Research article

Rational-approximation-based model order reduction of Helmholtz frequency response problems with adaptive finite element snapshots

  • Received: 24 October 2022 Revised: 13 January 2023 Accepted: 16 January 2023 Published: 31 January 2023
  • We introduce several spatially adaptive model order reduction approaches tailored to non-coercive elliptic boundary value problems, specifically, parametric-in-frequency Helmholtz problems. The offline information is computed by means of adaptive finite elements, so that each snapshot lives in a different discrete space that resolves the local singularities of the analytical solution and is adjusted to the considered frequency value. A rational surrogate is then assembled adopting either a least-squares or an interpolatory approach, yielding a function-valued version of the the standard rational interpolation method ($ \mathcal{V} $-SRI) and the minimal rational interpolation method (MRI). In the context of building an approximation for linear or quadratic functionals of the Helmholtz solution, we perform several numerical experiments to compare the proposed methodologies. Our simulations show that, for interior resonant problems (whose singularities are encoded by poles on the real axis), the spatially adaptive $ \mathcal{V} $-SRI and MRI work comparably well. Instead, when dealing with exterior scattering problems, whose frequency response is mostly smooth, the $ \mathcal{V} $-SRI method seems to be the best-performing one.

    Citation: Francesca Bonizzoni, Davide Pradovera, Michele Ruggeri. Rational-approximation-based model order reduction of Helmholtz frequency response problems with adaptive finite element snapshots[J]. Mathematics in Engineering, 2023, 5(4): 1-38. doi: 10.3934/mine.2023074

    Related Papers:

  • We introduce several spatially adaptive model order reduction approaches tailored to non-coercive elliptic boundary value problems, specifically, parametric-in-frequency Helmholtz problems. The offline information is computed by means of adaptive finite elements, so that each snapshot lives in a different discrete space that resolves the local singularities of the analytical solution and is adjusted to the considered frequency value. A rational surrogate is then assembled adopting either a least-squares or an interpolatory approach, yielding a function-valued version of the the standard rational interpolation method ($ \mathcal{V} $-SRI) and the minimal rational interpolation method (MRI). In the context of building an approximation for linear or quadratic functionals of the Helmholtz solution, we perform several numerical experiments to compare the proposed methodologies. Our simulations show that, for interior resonant problems (whose singularities are encoded by poles on the real axis), the spatially adaptive $ \mathcal{V} $-SRI and MRI work comparably well. Instead, when dealing with exterior scattering problems, whose frequency response is mostly smooth, the $ \mathcal{V} $-SRI method seems to be the best-performing one.



    加载中


    [1] A. C. Antoulas, Approximation of large-scale dynamical systems, Philadelphia: SIAM, 2005. https://doi.org/10.1137/1.9780898718713
    [2] P. Avery, C. Farhat, G. Reese, Fast frequency sweep computations using a multi-point Padé-based reconstruction method and an efficient iterative solver, Int. J. Numer. Meth. Eng., 69 (2007), 2848–2875. https://doi.org/10.1002/nme.1879 doi: 10.1002/nme.1879
    [3] M. Ainsworth, J. T. Oden, A posteriori error estimation in finite element analysis, New York: John Wiley & Sons, 2000. https://doi.org/10.1002/9781118032824
    [4] M. Ali, K. Steih, K. Urban, Reduced basis methods with adaptive snapshot computations, Adv. Comput. Math., 43 (2017), 257–294. https://doi.org/10.1007/s10444-016-9485-9 doi: 10.1007/s10444-016-9485-9
    [5] U. Baur, P. Benner, A. Greiner, J. G. Korvink, J. Lienemann, C. Moosmann, Parameter preserving model order reduction for MEMS applications, Mathematical and Computer Modelling of Dynamical Systems, 17 (2011), 297–317. https://doi.org/10.1080/13873954.2011.547658 doi: 10.1080/13873954.2011.547658
    [6] P. Benner, S. Gugercin, K. Willcox, A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev., 57 (2015), 483–531. https://doi.org/10.1137/130932715 doi: 10.1137/130932715
    [7] A. Bespalov, A. Haberl, D. Praetorius, Adaptive FEM with coarse initial mesh guarantees optimal convergence rates for compactly perturbed elliptic problems, Comput. Method. Appl. Mech. Eng., 317 (2017), 318–340. https://doi.org/10.1016/j.cma.2016.12.014 doi: 10.1016/j.cma.2016.12.014
    [8] I. Babuška, F. Ihlenburg, T. Strouboulis, S. K. Gangaraj, A posteriori error estimation for finite element solutions of Helmholtz' equation. Part Ⅰ: the quality of local indicators and estimators, Int. J. Numer. Meth. Eng., 40 (1997), 3443–3462. https://doi.org/10.1002/(SICI)1097-0207(19970930)40:18<3443::AID-NME221>3.0.CO;2-1 doi: 10.1002/(SICI)1097-0207(19970930)40:18<3443::AID-NME221>3.0.CO;2-1
    [9] I. Babuška, F. Ihlenburg, T. Strouboulis, S. K. Gangaraj, A posteriori error estimation for finite element solutions of Helmholtz' equation–Part Ⅱ: estimation of the pollution error, Int. J. Numer. Meth. Eng., 40 (1997), 3883–3900. https://doi.org/10.1002/(SICI)1097-0207(19971115)40:21<3883::AID-NME231>3.0.CO;2-V doi: 10.1002/(SICI)1097-0207(19971115)40:21<3883::AID-NME231>3.0.CO;2-V
    [10] F. Bonizzoni, F. Nobile, I. Perugia, Convergence analysis of Padé approximations for Helmholtz frequency response problems, ESAIM: M2AN, 52 (2018), 1261–1284. https://doi.org/10.1051/m2an/2017050 doi: 10.1051/m2an/2017050
    [11] F. Bonizzoni, F. Nobile, I. Perugia, D. Pradovera, Fast least-squares Padé approximation of problems with normal operators and meromorphic structure, Math. Comp., 89 (2020), 1229–1257. https://doi.org/10.1090/mcom/3511 doi: 10.1090/mcom/3511
    [12] F. Bonizzoni, F. Nobile, I. Perugia, D. Pradovera, Least-squares Padé approximation of parametric and stochastic Helmholtz maps, Adv. Comput. Math., 46 (2020), 46. https://doi.org/10.1007/s10444-020-09749-3 doi: 10.1007/s10444-020-09749-3
    [13] F. Bonizzoni, D. Pradovera, Shape optimization for a noise reduction problem by non-intrusive parametric reduced modeling, In: WCCM-ECCOMAS2020, 2021. https://doi.org/10.23967/wccm-eccomas.2020.300
    [14] A. Bespalov, D. Praetorius, M. Ruggeri, Two-level a posteriori error estimation for adaptive multilevel stochastic Galerkin FEM, SIAM/ASA J. Uncertain., 9 (2021), 1184–1216. https://doi.org/10.1137/20M1342586 doi: 10.1137/20M1342586
    [15] I. Babuška, W. C. Rheinboldt, A-posteriori error estimates for the finite element method, Int. J. Numer. Meth. Eng., 12 (1978), 1597–1615. https://doi.org/10.1002/nme.1620121010 doi: 10.1002/nme.1620121010
    [16] I. Babuška, W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal., 15 (1978), 736–754. https://doi.org/10.1137/0715049 doi: 10.1137/0715049
    [17] T. Chaumont-Frelet, A. Ern, M. Vohralík, On the derivation of guaranteed and $p$-robust a posteriori error estimates for the Helmholtz equation, Numer. Math., 148 (2021), 525–573. https://doi.org/10.1007/s00211-021-01192-w doi: 10.1007/s00211-021-01192-w
    [18] C. Carstensen, M. Feischl, M. Page, D. Praetorius, Axioms of adaptivity, Comput. Math. Appl., 67 (2014), 1195–1253. https://doi.org/10.1016/j.camwa.2013.12.003 doi: 10.1016/j.camwa.2013.12.003
    [19] J. M. Cascon, C. Kreuzer, R. H. Nochetto, K. G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal., 46 (2008), 2524–2550. https://doi.org/10.1137/07069047X doi: 10.1137/07069047X
    [20] W. Dörfler, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal., 33 (1996), 1106–1124. https://doi.org/10.1137/0733054 doi: 10.1137/0733054
    [21] W. Dörfler, S. Sauter, A posteriori error estimation for highly indefinite Helmholtz problems, Comput. Meth. Appl. Math., 13 (2013), 333–347. https://doi.org/10.1515/cmam-2013-0008 doi: 10.1515/cmam-2013-0008
    [22] S. Funken, D. Praetorius, P. Wissgott, Efficient implementation of adaptive P1-FEM in Matlab, Comput. Meth. Appl. Math., 11 (2011), 460–490. https://doi.org/10.2478/cmam-2011-0026 doi: 10.2478/cmam-2011-0026
    [23] I. V. Gosea, S. Güttel, Algorithms for the rational approximation of matrix-valued functions, SIAM J. Sci. Comput., 43 (2021), A3033–A3054. https://doi.org/10.1137/20M1324727 doi: 10.1137/20M1324727
    [24] P. Gonnet, R. Pachón, L. N. Trefethen, Robust rational interpolation and least-squares, Electron. Trans. Numer. Anal., 38 (2011), 146–167.
    [25] M. B. Giles, E. Süli, Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality, Acta Numer., 11 (2002), 145–236. https://doi.org/10.1017/S096249290200003X doi: 10.1017/S096249290200003X
    [26] C. Gräßle, M. Hinze, POD reduced-order modeling for evolution equations utilizing arbitrary finite element discretizations, Adv. Comput. Math., 44 (2018), 1941–1978. https://doi.org/10.1007/s10444-018-9620-x doi: 10.1007/s10444-018-9620-x
    [27] B. Gustavsen, A. Semlyen, Rational approximation of frequency domain responses by vector fitting, IEEE Trans. Power Deliver., 14 (1999), 1052–1061. https://doi.org/10.1109/61.772353 doi: 10.1109/61.772353
    [28] M. W. Hess, P. Benner, Fast evaluation of time-harmonic Maxwell's equations using the reduced basis method, IEEE Trans. Microw. Theory, 61 (2013), 2265–2274. https://doi.org/10.1109/TMTT.2013.2258167 doi: 10.1109/TMTT.2013.2258167
    [29] A. Hochman, FastAAA: A fast rational-function fitter, In: 2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), San Jose, CA, USA, 2017, 1–3. https://doi.org/10.1109/EPEPS.2017.8329756
    [30] A. C. Ionita, A. C. Antoulas, Data-driven parametrized model reduction in the Loewner framework, SIAM J. Sci. Comput., 36 (2014), A984–A1007. https://doi.org/10.1137/130914619 doi: 10.1137/130914619
    [31] G. Klein, Applications of linear barycentric rational interpolation, PhD thesis, University of Fribourg, 2012.
    [32] M. Karkulik, D. Pavlicek, D. Praetorius, On 2D newest vertex bisection: optimality of mesh-closure and $H^1$-stability of $L_2$-projection, Constr. Approx., 38 (2013), 213–234. https://doi.org/10.1007/s00365-013-9192-4 doi: 10.1007/s00365-013-9192-4
    [33] P. Lietaert, K. Meerbergen, J. Pérez, B. Vandereycken, Automatic rational approximation and linearization of nonlinear eigenvalue problems, IMA J. Numer. Anal., 42 (2021), 1087–1115. https://doi.org/10.1093/imanum/draa098 doi: 10.1093/imanum/draa098
    [34] Y. Nakatsukasa, O. Sète, L. N. Trefethen, The AAA algorithm for rational approximation, SIAM J. Sci. Comput., 40 (2018), A1494–A1522. https://doi.org/10.1137/16M1106122 doi: 10.1137/16M1106122
    [35] J. T. Oden, S. Prudhomme, Goal-oriented error estimation and adaptivity for the finite element method, Comput. Math. Appl., 41 (2001), 735–756. https://doi.org/10.1016/S0898-1221(00)00317-5 doi: 10.1016/S0898-1221(00)00317-5
    [36] D. Pradovera, F. Nobile, Frequency-domain non-intrusive greedy model order reduction based on minimal rational approximation, In: Scientific Computing in Electrical Engineering, Cham: Springer, 2021,159–167. https://doi.org/10.1007/978-3-030-84238-3_16
    [37] D. Pradovera, F. Nobile, A technique for non-intrusive greedy piecewise-rational model reduction of frequency response problems over wide frequency bands, J. Math. Industry, 12 (2022), 2. https://doi.org/10.1186/s13362-021-00117-4 doi: 10.1186/s13362-021-00117-4
    [38] D. Pradovera, Interpolatory rational model order reduction of parametric problems lacking uniform inf-sup stability, SIAM J. Numer. Anal., 58 (2020), 2265–2293. https://doi.org/10.1137/19M1269695 doi: 10.1137/19M1269695
    [39] A. Quarteroni, A. Manzoni, F. Negri, Reduced basis methods for partial differential equations, Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-15431-2
    [40] A. Quarteroni, G. Rozza, Reduced order methods for modeling and computational reduction, Cham: Springer, 2014. https://doi.org/10.1007/978-3-319-02090-7
    [41] S. Schechter, On the inversion of certain matrices, Mathematical Tables and Other Aids to Computation, 13 (1959), 73–77. https://doi.org/10.2307/2001955 doi: 10.2307/2001955
    [42] R. Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math., 7 (2007), 245–269. https://doi.org/10.1007/s10208-005-0183-0 doi: 10.1007/s10208-005-0183-0
    [43] R. Stevenson, The completion of locally refined simplicial partitions created by bisection, Math. Comp., 77 (2008), 227–241. https://doi.org/10.1090/S0025-5718-07-01959-X doi: 10.1090/S0025-5718-07-01959-X
    [44] S. Sauter, J. Zech, A posteriori error estimation of $hp$-dG finite element methods for highly indefinite Helmholtz problems, SIAM J. Numer. Anal., 53 (2015), 2414–2440. https://doi.org/10.1137/140973955 doi: 10.1137/140973955
    [45] L. N. Trefethen, Householder triangularization of a quasimatrix, IMA J. Numer. Anal., 30 (2010), 887–897. https://doi.org/10.1093/imanum/drp018 doi: 10.1093/imanum/drp018
    [46] S. Ullmann, M. Rotkvic, J. Lang, POD-Galerkin reduced-order modeling with adaptive finite element snapshots, J. Comput. Phys., 325 (2016), 244–258. https://doi.org/10.1016/j.jcp.2016.08.018 doi: 10.1016/j.jcp.2016.08.018
    [47] R. Van Beeumen, K. Van Nimmen, G. Lombaert, K. Meerbergen, Model reduction for dynamical systems with quadratic output, Int. J. Numer. Meth. Eng., 91 (2012), 229–248. https://doi.org/10.1002/nme.4255 doi: 10.1002/nme.4255
    [48] S. Volkwein, A. Hepberger, Impedance identification by POD model reduction techniques, Automatisierungs-technik, 56 (2008), 437–446. https://doi.org/10.1524/auto.2008.0724 doi: 10.1524/auto.2008.0724
    [49] X. Xie, H. Zheng, S. Jonckheere, B. Pluymers, W. Desmet, A parametric model order reduction technique for inverse viscoelastic material identification, Comput. Struct., 212 (2018), 188–198. https://doi.org/10.1016/j.compstruc.2018.10.013 doi: 10.1016/j.compstruc.2018.10.013
    [50] M. Yano, A minimum-residual mixed reduced basis method: exact residual certification and simultaneous finite-element reduced-basis refinement, ESAIM: M2AN, 50 (2016), 163–185. https://doi.org/10.1051/m2an/2015039 doi: 10.1051/m2an/2015039
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1496) PDF downloads(157) Cited by(4)

Article outline

Figures and Tables

Figures(9)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog