Citation: Bruno Bianchini, Giulio Colombo, Marco Magliaro, Luciano Mari, Patrizia Pucci, Marco Rigoli. Recent rigidity results for graphs with prescribed mean curvature[J]. Mathematics in Engineering, 2021, 3(5): 1-48. doi: 10.3934/mine.2021039
[1] | Almgren FJ Jr (1966) Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem. Ann Math 85: 277-292. |
[2] | Altschuler S, Wu L (1994) Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle. Calc Var 2: 101-111. |
[3] | Alías LJ, Mastrolia P, Rigoli M (2016) Maximum Principles and Geometric Applications, Cham: Springer. |
[4] | Bao H, Shi Y (2014) Gauss maps of translating solitons of mean curvature flow. P Am Math Soc 142: 4333-4339. |
[5] | Barbosa E (2018) On CMC free-boundary stable hypersurfaces in a Euclidean ball. Math Ann 372: 179-187. |
[6] | Berestycki H, Caffarelli LA, Nirenberg L (1998) Further qualitative properties for elliptic equations in unbounded domains. Ann Scuola Norm Sup Pisa Cl Sci 25: 69-94. |
[7] | Berestycki H, Caffarelli LA, Nirenberg L (1997) Monotonicity for elliptic equations in unbounded Lipschitz domains. Commun Pure Appl Math 50: 1089-1111. |
[8] | Bernstein S (1915) Sur un théorème de géomètrie et son application aux équations aux dérivées partielles du type elliptique. Commun Soc Math de Kharkov 15: 38-45. |
[9] | Bianchini B, Mari L, Rigoli M (2015) Yamabe type equations with sign-changing nonlinearities on non-compact Riemannian manifolds. J Funct Anal 268: 1-72. |
[10] | Bianchini B, Mari L, Pucci P, et al. (2021) Geometric Analysis of Quasilinear Inequalities on Complete Manifolds, Cham: Birh?user/Springer. |
[11] | Bombieri E, De Giorgi E, Miranda M (1969) Una maggiorazione a priori relativa alle ipersuperfici minimali non parametriche. Arch Rational Mech Anal 32: 255-267. |
[12] | Bombieri E, De Giorgi E, Giusti E (1969) Minimal cones and the Bernstein problem. Invent Math 7: 243-268. |
[13] | Bombieri E, Giusti E (1972) Harnack's inequality for elliptic differential equations on minimal surfaces. Invent Math 15: 24-46. |
[14] | Bonorino L, Casteras JB, Klaser P, et al. (2020) On the asymptotic Dirichlet problem for a class of mean curvature type partial differential equations. Calc Var 59: 135. |
[15] | Borbely A (2017) Stochastic Completeness and the Omori-Yau Maximum Principle. J Geom Anal 27: 3228-3239. |
[16] | Brooks R (1981) A relation between growth and the spectrum of the Laplacian. Math Z 178: 501-508. |
[17] | Casteras JB, Heinonen E, Holopainen I, et al. (2020) Asymptotic Dirichlet problems in warped products. Math Z 295: 211-248. |
[18] | Casteras JB, Heinonen E, Holopainen I (2017) Solvability of minimal graph equation under pointwise pinching condition for sectional curvatures. J Geom Anal 27: 1106-1130. |
[19] | Casteras JB, Heinonen E, Holopainen I (2019) Dirichlet problem for f -minimal graphs. arXiv: 1605.01935v2. |
[20] | Casteras JB, Heinonen E, Holopainen I (2020) Existence and non-existence of minimal graphic and p-harmonic functions. P Roy Soc Edinb A 150: 341-366. |
[21] | Casteras JB, Holopainen I, Ripoll JB (2017) On the asymptotic Dirichlet problem for the minimal hypersurface equation in a Hadamard manifold. Potential Anal 47: 485-501. |
[22] | Casteras JB, Holopainen I, Ripoll JB (2018) Convexity at infinity in Cartan-Hadamard manifolds and applications to the asymptotic Dirichlet and Plateau problems. Math Z 290: 221-250. |
[23] | Cheeger J (1970) A lower bound for the smallest eigenvalue of the Laplacian, In: Problems in Analysis (Papers dedicated to Salomon Bochner, 1969), Princeton: Princeton Univ. Press, 195- 199. |
[24] | Cheeger J, Colding TH (1996) Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann Math 144: 189-237. |
[25] | Cheeger J, Colding TH (1997) On the structure of spaces with Ricci curvature bounded below. I. J Differ Geom 46: 406-480. |
[26] | Cheeger J, Colding TH (2000) On the structure of spaces with Ricci curvature bounded below. II. J Differ Geom 54: 13-35. |
[27] | Cheeger J, Colding TH (2000) On the structure of spaces with Ricci curvature bounded below. III. J Differ Geom 54: 37-74. |
[28] | Cheeger J, Colding TH, Minicozzi WP (1995) Linear growth harmonic functions on complete manifolds with nonnegative Ricci curvature. Geom Funct Anal 5: 948-954. |
[29] | Cheeger J, Gromoll D (1971) The splitting theorem for manifolds of nonnegative Ricci curvature. J Differ Geom 6: 119-128. |
[30] | Cheng SY, Yau ST (1975) Differential equations on Riemannian manifolds and their geometric applications. Commun Pure Appl Math 28: 333-354. |
[31] | Chern SS (1965) On the curvatures of a piece of hypersurface in Euclidean space. Abh Math Sem Univ Hamburg 29: 77-91. |
[32] | Clutterbuck J, Schnürer OC, Schulze F (2007) Stability of translating solutions to mean curvature flow. Calc Var 29: 281-293. |
[33] | Collin P, Krust R (1991) Le probléme de Dirichlet pour l'équation des surfaces minimales sur des domaines non bornés. B Soc Math Fr 119: 443-462. |
[34] | Collin P, Rosenberg H (2010) Construction of harmonic diffeomorphisms and minimal graphs. Ann Math 172: 1879-1906. |
[35] | Colombo G, Magliaro M, Mari L, et al. (2020) Bernstein and half-space properties for minimal graphs under Ricci lower bounds. arXiv: 1911.12054. |
[36] | Colombo G, Magliaro M, Mari L, et al. (2020) A splitting theorem for capillary graphs under Ricci lower bounds. arXiv: 2007.15143. |
[37] | Colombo G, Mari L, Rigoli M (2020) Remarks on mean curvature flow solitons in warped products. Discrete Cont Dyn S 13: 1957-1991. |
[38] | D'Ambrosio L, Mitidieri E (2010) A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities. Adv Math 224: 967-1020. |
[39] | D'Ambrosio L, Mitidieri E (2012) A priori estimates and reduction principles for quasilinear elliptic problems and applications. Adv Differential Equ 17: 935-1000. |
[40] | Dajczer M, de Lira JHS (2015) Entire bounded constant mean curvature Killing graphs. J Math Pure Appl 103: 219-227. |
[41] | Dajczer M, de Lira JHS (2017) Entire unbounded constant mean curvature Killing graphs. B Braz Math Soc 48: 187-198. |
[42] | De Giorgi E (1965) Una estensione del teorema di Bernstein. Ann Scuola Norm Sup Pisa 19: 79-85. |
[43] | De Giorgi E (1965) Errata-Corrige: "Una estensione del teorema di Bernstein". Ann Scuola Norm Sup Pisa Cl Sci 19: 463-463. |
[44] | Ding Q (2020) Liouville type theorems for minimal graphs over manifolds. arXiv: 1911.10306. |
[45] | Ding Q, Jost J, Xin Y (2016) Minimal graphic functions on manifolds of nonnegative Ricci curvature. Commun Pure Appl Math 69: 323-371. |
[46] | Ding Q, Jost J, Xin Y (2016) Existence and non-existence of area-minimizing hypersurfaces in manifolds of non-negative Ricci curvature. Am J Math 138: 287-327. |
[47] | Do Carmo MP, Lawson HB Jr (1983) On Alexandrov-Bernstein theorems in hyperbolic space. Duke Math J 50: 995-1003. |
[48] | Do Carmo MP, Peng CK (1979) Stable complete minimal surfaces in $\mathbb{R}.3$ are planes. B Am Math Soc 1: 903-906. |
[49] | Dupaigne L, Ghergu M, Goubet O, et al. (2012) Entire large solutions for semilinear elliptic equations. J Differ Equations 253: 2224-2251. |
[50] | Espinar JM, Farina A, Mazet L (2015) f -extremal domains in hyperbolic space. arXiv: 1511.02659. |
[51] | Espinar JM, Mazet L (2019) Characterization of f -extremal disks. J Differ Equations 266: 2052- 2077. |
[52] | do Espírito Santo N, Fornari S, Ripoll JB (2010) The Dirichlet problem for the minimal hypersurface equation in M × $\mathbb{R}$ with prescribed asymptotic boundary. J Math Pure Appl 93: 204-221. |
[53] | Farina A (2015) A Bernstein-type result for the minimal surface equation. Ann Scuola Norm Sup Pisa XIV: 1231-1237. |
[54] | Farina A (2018) A sharp Bernstein-type theorem for entire minimal graphs. Calc Var 57: 123. |
[55] | Farina A (2007) Liouville-type theorems for elliptic problems, In: Handbook of Differential Equations, Elsevier, 60-116. |
[56] | Farina A (2002) Propriétés qualitatives de solutions d'équations et systémes d'équations nonlinéaires, Habilitation à diriger des recherches, Paris VI. |
[57] | Farina A, Franz G, Mari L, Splitting and half-space properties for graphs with prescribed mean curvature. Preprint. |
[58] | Farina A, Mari L, Valdinoci E (2013) Splitting theorems, symmetry results and overdetermined problems for Riemannian manifolds. Commun Part Diff Eq 38: 1818-1862, |
[59] | Farina A, Sciunzi B, Valdinoci E (2008) Bernstein and De Giorgi type problems: New results via a geometric approach. Ann Scuola Norm Sup Pisa Cl Sci 7: 741-791. |
[60] | Farina A, Serrin J (2011) Entire solutions of completely coercive quasilinear elliptic equations. J Differ Equations 250: 4367-4408. |
[61] | Farina A, Serrin J (2011) Entire solutions of completely coercive quasilinear elliptic equations, II. J Differ Equations 250: 4409-4436. |
[62] | Farina A, Valdinoci E (2010) Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems. Arch Ration Mech Anal 195: 1025-1058. |
[63] | Filippucci R (2009) Nonexistence of positive weak solutions of elliptic inequalities. Nonlinear Anal 8: 2903-2916. |
[64] | Finn R (1986) Equilibrium Capillary Surfaces, New York: Springer-Verlag. |
[65] | Fischer-Colbrie D, Schoen R (1980) The structure of complete stable minimal surfaces in 3- manifolds of non negative scalar curvature. Commun Pure Appl Math 33: 199-211. |
[66] | Flanders H (1966) Remark on mean curvature. J London Math Soc 41: 364-366. |
[67] | Fleming WH (1962) On the oriented Plateau problem. Rend Circolo Mat Palermo 9: 69-89. |
[68] | Fraser A, Schoen R (2011) The first Steklov eigenvalue, conformal geometry, and minimal surfaces. Adv Math 226: 4011-4030. |
[69] | Fraser A, Schoen R (2016) Sharp eigenvalue bounds and minimal surfaces in the ball. Invent Math 203: 823-890. |
[70] | Gálvez JA, Rosenberg H (2010) Minimal surfaces and harmonic diffeomorphisms from the complex plane onto certain Hadamard surfaces. Am J Math 132: 1249-1273. |
[71] | Grigor'yan A (1999) Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. B Am Math Soc 36: 135-249. |
[72] | Greene RE, Wu H (1979) C∞ approximations of convex, subharmonic, and plurisubharmonic functions. Ann Sci école Norm Sup 12: 47-84. |
[73] | Guan B, Spruck J (2000) Hypersurfaces of constant mean curvature in hyperbolic space with prescribed asymptotic boundary at infinity. Am J Math 122: 1039-1060. |
[74] | Heinonen E (2019) Survey on the asymptotic Dirichlet problem for the minimal surface equation. arXiv: 1909.08437. |
[75] | Heinz E (1955) Uber Flächen mit eindeutiger projektion auf eine ebene, deren krümmungen durch ungleichungen eingschr?nkt sind. Math Ann 129: 451-454. |
[76] | Heinz E (1952) über die L?sungen der Minimalfl?chengleichung. Nachr Akad Wiss G?ttingen. Math-Phys Kl Math-Phys-Chem Abt 1952: 51-56. |
[77] | Holopainen I, Ripoll JB (2015) Nonsolvability of the asymptotic Dirichlet problem for some quasilinear elliptic PDEs on Hadamard manifolds. Rev Mat Iberoam 31: 1107-1129. |
[78] | Hopf E (1950) On S. Bernstein's theorem on surfaces z(x, y) of nonpositive curvature. P Am Math Soc 1: 80-85. |
[79] | Impera D, Pigola S, Setti AG (2017) Potential theory for manifolds with boundary and applications to controlled mean curvature graphs. J Reine Angew Math 733: 121-159. |
[80] | Keller JB (1957) On solutions of Δu = f (u). Commun Pure Appl Math 10: 503-510. |
[81] | Korevaar NJ (1986) An easy proof of the interior gradient bound for solutions of the prescribed mean curvature equation, In: Proceedings of Symposia in Pure Mathematics, 45: 81-89. |
[82] | Li H, Xiong C (2018) Stability of capillary hypersurfaces in a Euclidean ball. Pac J Math 297: 131-146. |
[83] | Li H, Xiong C (2017) Stability of capillary hypersurfaces with planar boundaries. J Geom Anal 27: 79-94. |
[84] | Li P, Tam LF (1992) Harmonic functions and the structure of complete manifolds. J Differ Geom 35: 359-383. |
[85] | Li P, Wang J (2001) Complete manifolds with positive spectrum. J Differ Geom 58: 501-534. |
[86] | Li P, Wang J (2002) Complete manifolds with positive spectrum. II. J Differ Geom 62: 143-162. |
[87] | Li P, Wang J (2001) Finiteness of disjoint minimal graphs. Math Res Lett 8: 771-777. |
[88] | Li P, Wang J (2004) Stable minimal hypersurfaces in a nonnegatively curved manifold. J Reine Angew Math 566: 215-230. |
[89] | López R (2001) Constant mean curvature graphs on unbounded convex domains. J Differ Equations 171: 54-62. |
[90] | López R (2014) Capillary surfaces with free boundary in a wedge. Adv Math 262: 476-483. |
[91] | Mari L, Rigoli M, Setti AG (2010) Keller-Osserman conditions for diffusion-type operators on Riemannian Manifolds. J Funct Anal 258: 665-712. |
[92] | Mari L, Rigoli M, Setti AG (2019) On the 1/H-flow by p-Laplace approximation: new estimates via fake distances under Ricci lower bounds. arXiv: 1905.00216. |
[93] | Mari L, Pessoa LF (2020) Duality between Ahlfors-Liouville and Khas'minskii properties for nonlinear equations. Commun Anal Geom 28: 395-497. |
[94] | Mari L, Pessoa LF (2019) Maximum principles at infinity and the Ahlfors-Khas'minskii duality: An overview, In: Contemporary Research in Elliptic PDEs and Related Topics, Cham: Springer, 419-455. |
[95] | Mari L, Valtorta D (2013) On the equivalence of stochastic completeness, Liouville and Khas'minskii condition in linear and nonlinear setting. T Am Math Soc 365: 4699-4727. |
[96] | Mickle EJ (1950) A remark on a theorem of Serge Bernstein. P Am Math Soc 1: 86-89. |
[97] | Miklyukov V, Tkachev V (1996) Denjoy-Ahlfors theorem for harmonic functions on Riemannian manifolds and external structure of minimal surfaces. Commun Anal Geom 4: 547-587. |
[98] | Mitidieri E, Pokhozhaev SI (2001) A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. Tr Mat Inst Steklova 234: 1-384. |
[99] | Moser J (1961) On Harnack's theorem for elliptic differential equations. Commun Pure Appl Math 14: 577-591. |
[100] | Naito Y, Usami H (1997) Entire solutions of the inequality div (A(|?u|)?u) ≥ f (u). Math Z 225: 167-175. |
[101] | Nelli B, Rosenberg H (2002) Minimal surfaces in $\mathbb{H}.2$ × $\mathbb{R}$. B Braz Math Soc 33: 263-292. |
[102] | Nitsche JCC (1957) Elementary proof of Bernstein's theorem on minimal surfaces. Ann Math 66: 543-544. |
[103] | Nunes I (2017) On stable constant mean curvature surfaces with free boundary. Math Z 287: 473-479. |
[104] | Omori H (1967) Isometric immersions of Riemannian manifolds. J Math Soc JPN 19: 205-214. |
[105] | Osserman R (1957) On the inequality Δu ≥ f (u). Pac J Math 7: 1641-1647. |
[106] | Pigola S, Rigoli M, Setti AG (2002) Some remarks on the prescribed mean curvature equation on complete manifolds. Pac J Math 206: 195-217. |
[107] | Pigola S, Rigoli M, Setti AG (2005) Maximum principles on Riemannian manifolds and applications. Mem Am Math Soc 174: 822. |
[108] | Pigola S, Rigoli M, Setti AG (2008) Vanishing and Finiteness Results in Geometric Analysis. A Generalization of the B?chner Technique, Birk?user. |
[109] | Pogorelov A (1981) On the stability of minimal surfaces. Soviet Math Dokl 24: 274-276. |
[110] | Rigoli M, Setti AG (2001) Liouville-type theorems for?-subharmonic functions. Rev Mat Iberoam 17: 471-520. |
[111] | Ripoll J, Telichevesky M (2019) On the asymptotic Plateau problem for CMC hypersurfaces in hyperbolic space. B Braz Math Soc 50: 575-585. |
[112] | Ripoll J, Telichevesky M (2015) Regularity at infinity of Hadamard manifolds with respect to some elliptic operators and applications to asymptotic Dirichlet problems. T Am Math Soc 367: 1523-1541. |
[113] | Ros A, Ruiz D, Sicbaldi P (2017) A rigidity result for overdetermined elliptic problems in the plane. Commun Pure Appl Math 70: 1223-1252. |
[114] | Ros A, Ruiz D, Sicbaldi P (2020) Solutions to overdetermined elliptic problems in nontrivial exterior domains. J Eur Math Soc 22: 253-281. |
[115] | Ros A, Souam R (1997) On stability of capillary surfaces in a ball. Pac J Math 178: 345-361. |
[116] | Ros A, Vergasta E (1995) Stability for hypersurfaces of constant mean curvature with free boundary. Geom Dedicata 56: 19-33. |
[117] | Rosenberg H, Schulze F, Spruck J (2013) The half-space property and entire positive minimal graphs in M × $\mathbb{R}$. J Differ Geom 95: 321-336. |
[118] | Salavessa I (1989) Graphs with parallel mean curvature. P Am Math Soc 107: 449-458. |
[119] | Schoen R, Yau ST (1976) Harmonic maps and the topology of stable hypersurfaces and manifolds of nonnegative Ricci curvature. Comment Math Helv 51: 333-341. |
[120] | Serrin J (1971) A symmetry theorem in potential theory. Arch Ration Mech Anal 43: 304-318. |
[121] | Serrin J (2009) Entire solutions of quasilinear elliptic equations. J Math Anal Appl 352: 3-14. |
[122] | Sicbaldi P (2010) New extremal domains for the first eigenvalue of the Laplacian in flat tori. Calc Var 37: 329-344. |
[123] | Simon L (1997) The minimal surface equation. In: Encyclopaedia of Mathematical Sciences, Geometry, V, Berlin: Springer, 239-272. |
[124] | Simon L (1989) Entire solutions of the minimal surface equation. J Differ Geom 30: 643-688. |
[125] | Simons J (1968) Minimal varieties in Riemannian manifolds. Ann Math 88: 62-105. |
[126] | Sternberg P, Zumbrun K (1998) A Poincaré inequality with applications to volume constrained area-minimizing surfaces. J Reine Angew Math 503: 63-85. |
[127] | Sung CJA, Wang J (2014) Sharp gradient estimate and spectral rigidity for p-Laplacian. Math Res Lett 21: 885-904. |
[128] | Tkachev VG (1992) Some estimates for the mean curvature of nonparametric surfaces defined over domains in Rn. Ukr Geom Sb 35: 135-150. |
[129] | Tkachev VG (1991) Some estimates for the mean curvature of graphs over domains in $\mathbb{R}.n$. Dokl Akad Nauk SSSR 314: 140-143. |
[130] | Usami H (1994) Nonexistence of positive entire solutions for elliptic inequalities of the mean curvature type. J Differ Equations 111: 472-480. |
[131] | Yau ST (1975) Harmonic functions on complete Riemannian manifolds. Commun Pure Appl Math 28: 201-228. |
[132] | Wang G, Xia C (2019) Uniqueness of stable capillary hypersurfaces in a ball. Math Ann 374: 1845-1882. |
[133] | Wang JF (2003) How many theorems can be derived from a vector function - On uniqueness theorems for the minimal surface equation. Taiwanese J Math 7: 513-539. |
[134] | Wang XJ (2011) Convex solutions to the mean curvature flow. Ann Math 173: 1185-1239. |
[135] | Weinberger HF (1971) Remark on the preceding paper of Serrin. Arch Ration Mech Anal 43: 319-320. |