Research article Special Issues

Regularizing effect in some Mingione’s double phase problems with very singular data

  • Received: 03 October 2022 Revised: 01 December 2022 Accepted: 01 December 2022 Published: 12 December 2022
  • In this paper we study the existence of solutions of the Dirichlet problem associated to the following nonlinear PDE

    $ \begin{equation*} { } -{{{\rm{\;div}}}}\big(a(x)\,\nabla u|\nabla u|^{p-2}\big) -{{{\rm{\;div}}}}\big( |u|^{(r-1)\lambda+1}\nabla u|\nabla u|^{\lambda-2}\big) = f \end{equation*} $

    where $ 1 < \lambda \leq p $, $ r > 1 $ and $ f \in L^1(\Omega) $.

    Citation: Lucio Boccardo, Giuseppa Rita Cirmi. Regularizing effect in some Mingione’s double phase problems with very singular data[J]. Mathematics in Engineering, 2023, 5(3): 1-15. doi: 10.3934/mine.2023069

    Related Papers:

  • In this paper we study the existence of solutions of the Dirichlet problem associated to the following nonlinear PDE

    $ \begin{equation*} { } -{{{\rm{\;div}}}}\big(a(x)\,\nabla u|\nabla u|^{p-2}\big) -{{{\rm{\;div}}}}\big( |u|^{(r-1)\lambda+1}\nabla u|\nabla u|^{\lambda-2}\big) = f \end{equation*} $

    where $ 1 < \lambda \leq p $, $ r > 1 $ and $ f \in L^1(\Omega) $.



    加载中


    [1] D. Arcoya, L. Boccardo, Regularizing effect of the interplay between coefficients in some elliptic equations, J. Funct. Anal., 268 (2015), 1153–1166. https://doi.org/10.1016/j.jfa.2014.11.011 doi: 10.1016/j.jfa.2014.11.011
    [2] P. Baroni, M. Colombo, G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal., 121 (2015), 206–222. https://doi.org/10.1016/j.na.2014.11.001 doi: 10.1016/j.na.2014.11.001
    [3] P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var., 57 (2018), 62. https://doi.org/10.1007/s00526-018-1332-z doi: 10.1007/s00526-018-1332-z
    [4] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J. L. Vazquez, An $L^1$ theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sci., 22 (1995), 241–273.
    [5] L. Boccardo, Some nonlinear Dirichlet problems in $L^1$ involving lower order terms in divergence form, In: Progress in elliptic and parabolic partial differential equations, Harlow: Longman, 1996, 43–57.
    [6] L. Boccardo, G. R. Cirmi, Some elliptic equations with $W_0^{1, 1}$ solutions, Nonlinear Anal., 153 (2017), 130–141. https://doi.org/10.1016/j.na.2016.09.007 doi: 10.1016/j.na.2016.09.007
    [7] L. Boccardo, T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87 (1989), 149–169. https://doi.org/10.1016/0022-1236(89)90005-0 doi: 10.1016/0022-1236(89)90005-0
    [8] L. Boccardo, T. Gallouët, Nonlinear elliptic equations with right hand side measures, Commun. Part. Diff. Eq., 17 (1992), 189–258. https://doi.org/10.1080/03605309208820857 doi: 10.1080/03605309208820857
    [9] L. Boccardo, T. Gallouët, Strongly nonlinear elliptic equations having natural growth terms and $L^1-$ data, Nonlinear Anal., 19 (1992), 573–579. https://doi.org/10.1016/0362-546X(92)90022-7 doi: 10.1016/0362-546X(92)90022-7
    [10] H. Brézis, W. A. Strauss, Semi-linear second-order elliptic equations in $L^1$, J. Math. Soc. Japan, 25 (1973), 565–590. https://doi.org/10.2969/jmsj/02540565 doi: 10.2969/jmsj/02540565
    [11] G. R. Cirmi, Regularity of the solutions to nonlinear elliptic equations with a lower-order term, Nonlinear Anal., 25 (1995), 569–580. https://doi.org/10.1016/0362-546X(94)00173-F doi: 10.1016/0362-546X(94)00173-F
    [12] M. Colombo, G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Rational Mech. Anal., 218 (2015), 219–273. https://doi.org/10.1007/s00205-015-0859-9 doi: 10.1007/s00205-015-0859-9
    [13] M. Colombo, G. Mingione, Regularity for double phase variational problems, Arch. Rational Mech. Anal., 215 (2015), 443–496. https://doi.org/10.1007/s00205-014-0785-2 doi: 10.1007/s00205-014-0785-2
    [14] C. De Filippis, G. Mingione, Nonuniformly elliptic Schauder theory, arXiv: 2201.07369.
    [15] J. Leray, J. L. Lions, Quelques résultats de Višik sur les problèmes elliptiques semi-linéaires par les méthodes de Minty et Browder, Bull. Soc. Math. France, 93 (1965), 97–107. https://doi.org/10.24033/bsmf.1617 doi: 10.24033/bsmf.1617
    [16] P. Marcellini, Regularity and existence of solutions of elliptic equations with $p, q$-growth conditions, J. Differ. Equations, 90 (1991), 1–30. https://doi.org/10.1016/0022-0396(91)90158-6 doi: 10.1016/0022-0396(91)90158-6
    [17] P. Marcellini, Local Lipschitz continuity for $p, q$-PDEs with explicit $u$-dependence, Nonlinear Anal., 226 (2023), 113066. https://doi.org/10.1016/j.na.2022.113066 doi: 10.1016/j.na.2022.113066
    [18] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier, 15 (1965), 189–257. https://doi.org/10.5802/aif.204 doi: 10.5802/aif.204
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1263) PDF downloads(152) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog