Citation: Arthur. J. Vromans, Fons van de Ven, Adrian Muntean. Homogenization of a pseudo-parabolic system via a spatial-temporal decoupling: Upscaling and corrector estimates for perforated domains[J]. Mathematics in Engineering, 2019, 1(3): 548-582. doi: 10.3934/mine.2019.3.548
[1] | Rendell F, Jauberthie R, Grantham M (2002) Deteriorated Concrete, London: Thomas Telford Publishing, UK. |
[2] | Sand W (2000) Microbial corrosion, In: Cahn, R.W., Haasen, P., Kramer, E.J. Editors, Materials Science and Technology: A Comprehensive Treatment, Chichester: Wiley-Vch, Vol. 1, Chap. 4. |
[3] | During EDD (1997) Corrosion Atlas: A Collection of Illustrated Case Histories, 3rd Edition., Amsterdam: Elsevier. |
[4] | Gu JD, Ford TE, Mitchell R (2011) Microbial corrosion of concrete, In: Revie, R.W. Editor, Uhlig's Corrosion Handbook, 3rd Edition., Hoboken, New Jersey: John Wiley & Sons, 451–460. |
[5] | Trethewey KR, Chamberlain J (1995) Corrosion for Science & Engineering, 2nd Edition., Harlow: Longman Group, UK. |
[6] | Elsener B (2000) Corrosion of steel in concrete, In: Cahn, R.W., Haasen, P., Kramer, E.J., Materials Science and Technology : A Comprehensive Treatment, Chichester: Wiley-Vch, Vol. 2, Chap. 8. |
[7] | Verdink Jr. ED (2011) Economics of corrosion, In: Revie, R.W., Editor, Uhlig's Corrosion Handbook, 3rd Edition., Hoboken: John Wiley & Sons, New Jersey, Chap. 3. |
[8] | Ortiz M, Popov EP (1982) Plain concrete as a composite material, Mech Mater 1: 139–150. |
[9] | Monteiro PJM (1996) Mechanical modelling of the transition zone, In: Maso, J.C. Editor, Interfacial Transition Zone in Concrete, 1st Edition., London: E & FN SPON, UK, Chap. 4. No. 11 in RILEM Report. State-of-the-Art Report prepared by RILEM Technical Committee 108-1CC, Interfaces in Cementitious Composites. |
[10] | Taylor HFW (1997) Cement Chemistry, 2nd Edition., London: Thomas Telford Publishing, UK. |
[11] | Böhm M, Devinny J, Jahani F, et al. (1998) On a moving-boundary system modeling corrosion in sewer pipes. Appl Math Comput 92: 247–269. |
[12] | Clarelli F, Fasano A, Natalini R (2008) Mathematics and monument conservation: Free boundary models of marble sulfation. SIAM J Appl Math 69: 149–168. doi: 10.1137/070695125 |
[13] | Fusi L, Farina A, Primicerio M, et al. (2014) A free boundary problem for CaCO3 neutralization of acid waters. Nonlinear Anal Real World Appl 15: 42–50. doi: 10.1016/j.nonrwa.2013.05.004 |
[14] | Ern A, Giovangigli V (1998) The kinetic chemical equilibrium regime. Phys A 260: 49–72. doi: 10.1016/S0378-4371(98)00303-3 |
[15] | Giovangigli V (1999) Multicomponent Flow Modeling, Series of Modeling and Simulation in Science, Engineering and Technology, Springer Science+Business Media. |
[16] | Cowin S (2013) Continuum Mechanics of Anisotropic Materials, Berlin: Springer. |
[17] | Ciorănescu D, Saint Jean Paulin J (1998) Homogenization of Reticulated Structures, Series of Applied Mathematical Sciences, Springer-Verlag, Vol. 136. |
[18] | Sanchez-Palencia E (1980) Non-Homogeneous Media and Vibration Theory, Series of Lecture Notes in Physics, Berlin: Springer, Vol. 127. |
[19] | Vromans AJ, Muntean A, van de Ven AAF (2018) A mixture theory-based concrete corrosion model coupling chemical reactions, diffusion and mechanics. Pac J Math Ind 10: 1–21. doi: 10.1186/s40736-017-0035-2 |
[20] | Vromans AJ (2018) A pseudoparabolic reaction-diffusion-mechanics system: Modeling, analysis and simulation, Licentiate thesis, Karlstad University. |
[21] | Vromans AJ, van de Ven AAF, Muntean A (2019) Parameter delimitation of the weak solvability for a pseudo-parabolic system coupling chemical reactions, diffusion and momentum equations. Adv Math Sci Appl 28: 273–311. |
[22] | Vromans AJ, van de Ven AAF, Muntean A (2019) Periodic homogenization of a pseudo-parabolic equation via a spatial-temporal decomposition, In: Faragó, I., Izsák, F., Simon, P. Editors, Progress in Industrial Mathematics at ECMI 2018, ECMI 2018, Mathematics in Industry, Springer, In press. |
[23] | Peszyńska M, Showalter R, Yi SY (2009) Homogenization of a pseudoparabolic system. Appl Anal 88: 1265–1282. doi: 10.1080/00036810903277077 |
[24] | Eden M (2018) Homogenization of thermoelasticity systems describing phase transformations, PhD thesis, Universität Bremen. |
[25] | Reichelt S (2016) Error estimates for elliptic equations with not-exactly periodic coefficients. Adv Math Sci Appl 25: 117–131. |
[26] | Muntean A, Chalupecký V (2011) Homogenization Method and Multiscale Modeling, No. 34 in COE Lecture Note, Institute of Mathematics for Industry, Kyushu University, Japan. |
[27] | Marchenko VA, Krushlov E (2006) Homogenization of Partial Differential Equations, No. 46 in Progress in Mathematical Physics, Boston: Birkhäuser, Basel, Berlin. Based on the original Russian edition, translated from the original Russian by M. Goncharenko and D. Shepelsky. |
[28] | Kufner A, John O, Fučik S (1977) Function Spaces, Leyden: Noordhoff International Publishing. |
[29] | Meshkova YM, Suslina TA (2016) Homogenization of initial boundary value problems for parabolic systems with periodic coefficients. Appl Anal 95: 1736–1775. DOI 10.1080/00036811. 2015.1068300. doi: 10.1080/00036811.2015.1068300 |
[30] | Dragomir SS (2003) Some Gronwall Type Inequalities and Applications, RGMIA Monographs, New York: Nova Science. |
[31] | Rothe F (1984) Global Solutions of Reaction-Diffusion Systems, Berlin Heidelberg: Springer-Verlag. |
[32] | Brezis H (2010) Functional Analysis, Sobolev Spaces and Partial Differential Equations, New York: Springer. |
[33] | Ciorănescu D, Donato P (1999) An Introduction to Homogenization, No. 17 in Oxford Lecture Series in Mathematics and its Applications, Oxford University Press. |
[34] | Gilbarg D, Trudinger N (1977) Elliptic Partial Differential Equations of Second Order, 1998 Edition., Berlin: Springer. |
[35] | Nguetseng G (1989) A general convergence result for a functional related to the theory of homogenization. SIAM J Math Anal 20: 608–623. doi: 10.1137/0520043 |
[36] | Lukkassen D, Nguetseng G, Wall P (2002) Two-scale convergence. Int J Pure Appl Math 2: 35–86. |
[37] | Allaire G (1992) Homogenization and two-scale convergence. SIAM J Math Anal 23: 1482–1518. doi: 10.1137/0523084 |
[38] | Pavliotis GA, Stuart AM (2008) Multiscale Methods-Averaging and Homogenization, No. 53 in Texts in Applied Mathematics, Berlin: Springer. |