Research article Special Issues

Decay/growth rates for inhomogeneous heat equations with memory. The case of large dimensions

  • Received: 17 April 2021 Accepted: 07 July 2021 Published: 09 August 2021
  • We study the decay/growth rates in all $ L^p $ norms of solutions to an inhomogeneous nonlocal heat equation in $ \mathbb{R}^N $ involving a Caputo $ \alpha $-time derivative and a power $ \beta $ of the Laplacian when the dimension is large, $ N > 4\beta $. Rates depend strongly on the space-time scale and on the time behavior of the spatial $ L^1 $ norm of the forcing term.

    Citation: Carmen Cortázar, Fernando Quirós, Noemí Wolanski. Decay/growth rates for inhomogeneous heat equations with memory. The case of large dimensions[J]. Mathematics in Engineering, 2022, 4(3): 1-17. doi: 10.3934/mine.2022022

    Related Papers:

  • We study the decay/growth rates in all $ L^p $ norms of solutions to an inhomogeneous nonlocal heat equation in $ \mathbb{R}^N $ involving a Caputo $ \alpha $-time derivative and a power $ \beta $ of the Laplacian when the dimension is large, $ N > 4\beta $. Rates depend strongly on the space-time scale and on the time behavior of the spatial $ L^1 $ norm of the forcing term.



    加载中


    [1] P. Biler, M. Guedda, G. Karch, Asymptotic properties of solutions of the viscous Hamilton-Jacobi equation, J. Evol. Equ., 4 (2004), 75–97. doi: 10.1007/s00028-003-0079-x
    [2] M. Caputo, Linear models of dissipation whose $Q$ is almost frequency independent–II, Geophys. J. Int., 13 (1967), 529–539. doi: 10.1111/j.1365-246X.1967.tb02303.x
    [3] Á. Cartea, D. del Castillo-Negrete, Fluid limit of the continuous-time random walk with general Lévy jump distribution functions, Phys. Rev. E, 76 (2007), 041105. doi: 10.1103/PhysRevE.76.041105
    [4] A. Compte, M. O. Cáceres, Fractional dynamics in random velocity fields, Phys. Rev. Lett., 81 (1998), 3140–3143. doi: 10.1103/PhysRevLett.81.3140
    [5] C. Cortázar, F. Quirós, N. Wolanski, Large-time behavior for a fully nonlocal heat equation, Vietnam J. Math., 49 (2021), 831–844.
    [6] C. Cortazar, F. Quirós, N. Wolanski, A heat equation with memory: large-time behavior, J. Funct. Anal., 281 (2021), 109174. doi: 10.1016/j.jfa.2021.109174
    [7] C. Cortazar, F. Quirós, N. Wolanski, Decay/growth rates for inhomogeneous heat equations with memory. The case of small dimensions, Preprint.
    [8] D. del Castillo-Negrete, B. A. Carreras, V. E. Lynch, Fractional diffusion in plasma turbulence, Phys. Plasmas, 11 (2004), 3854–3864. doi: 10.1063/1.1767097
    [9] D. del Castillo-Negrete, B. A. Carreras, V. E. Lynch, Nondiffusive transport in plasma turbulence: A fractional diffusion approach, Phys. Rev. Lett., 94 (2005), 065003. doi: 10.1103/PhysRevLett.94.065003
    [10] J. Dolbeault, G. Karch, Large time behaviour of solutions to nonhomogeneous diffusion equations, In: Self-similar solutions of nonlinear PDE, Banach Center Publ., 2006,133–147.
    [11] M. M. Dzherbashyan, A. B. Nersesian, Fractional derivatives and the Cauchy problem for differential equations of fractional order, Izv. Akad. Nauk Arm. SSR, Mat., 3 (1968), 3–29.
    [12] S. D. Eidelman, A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differ. Equations, 199 (2004), 211–255. doi: 10.1016/j.jde.2003.12.002
    [13] A. N. Gerasimov, A generalization of linear laws of deformation and its application to problems of internal friction, Akad. Nauk SSSR. Prikl. Mat. Meh., 12 (1948), 251–260.
    [14] G. Gripenberg, Volterra integro-differential equations with accretive nonlinearity, J. Differ. Equations, 60 (1985), 57–79. doi: 10.1016/0022-0396(85)90120-2
    [15] B. Gross, On creep and relaxation, J. Appl. Phys., 18 (1947), 212–221.
    [16] J. Kemppainen, J. Siljander, R. Zacher, Representation of solutions and large-time behavior for fully nonlocal diffusion equations, J. Differ. Equations, 263 (2017), 149–201. doi: 10.1016/j.jde.2017.02.030
    [17] J. Liouville, Memoire sur quelques questions de géometrie et de méecanique, et sur un nouveau gentre pour resoudre ces questions, J. Ecole Polytech., 13 (1832), 1–69.
    [18] R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), 1–77. doi: 10.1016/S0370-1573(00)00070-3
    [19] J. Prüss, Evolutionary integral equations and applications, Basel: Birkhäuser/Springer Basel AG, 1993.
    [20] Yu. N. Rabotnov, Creep Problems in Structural Members, Amsterdam: North-Holland, 1969.
    [21] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton, N. J.: Princeton University Press, 1970.
    [22] G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 371 (2002), 461–580.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1700) PDF downloads(131) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog