T (2013) The role of bacterial biofilms in chronic infections. Apmis 121: 1–58. |
[10] | Bryers J (2008) Medical biofilms. Biotechnol Bioeng 100: 1–18. doi: 10.1002/bit.21838 |
[11] | Burmølle M, Hansen L, Sørensen S (2007) Establishment and early succession of a multispecies biofilm composed of soil bacteria. Microb Ecol 54: 352–362. doi: 10.1007/s00248-007-9222-5 |
[12] | Costerton J, Stewart P, Greenberg E (1999) Bacterial biofilms: A common cause of persistent infections. Science 284: 1318–1322. doi: 10.1126/science.284.5418.1318 |
[13] | Donlan R (2001) Biofilm formation: A clinically relevant microbiological process. Clin Infect Dis 33: 1387–1392. doi: 10.1086/322972 |
[14] | Martinotti MG, Savoia D (1985) Effect of some steroid hormones on the growth of Trichomonas vaginalis. G Batteriol Virol Immunol 78: 52–59. |
[15] | Sugarman B, Mummaw N (1988) The effect of hormones on Trichomonas vaginalis. J Gen Microbiol 134: 1623–1628. |
[16] | Drutz DJ, Huppert M, Sun SH, et al. (1981) Human sex hormones stimulate the growth and maturation of Coccidioides immitis. Infect Immun 32: 897–907. |
[17] | Elsherif S, Refai M (1976) Studies on the fungistatic action of hormones on dermatophytes. E Rodenwaldt-Archiv 3: 101–108. |
[18] | Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: From the natural environment to infectious diseases. Nat Rev Microbiol 2: 95–108. doi: 10.1038/nrmicro821 |
[19] | Zhang X, Essmann M, Burt ET, et al. (2000) Estrogen effects on Candida albicans: A potential virulence-regulating mechanism. J Infect Dis 181: 1441–1446. doi: 10.1086/315406 |
[20] | Cheng G, Yeater KM, Hoyer LL (2006) Cellular and molecular biology of Candida albicans estrogen response. Eukaryotic cell 5: 180–191. doi: 10.1128/EC.5.1.180-191.2006 |
[21] | Kinsman OS, Pitblado K, Coulson CJ (2010) Effect of mammalian steroid hormones and luteinizing hormone on the germination of Candida albicans and implications for vaginal candidosis. Mycoses 31: 617–626. |
[22] | White S, Larsen B (1997) Candida albicans morphogenesis is influenced by estrogen. Cell Mol Life Sci CMLS 53: 744–749. doi: 10.1007/s000180050094 |
[23] | White T, Silver P (2005) Regulation of sterol metabolism in Candida albicans by the UPC2 gene. Biochem Soc Trans 33: 1215–1218. |
[24] | Tarry W, Fisher M, Shen S, et al. (2005) Candida albicans: The estrogen target for vaginal colonization. J Surg Res 129: 278–282. doi: 10.1016/j.jss.2005.05.019 |
[25] | Fidel PL, Cutright J, Steele C (2000) Effects of reproductive hormones on experimental vaginal candidiasis. Infect Immun 68: 651–657. doi: 10.1128/IAI.68.2.651-657.2000 |
[26] | Micheli Md, Bille J, Schueller C, et al. (2002) A common drug-responsive element mediates the upregulation of the Candida albicans ABC transports CDR1 and CDR2, two genes involved in antifunal drug resistance. Mol Microbiol 43: 1197–1214. doi: 10.1046/j.1365-2958.2002.02814.x |
[27] | Karnani N, Gaur NA, Jha S, et al. (2004) SRE1 and SRE2 are two specific steroid-responsive modules of Candida drug resistance gene 1 (CDR1) promoter. Yeast 21: 219–239. doi: 10.1002/yea.1067 |
[28] | Krishnamurthy S, Gupta V, Prasad R, et al. (1998) Expression of CDR1, a multidrug resistance gene of Candida albicans: Transcriptional activation by heat shock, drugs and human steroid hormones. FEMS Microbiol Lett 160: 191–197. doi: 10.1111/j.1574-6968.1998.tb12910.x |
[29] | Kornman KS, Loesche WJ (1982) Effects of estradiol and progesterone on Bacteroides melaninogenicus and Bacteroides gingivalis. Infect Immun 35: 256–263. |
[30] | Chotirmall SH, Smith SG, Gunaratnam C, et al. (2012) Effect of estrogen on pseudomonas mucoidy and exacerbations in cystic fibrosis. N Engl J Med 366: 1978–1986. doi: 10.1056/NEJMoa1106126 |
[31] | Lyczak JB, Cannon CL, Pier GB (2002) Lung Infections Associated with Cystic Fibrosis. Clin Microbiol Rev 15: 194–222. doi: 10.1128/CMR.15.2.194-222.2002 |
[32] | Mihai MM, Holban AM, Giurcaneanu C, et al. (2015) Microbial biofilms: Impact on the pathogenesis of periodontitis, cystic fibrosis, chronic wounds and medical device-related infections. Curr Top Med Chem 15: 1552–1576. doi: 10.2174/1568026615666150414123800 |
[33] | Rowland SS, Falkler WA, Bashirelahi N (1992) Identification of an estrogen-binding protein in Pseudomonas aeruginosa. J Steroid Biochem Mol Biol 42: 721–727. doi: 10.1016/0960-0760(92)90113-W |
[34] | Amirshahi A, Wan C, Beagley K, et al. (2011) Modulation of the Chlamydia trachomatis in vitro transcriptome response by the sex hormones estradiol and progesterone. BMC Microbiol 11: 150. doi: 10.1186/1471-2180-11-150 |
[35] | Edwards JL (2010) Neisseria gonorrhoeae survival during primary human cervical epithelial cell infection requires nitric oxide and is augmented by progesterone. Infect Immun 78: 1202–1213. doi: 10.1128/IAI.01085-09 |
[36] | Yamaguchi H, Kamiya S, Uruma T, et al. (2008) Chlamydia pneumoniae Growth Inhibition in Cells by the Steroid Receptor Antagonist RU486 (Mifepristone). Antimicrob Agents Chemother 52: 1991–1998. doi: 10.1128/AAC.01416-07 |
[37] | Ishida K, Yamazaki T, Motohashi K, et al. (2012) Effect of the steroid receptor antagonist RU486 (mifepristone) on an IFNγ-induced persistent Chlamydophila pneumoniae infection model in epithelial HEp-2 cells. J Infect Chemother 19: 22–29. |
[38] | Hahn DL, Mcdonald R (1998) Can acute Chlamydia pneumoniae respiratory tract infection initiate chronic asthma? Ann Allergy Asthma Immunol 81: 339–344. doi: 10.1016/S1081-1206(10)63126-2 |
[39] | Renee MD, Morehead MS (2001) Mifepristone. Ann Pharmacother 35: 707–719. doi: 10.1345/aph.10397 |
[40] | Farr S, Banks W, Uezu K, et al. (2004) DHEAS improves learning and memory in aged SAMP8 mice but not in diabetic mice. Life Sci 75: 2775–2785. doi: 10.1016/j.lfs.2004.05.026 |
[41] | Nippoldt T (1998) Dehydroepiandrosterone supplements: Bringing sense to sensational claims. Endocr Pract 4: 106–111. doi: 10.4158/EP.4.2.106 |
[42] | Straub R, Konecna L, Hrach S, et al. (1998) Serum dehydroepiandrosterone (DHEA) and DHEA sulfate are negatively correlated with serum interleukin-6 (IL-6), and DHEA inhibits IL-6 secretion from mononuclear cells in man in vitro: Possible link between endocrinsensecence and immunosenescence. J Clin Endocrinol Metab 83: 2012–2017. doi: 10.1210/jcem.83.6.4876 |
[43] | Yotis W, Waner J (1968) Antimicrobial properties of testosterone and its intermediates. Antonie van Leeuwenhoek 34: 275–286. doi: 10.1007/BF02046449 |
[44] | Plotkin BJ, Konakieva MI (2017) Attenuation of antimicrobial activity by the human steroid hormones. Steroids 128: 120–127. doi: 10.1016/j.steroids.2017.09.007 |
[45] | Plotkin B, Erickson Q, Roose R, et al. (2003) Effect of androgens and glucocorticoids on microbial growth and antimicrobial susceptibility. Curr Microbiol 47: 514–520. |
[46] | Plotkin B, Konaklieva M (2007) Possible role of sarA in dehydroepiandosterone (DHEA)-mediated increase in Staphylococcus aureus resistance to vancomycin. Chemotherapy 53: 181–184. doi: 10.1159/000100863 |
[47] | Proctor R, Peters G (1998) Small colony variants in staphylococcal infections: Diagnostic and therapeutic implications. Clin Infect Dis 27: 419–422. doi: 10.1086/514706 |
[48] | Wong SS, Ho PL, Woo PC, et al. (1999) Bacteremia caused by staphylococci with inducible vancomycin heteroresistance. Clin Infect Dis 29: 760–767. doi: 10.1086/520429 |
[49] | Donlan RM (2002) Biofilms: Microbial Life on Surfaces. Emerging Infect Dis 8: 881–890. doi: 10.3201/eid0809.020063 |
[50] | Plotkin B, Morejon A, Laddaga R, et al. (2005) Induction of increased resistance to vancomycin in Staphylococcus aureus clinical isolates (MSSA, MRSA) by dehydroepiandosterone (DHEA). Lett Appl Microbiol 40: 249–254. doi: 10.1111/j.1472-765X.2005.01665.x |
[51] | Hiramatsu K, Dick JD, Perl TM (1998) Vancomycin resistance in staphylococci. Drug Resist Updates 1: 135–150. doi: 10.1016/S1368-7646(98)80029-0 |
[52] | Howe R, Wootton M, Walsh T, et al. (1999) Expression and detection of hetero-vancomycin resistance in Staphylococcus aureus. J Antimicrob Chemother 44: 675–678. doi: 10.1093/jac/44.5.675 |
[53] | Moise PA, Schentag JJ (2000) Vancomycin treatment failures in Staphylococcus aureus lower respiratory tract infections. Int J Antimicrob Agents 16: 31–34. |
[54] | Martinotti MG, Savoia D (1985) Effect of some steroid hormones on the growth of Trichomonas vaginalis. G Batteriol Virol Immunol 78: 52–59. |
[55] | Yotis WW, Fitzgerald T (1974) Hormonally induced alterations in Staphylococcus aureus. Ann N Y Acad Sci 236: 187–202. doi: 10.1111/j.1749-6632.1974.tb41491.x |
[56] | Reiss F (1947) The effect of hormones on the growth of Trichophyton purpureum and Trichophyton gypseum. J Invest Dermatol 8: 245–250. doi: 10.1038/jid.1947.35 |
[57] | Lysko PG, Morse SA (1980) Effects of steroid hormones on Neisseria gonorrhoeae. Antimicrob Agents Chemother 18: 281–288. doi: 10.1128/AAC.18.2.281 |
[58] | Morse SA, Fitzgerald TJ (1974) Effect of progesterone on Neisseria gonorrhoeae. Infect Immun 10: 1370–1377. |
[59] | Yotis WW, Savov ZT (1970) Reduction of the cytolytic action of staphylococcal alpha toxin by progesterone. Yale J Biol Med 42: 411. |
[60] | Haam VE, Rosenfeld I (1942) The effect of the various sex hormones upon experimental pneumococcus infections in mice. J Infect Dis 70: 243–247. doi: 10.1093/infdis/70.3.243 |
[61] | Yotis W, Fitzgerald T (1968) Responses of staphylococci to androgens. Appl Microbiol 16: 1512–1517. |
[62] | Li J, Niu J, Ou S, et al. (2012) Effects of SCR-3 on the immunosuppression accompanied with the systemic inflammatory response syndrome. Mol Cell Biochem 364: 29–37. doi: 10.1007/s11010-011-1201-y |
[63] | Yu C, York B, Wang S, et al. (2007) An essential function of the SRC-3 coactivator in suppression of cytokine mRNA translation and inflammatory response. Mol Cell 25: 765–778. doi: 10.1016/j.molcel.2007.01.025 |
[64] | Chen CY, Hofmann CS, Cottrell BJ, et al. (2013) Phenotypic and genotypic characterization of biofilm forming capabilities in non-O157 Shiga toxin-producing Escherichia coli strains. PloS One 8: e84863. doi: 10.1371/journal.pone.0084863 |
[65] | Bäumler AJ, Sperandio V (2016) Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535: 85–93. doi: 10.1038/nature18849 |
[66] | Mittler R, Vanderauwera S, Suzuki N, et al. (2011) ROS signaling: The new wave? Trends plant Sci 16: 300–309. doi: 10.1016/j.tplants.2011.03.007 |
[67] | Lushchak VI (2011) Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. Comp Biochem Physiol Toxicol Pharmacol Cbp 153: 175–190. doi: 10.1016/j.cbpc.2010.10.004 |
[68] | Tanaka H, Ishibashi J, Fujita K, et al. (2008) A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori. Insect Biochem Mol Biol 38: 1087–1110. doi: 10.1016/j.ibmb.2008.09.001 |
[69] | Daiber A, Steven S, Weber A, et al. (2017) Targeting vascular (endothelial) dysfunction. Br J Pharmacol 174: 1591–1619. doi: 10.1111/bph.13517 |
[70] | Jankovic A, Korac A, Buzadzic B, et al. (2017) Targeting the NO/superoxide ratio in adipose tissue: Relevance to obesity and diabetes management. Br J Pharmacol 174: 1570–1590. doi: 10.1111/bph.13498 |
[71] | Vergadi E, Ieronymaki E, Lyroni K, et al. (2017) Akt signaling pathway in macrophage activation and M1/M2 polarization. J Immun 198: 1006–1014. doi: 10.4049/jimmunol.1601515 |
[72] | Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radical Biol Med 25: 434–456. doi: 10.1016/S0891-5849(98)00092-6 |
[73] | Knowles RG, Moncada S (1994) Nitric oxide synthases in mammals. Biochem J 298: 249–258. doi: 10.1042/bj2980249 |
[74] | Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: Structure, function and inhibition. Biochem J 357: 593. doi: 10.1042/bj3570593 |
[75] | Laubach VE, Foley PL, Shockey KS, et al. (1998) Protective roles of nitric oxide and testosterone in endotoxemia: Evidence from NOS-2-deficient mice. Am J Physiol 275: 2211–2218. |
[76] | Yin F, Kang J, Han N, et al. (2015) Effect of dehydroepiandrosterone treatment on hormone levels and antioxidant parameters in aged rats. Genet Mol Res 14: 11300–11311. doi: 10.4238/2015.September.22.24 |
[77] | Alagöl H, Erdem E, Sancak B, et al. (1999) Nitric oxide biosynthesis and malondialdehyde levels in advanced breast cancer. Aust N Z J Surg 69: 647–650. doi: 10.1046/j.1440-1622.1999.01656.x |
[78] | Karpuzoglu E, Ahmed SA (2006) Estrogen regulation of nitric oxide and inducible nitric oxide synthase (iNOS) in immune cells: Implications for immunity, autoimmune diseases, and apoptosis. Nitric Oxide 15: 177–186. doi: 10.1016/j.niox.2006.03.009 |
[79] | Straub RH (2007) The Complex Role of Estrogens in Inflammation. Endocr Rev 28: 521–574. doi: 10.1210/er.2007-0001 |
[80] | Tomaszewska A, Guevara I, Wilczok T, et al. (2003) 17β-estradiol- and lipopolysaccharide-induced changes in nitric oxide, tumor necrosis factor-α and vascular endothelial growth factor release from RAW 264.7 macrophages. Gynecol Obstet Invest 56: 152–159. doi: 10.1159/000073775 |
[81] | Shimizu T, Szalay L, Choudhry MA, et al. (2005) Mechanism of salutary effects of androstenediol on hepatic function after trauma-hemorrhage: Role of endothelial and inducible nitric oxide synthase. Am J Physiol Gastrointest Liver Physiol 288: G244–G250. doi: 10.1152/ajpgi.00387.2004 |
[82] | Cattaneo MG, Vanetti C, Decimo I, et al. (2017) Sex-specific eNOS activity and function in human endothelial cells. Sci Rep 7: 9612. doi: 10.1038/s41598-017-10139-x |
[83] | Osol G, Ko NL, Mandalà M (2017) Altered endothelial nitric oxide signaling as a paradigm for maternal vascular maladaptation in preeclampsia. Curr Hypertens Rep 19: 82. doi: 10.1007/s11906-017-0774-6 |
[84] | Chen R, Tu Y, Lin J, et al. (2010) The nongenomic effects of progesterone in repressing iNOS activation through P38MAPK pathways in gonococci-infected polymorphonuclear leukocytes and the clinical significance. J Huazhong Univ Sci Technol Med Sci 30: 119–125. doi: 10.1007/s11596-010-0122-4 |
[85] | Sulemankhil I, Ganopolsky JG, Dieni CA, et al. (2012) Prevention and treatment of virulent bacterial biofilms with an enzymatic nitric oxide-releasing dressing. Antimicrob Agents Chemother 56: 6095–6103. doi: 10.1128/AAC.01173-12 |
[86] | Braeken K, Debkumari B, Fauvart M, et al. (2008) Living on a surface: Swarming and biofilm formation. Trends Microbiol 16: 496. doi: 10.1016/j.tim.2008.07.004 |
[87] | Costerton J, Lewandowski Z, Caldwell D, et al. (1995) Microbial biofilms. Annu Rev Microbiol 49: 711–745. doi: 10.1146/annurev.mi.49.100195.003431 |
[88] | Barraud N, Schleheck D, Klebensberger J, et al. (2009) Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol 191: 7333–7342. doi: 10.1128/JB.00975-09 |
[89] | Barraud N, Storey MV, Moore ZP, et al. (2009) Nitric oxide-mediated dispersal in single- and multi-species biofilms of clinically and industrially relevant microorganisms. Microb Biotechnol 2: 370–378. doi: 10.1111/j.1751-7915.2009.00098.x |
[90] | Povolotsky TL, Hengge R (2012) "Life-style" control networks in Escherichia coli: Signaling by the second messenger c-di-GMP. J Biotechnol 160: 10–16. doi: 10.1016/j.jbiotec.2011.12.024 |
[91] | Sancheztorres V, Hu H, Wood TK (2011) GGDEF Proteins YeaI, YedQ, and YfiN Reduce Early Biofilm Formation and Swimming Motility in Escherichia coli. Appl Microbiol Biotechnol 90: 651–658. doi: 10.1007/s00253-010-3074-5 |
[92] | Van Oss CJ (1978) Phagocytosis as a Surface Phenomenon. Annu Rev Microbiol 32: 19–39. doi: 10.1146/annurev.mi.32.100178.000315 |
[93] | Hallstoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: From the natural environment to infectious diseases. Nat Rev Microbiol 2: 95–108. doi: 10.1038/nrmicro821 |
[94] | Barraud N, Hassett DJ, Hwang SH, et al. (2006) Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 188: 7344–7353. doi: 10.1128/JB.00779-06 |
[95] | Barraud N, Storey MV, Moore ZP, et al. (2009) Nitric oxide-mediated dispersal in single- and multi-species biofilms of clinically and industrially relevant microorganisms. Microb Biotechnol 2: 370–378. doi: 10.1111/j.1751-7915.2009.00098.x |
[96] | Scarpin KM, Graham JD, Mote PA, et al. (2009) Progesterone action in human tissues: regulation by progesterone receptor (PR) isoform expression, nuclear positioning and coregulator expression. Nucl Recept Signaling 7: e009. |
[97] | Falsetta ML, Bair TB, Ku SC, et al. (2009) Transcriptional profiling identifies the metabolic phenotype of gonococcal biofilms. Infect Immun 77: 3522–3532. doi: 10.1128/IAI.00036-09 |
[98] | Zaitseva J, Granik V, Belik A, et al. (2009) Effect of nitrofurans and NO generators on biofilm formation by Pseudomonas aeruginosa PAO1 and Burkholderia cenocepacia 370. Res Microbiol 160: 353–357. doi: 10.1016/j.resmic.2009.04.007 |
[99] | Arora DP, Hossain S, Xu Y, et al. (2015) Nitric Oxide Regulation of Bacterial Biofilms. Biochemistry 54: 3717–3728. doi: 10.1021/bi501476n |
[100] | Beckman JS, Beckman TW, Chen J, et al. (1990) Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U.S.A 87: 1620–1624. doi: 10.1073/pnas.87.4.1620 |
[101] | Ghaffari A, Miller CC, Mcmullin B, et al. (2006) Potential application of gaseous nitric oxide as a topical antimicrobial agent. Nitric Oxide 14: 21–29. |
[102] | Anstey NM, Weinberg JB, Hassanali MY, et al. (1996) Nitric oxide in Tanzanian children with malaria: Inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression. J Exp Med 184: 557. doi: 10.1084/jem.184.2.557 |
[103] | Schmidt I, Steenbakkers PJM, Camp HJMOD, et al. (2004) Physiologic and Proteomic Evidence for a Role of Nitric Oxide in Biofilm Formation by Nitrosomonas europaea and Other Ammonia Oxidizers. J Bacteriol 186: 2781–2788. doi: 10.1128/JB.186.9.2781-2788.2004 |
[104] | Yoon MY, Lee KM, Park Y, et al. (2011) Contribution of Cell Elongation to the Biofilm Formation of Pseudomonas aeruginosa during Anaerobic Respiration. PLoS One 6: e16105. doi: 10.1371/journal.pone.0016105 |
[105] | Yoon SS, Hennigan RF, Hilliard GM, et al. (2002) Pseudomonas aeruginosa anaerobic respiration in biofilms: Relationships to cystic fibrosis pathogenesis. Dev Cell 3: 593–603. doi: 10.1016/S1534-5807(02)00295-2 |
[106] | Casillo A, Papa R, Ricciardelli A, et al. (2017) Anti-Biofilm Activity of a Long-Chain Fatty Aldehyde from Antarctic Pseudoalteromonas haloplanktis TAC125 against Staphylococcus epidermidis Biofilm. Front Cell Infect Microbiol 7: 46. |
[107] | Parrilli E, Papa R, Carillo S, et al. (2015) Anti-biofilm activity of pseudoalteromonas haloplanktis tac125 against staphylococcus epidermidis biofilm: Evidence of a signal molecule involvement? Int J Immunopathol Pharmacol 28: 104–113. doi: 10.1177/0394632015572751 |