In this paper we consider an optimal control for an equation that models a crucial step in the tumor development, the angiogenesis. We show the existence of an optimal control, we characterize the optimal control as a solution of the optimality system and we show the uniqueness of the optimal control for short times.
Citation: M. Delgado, I. Gayte, C. Morales-Rodrigo. Optimal control of a chemotaxis equation arising in angiogenesis[J]. Mathematics in Engineering, 2022, 4(6): 1-25. doi: 10.3934/mine.2022047
In this paper we consider an optimal control for an equation that models a crucial step in the tumor development, the angiogenesis. We show the existence of an optimal control, we characterize the optimal control as a solution of the optimality system and we show the uniqueness of the optimal control for short times.
[1] | A. R. A. Anderson, M. A. J. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis, Bull. Math. Biol., 60 (1998), 857–899. doi: 10.1006/bulm.1998.0042 |
[2] | E. P. Avakov, Necessary extremum conditions for smooth abnormal problems with equality and inequality-type constraints, Mathematical Notes of the Academy of Sciences of the USSR, 45 (1989), 431–437. |
[3] | P. Biler, W. Hebisch, T. Nadzieja, The Debye system: existence and large time behavior of solutions, Nonlinear Anal., 23 (1994), 1189–1209. |
[4] | M. Delgado, I. Gayte, C. Morales-Rodrigo, A. Suárez, An angiogenesis model with nonlinear chemotactic response and flux at the tumor boundary, Nonlinear Anal., 72 (2010), 330–347. |
[5] | M. Delgado, C. Morales-Rodrigo, A. Suárez, Anti-angiogenic therapy based on the binding to receptors, DCDS, 32 (2012), 3871–3894. |
[6] | I. Gayte, F. Guillen-González, M. Rojas-Medar, Dubovitskii-Milyutin formalism applied to optimal control problems with constraints given by the heat equation with final data, IMA J. Math. Control Inf., 27 (2010), 57–76. |
[7] | I. V. Girsanov, Lectures on mathematical theory of extremum problem, Springer-Verlag, 1970. |
[8] | D. Henry, Geometric theory of semi linear parabolic equations, Berlin-New York: Springer-Verlag, 1981. |
[9] | T. Hillen, K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., 26 (2001), 280–301. |
[10] | D. Horstmann, M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equations, 215 (2005), 52–107. |
[11] | W. Jäger, S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819–824. |
[12] | E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399–415. |
[13] | U. Ledzewicz, On distributed parameter control systems in the abnormal case and in the case of nonoperator equality constraints, International Journal of Stochastic Analysis, 6 (1993), 704189. |
[14] | G. M. Lieberman, Second order parabolic differential equations, River Edge, NJ: World Scientific Publishing Co., Inc., 1996. |
[15] | J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, (French), Paris: Dunod Gauthier-Villars, 1969. |
[16] | N. V. Mantzaris, S. Webb, H. G. Othmer, Mathematical modeling of tumor induced angiogenesis, J. Math. Biol., 49 (2004), 111–187. |
[17] | C. Morales-Rodrigo, A therapy inactivating the tumor angiogenic factors, Math. Biosci. Eng., 10 (2013), 185–198. |
[18] | J. Simon, Compact sets in the space $L^p (0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65–96. |
[19] | S. Walczak, Some properties of cones in normed spaces and their application to investigating extremal problems, J. Optim. Theory Appl., 42 (1984), 561–582. |
[20] | C.-L. Wang, A short proof of a Greene theorem, Proc. Amer. Math. Soc., 69 (1978), 357–358. |