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Abstract: We determine corrector estimates quantifying the convergence speed of the upscaling of
a pseudo-parabolic system containing drift terms incorporating the separation of length scales with
relative size ε � 1. To achieve this goal, we exploit a natural spatial-temporal decomposition,
which splits the pseudo-parabolic system into an elliptic partial differential equation and an ordinary
differential equation coupled together. We obtain upscaled model equations, explicit formulas for
effective transport coefficients, as well as corrector estimates delimitating the quality of the upscaling.
Finally, for special cases we show convergence speeds for global times, i.e., t ∈ R+, by using time
intervals expanding to the whole R+ simultaneously with passing to the homogenization limit ε ↓ 0.
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1. Introduction

Corrosion of concrete by acidic compounds is a problem for construction as corrosion can lead to
erosion and degradation of the structural integrity of concrete structures ; see e.g., [1, 2]. Structural
failures and collapse as a result of concrete corrosion [3–5] is detrimental to society as it often impacts
crucial infrastructure, typically leading to high costs [6, 7]. From a more positive side, these failures
can be avoided with a sufficiently smart monitoring and timely repairs based on a priori calculations of
the maximal lifespan of the concrete. These calculations have to take into account the heterogeneous
nature of the concrete [8], the physical properties of the concrete [9], the corrosion reaction [10],
and the expansion/contraction behaviour of corroded concrete mixtures, see [11–13]. For example, the
typical length scale of the concrete heterogeneities is much smaller than the typical length scale used in
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concrete construction [8]. Moreover, concrete corrosion has a characteristic time that is many orders of
magnitude smaller than the expected lifespan of concrete structures [10]. Hence, it is computationally
expensive to use the heterogeneity length scale for detailed simulations of concrete constructions such
as bridges. However, using averaging techniques in order to obtain effective properties on the typical
length scale of concrete constructions, one can significantly decrease computational costs with the
potential of not losing accuracy.

Tractable real-life problems usually involve a hierarchy of separated scales: from a microscale via
intermediate scales to a macroscale. With averaging techniques one can obtain effective behaviours at
a higher scale from the underlying lower scale. For example, Ern and Giovangigli used averaging
techniques on statistical distributions in kinetic chemical equilibrium regimes to obtain continuous
macroscopic equations for mixtures, see [14] or see Chapter 4 of [15] for a variety of effective
macroscopic equations obtained with this averaging technique.

Of course, the use of averaging techniques to obtain effective macroscopic equations in mixture
theory is by itself not new, see Figure 7.2 in [16] for an early application from 1934. The main
problem with averaging techniques is choosing the right averaging methodology for the problem at
hand. In this respect, periodic homogenization can be regarded as a successful method, since it
expresses conditions under which macroscale behaviour can be obtained in a natural way from
microscale behaviour. Furthermore, the homogenization method has been successfully used to derive
not only equations for capturing macroscale behaviours but also convergence/corrector speeds
depending on the scale separation between the macroscale and the microscale.

To obtain the macroscopic behaviour, we perform the homogenization by employing the concept
of two-scale convergence. Moreover, we use formal asymptotic expansions to determine the speed
of convergence via so-called corrector estimates. These estimates follow a procedure similar to those
used by Cioranescu and Saint Jean-Paulin in Chapter 2 of [17]. Derivation via homogenization of
constitutive laws, such as those arising from mixture theory, is a classical subject in homogenization,
see [18]. Homogenization methods, upscaling, and corrector estimates are active research subjects due
to the interdisciplinary nature of applying these mathematical techniques to real world problems and
the complexities arising from the problem-specific constraints.

The microscopic equations of our concrete corrosion model are conservation laws for mass and
momentum for an incompressible mixture, see [19] and [20] for details. The existence of weak
solutions of this model was shown in [21] and Chapter 2 of [20]. The parameter space dependence of
the existence region for this model was explored numerically in [19]. The two-scale convergence for a
subsystem of these microscopic equations, a pseudo-parabolic system, was shown in [22]. This paper
handles the same pseudo-parabolic system as in [22] but posed on a perforated microscale domain.

In [23], Peszyńska, Showalter and Yi investigated the upscaling of a pseudo-parabolic system via
two-scale convergence using a natural decomposition that splits the spatial and temporal behaviour.
They looked at several different scale separation cases: classical case, highly heterogeneous case (also
known as high-contrast case), vanishing time-delay case and Richards equation of porous media.
These cases were chosen to showcase the ease with which upscaling could be done via this natural
decomposition.

In this paper, we point out that this natural decomposition from [23] can also be applied to a
pseudo-parabolic system with suitably scaled drift terms. Moreover, for such a pseudo-parabolic
system with drift we determine the convergence speed via corrector estimates. This is in contrast
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with [23], where no convergence speed was derived for any pseudo-parabolic system they presented.
Using this natural decomposition, the corrector estimates for the pseudo-parabolic equation follow
straightforwardly from those of the spatially elliptic system with corrections due to the temporal
first-order ordinary differential equation. Corrector estimates with convergence speeds have been
obtained for the standard elliptic system, see [17], but also for coupled systems related to
pseudo-parabolic equations such as the coupled elliptic-parabolic system with a mixed third order
term describing thermoelasticity in [24]. The convergence speed we obtain in this paper coincides for
bounded spatial domains with known results for both elliptic systems and pseudo-parabolic systems
on bounded temporal domains, see [25]. Finally, we apply our results to a concrete corrosion model,
which describes the mechanics of concrete corrosion at a microscopic level with a perforated periodic
domain geometry. Even though this model is linear, the main difficulty lies in determining effective
macroscopic models for the mechanics of concrete corrosion based on the known microscopic
mechanics model with such a complicated domain geometry. Obtaining these effective macroscopic
models is difficult as the microscopic behavior is highly oscillatory due to the complicated domain
geometry, while the macroscopic models need to encapsulate this behavior with a much less volatile
effective behavior on a simple domain geometry without perforations or periodicity.

The remainder of this paper is divided into seven parts:
Section 2: Notation and problem statement,
Section 3: Main results,
Section 4: Upscaling procedure,
Section 5: Corrector estimates,
Section 6: Application to a concrete corrosion model,
Appendix A: Exact forms of coefficients in corrector estimates,
Appendix B: Introduction to two-scale convergence.

2. Notation and problem statement

2.1. Geometry of the medium and related function spaces

We introduce the description of the geometry of the medium in question with a variant of the
construction found in [26]. Let (0,T ), with T > 0, be a time-interval and Ω ⊂ Rd for d ∈ {2, 3} be a
simply connected bounded domain with a C2-boundary ∂Ω. Take Y ⊂ Ω a simply connected bounded
domain, or more precisely there exists a diffeomorphism γ : Rd → Rd such that Int(γ([0, 1]d)) = Y .

We perforate Y with a smooth open set T = γ(T0) for a smooth open set T0 ⊂ (0, 1)d such that
T ⊂ Y with a C2-boundary ∂T that does not intersect the boundary of Y , ∂T ∩ ∂Y = ∅, and introduce
Y∗ = Y\T . Remark that ∂T is assumed to be C2-regular.

Let G0 be lattice∗ of the translation group Td on Rd such that [0, 1]d = Td/G0. Hence, we have the
following properties:

⋃
g∈G0

g([0, 1]d) = Rd and (0, 1)d ∩ g((0, 1)d) = ∅ for all g ∈ G0 not the identity-
mapping. Moreover, we demand that the diffeomorphism γ allows Gγ := γ ◦G0 ◦ γ

−1 to be a discrete
subgroup of Td with Y = Td/Gγ.

∗A lattice of a locally compact group G is a discrete subgroup H with the property that the quotient space G/H has a finite invariant
(under G) measure. A discrete subgroup H of G is a group H ( G under group operations of G such that there is (an open cover) a
collection C of open sets C ( G satisfying H ⊂ ∪C∈CC and for all C ∈ C there is a unique element h ∈ H such that h ∈ C.
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Assume that there exists a sequence (εh)h ⊂ (0, ε0) such that εh → 0 as h→ ∞ (we omit the subscript
h when it is obvious from context that this sequence is mentioned). Moreover, we assume that for all
εh ∈ (0, ε0) there is a set Gεh

γ = {εhg for g ∈ Gγ}with which we introduce T εh = Ω∩Gεh
γ (T ), the set of all

holes and parts of holes inside Ω. Hence, we can define the domain Ωεh = Ω\T εh and we demand that
Ωεh is connected for all εh ∈ (0, ε0). We introduce for all εh ∈ (0, ε0) the boundaries ∂intΩ

εh and ∂extΩ
εh

as ∂intΩ
εh =

⋃
g∈G

εh
γ
{∂g(T ) | g(T ) ⊂ Ω} and ∂extΩ

εh = ∂Ωεh\∂intΩ
εh . The first boundary contains all the

boundaries of the holes fully contained in Ω, while the second contains the remaining boundaries of
the perforated region Ω. In Figure 1 a schematic representation of the domain components is shown.

∂Ωεint

∂Ωεext

∂ΩY ∗
T

Figure 1. A domain Ω with the thick black boundary ∂Ω on an ε-sized periodic grid with
grid cells Y , which contains a white circular perforation T and the blue bulk Y∗ yields the
light-red coloured domain Ωε with thick red and black boundary ∂Ωε

ext and the green internal
perforation boundaries ∂Ωε

int. The thick red boundary parts of the perforations are locations
where a choice will have to be made between the boundary condition of the perforation edges
and the boundary condition of ∂Ω.

Note, T does not depend on ε, since this could give rise to unwanted complicating effects such as
treated in [27].

Having the domains specified, we focus on defining the needed function spaces. We start by
introducing C#(Y), the space of continuous function defined on Y and periodic with respect to Y under
Gγ. To be precise:

C#(Y) = { f ∈ C(Rd)| f ◦ g = f for all g ∈ Gγ}. (2.1)

Hence, the property “Y-periodic” means “invariant under Gγ” for functions defined on Y . Similarly the
property “Y∗-periodic” means “invariant under Gγ” for functions defined on Y∗.
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With C#(Y) at hand, we construct Bochner spaces like Lp(Ω; C#(Y)) for p ≥ 1 integer. For a
detailed explanation of Bochner spaces, see Section 2.19 of [28]. These types of Bochner spaces
exhibit properties that hint at two-scale convergence, as is defined in Section B. Similar function
spaces are constructed for Y∗ in an analogous way.

Introduce the space
Vε = {v ∈ H1(Ωε) | v = 0 on ∂extΩ

ε} (2.2)

equipped with the seminorm
‖v‖Vε = ‖∇v‖L2(Ωε )d . (2.3)

Remark 1. The seminorm in (2.3) is equivalent to the usual H1-norm by the Poincaré inequality, see
Lemma 2.1 on page 14 of [17]. Moreover, this equivalence of norms is uniform in ε.

For correct use of functions spaces over Y and Y∗, we need an embedding result, which is based on
an extension operator. The following theorem and corollary are Theorem 2.10 and Corollary 2.11 in
Chapter 2 of [17].

Theorem 1. Suppose that the domain Ωε is such that T ⊂ Y is a smooth open set with a C2-boundary
that does not intersect the boundary of Y and such that the boundary of T ε does not intersect the
boundary of Ω. Then there exists an extension operator Pε and a constant C independent of ε such that

Pε ∈ L(L2(Ωε); L2(Ω)) ∩ L(Vε; H1
0(Ω)), (2.4)

and for any v ∈ Vε , we have the bounds

‖Pεv‖L2(Ω) ≤ C‖v‖L2(Ωε ), ‖∇Pεv‖L2(Ω)d ≤ C‖∇v‖L2(Ωε )d . (2.5)

Corollary 1. There exists a constant C independent of ε such that for all v ∈ Vε

‖Pεv‖H1
0 (Ω) ≤ C‖v‖Vε . (2.6)

Introduce the notation ·̂, a hat symbol, to denote extension via the extension operator Pε .

2.2. The Neumann problem

The notation ∇ = ( d
dx1
, . . . , d

dxd
) denotes the vectorial total derivative with respect to the components

of x = (x1, . . . , xd)> for functions depending on both x and x/ε. Spatial vectors have d components,
while variable vectors have N components. Tensors have diN j components for i, j nonnegative integers.
Furthermore, the notation

cε(t, x) = c(t, x, x/ε) (2.7)

is used for the ε-independent functions c(t, x, y) in assumption (A1) further on. Moreover, the spatial
inner product is denoted with ·, while the variable inner product is just seen as a product or operator
acting on a variable vector or tensor.

Let T > 0. We consider the following Neumann problem for unknown functions Vε
α, Uε

α with
α ∈ {1, . . . ,N} posed on (0,T ) ×Ωε :

(AεVε)α :=
N∑
β=1

Mε
αβV

ε
β −

d∑
i, j=1

d
dxi

Eε
i j

dVε
α

dx j
+

N∑
β=1

Dε
iαβV

ε
β


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= H ε
α +

N∑
β=1

Kε
αβU

ε
β +

d∑
i=1

J̃εiαβ
dUε

β

dxi

 =: (H εUε)α, (2.8a)

(LUε)α :=
∂Uε

α

∂t
+

N∑
β=1

LαβUε
β =

N∑
β=1

GαβVε
β , (2.8b)

with the boundary conditions

Uε
α = U∗α in {0} ×Ωε , (2.9a)

Vε
α = 0 on (0,T ) × ∂extΩ

ε , (2.9b)

dVε
α

dνDε

:=
d∑

i=1

 d∑
j=1

Eε
i j

dVε
α

dx j
+

N∑
β=1

Dε
iαβV

ε
β

 nεi = 0 on (0,T ) × ∂intΩ
ε , (2.9c)

for α ∈ {1, . . . ,N} or, in short-hand notation, this reads:

AεVε := MεVε − ∇ · (Eε · ∇Vε + DεVε)

= Hε + KεUε + J̃ε · ∇Uε =: H εUε in (0,T ) ×Ωε ,

LUε :=
∂Uε

∂t
+ LUε = GVε in (0,T ) ×Ωε ,

Uε = U∗ in {0} ×Ωε ,

Vε = 0 on (0,T ) × ∂extΩ
ε ,

dVε

dνDε

= (Eε · ∇Vε + DεVε) · nε = 0 on (0,T ) × ∂intΩ
ε .

(2.10)

2.3. Assumptions

Consider the following technical requirements for the coefficients arising in the Neumann problem
(2.8a)–(2.9c).

(A1) For all α, β ∈ {1, . . . ,N} and for all i, j ∈ {1, . . . , d}, we assume:

Mαβ,Hα,Kαβ, Jiαβ ∈ L∞(R+; W2,∞(Ω; C2
#(Y∗))),

Ei j,Diαβ ∈ L∞(R+; W3,∞(Ω; C3
#(Y∗))),

Lαβ,Gαβ ∈ L∞(R+; W4,∞(Ω)),
U∗α ∈ W4,∞(Ω),

(2.11)

with J̃ε = εJε; see Remark 2 further on.
(A2) The tensors M and E have a linear sum decomposition† with a skew-symmetric matrix and a

diagonal matrix with the diagonal elements of M and E denoted by Mα, Ei ∈ L∞(R+ ×Ω; C#(Y∗)),
respectively, satisfying Mα > 0, Ei > 0 and 1/Mα, 1/Ei ∈ L∞(R+ ×Ω × Y∗).

†For real symmetric matrices M and E, the finite dimensional version of the spectral theorem states that they are diagonalizable by
orthogonal matrices. Since M acts on the variable space RN , while E acts on the spatial space Rd, one can simultaneously diagonalize both
real symmetric matrices. For general real matrices M and E the linear sum decomposition in symmetric and skew-symmetric matrices
allows for a diagonalization of the symmetric part. The orthogonal matrix transformations necessary to diagonalize the symmetric part
does not modify the regularity of the domain Ω, of the perforated periodic cell Y∗ or of the coefficients of D, H, K, J, L, or G. Hence, we
are allowed to assume a linear sum decomposition of M and E in a diagonal and a skew-symmetric matrix.
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(A3) The inequality

‖Diβα‖
2
L∞(R+×Ωε ;C#(Y∗)) <

4mαei

dN2 (2.12)

holds with
1

mα

=

∥∥∥∥∥ 1
Mα

∥∥∥∥∥
L∞(R+×Ω×Y∗)

and
1
ei

=

∥∥∥∥∥ 1
Ei

∥∥∥∥∥
L∞(R+×Ω×Y∗)

(2.13)

for all α, β ∈ {1, . . . ,N}, for all i ∈ {1, . . . , d}, and for all ε ∈ (0, ε0).
(A4) The perforation holes do not intersect the boundary of Ω:

∂T ε ∩ ∂Ω = ∅ for a given sequence ε ∈ (0, ε0).

Remark 2. The dependence J̃ε = εJε was chosen to simplify both existence and uniqueness results
and arguments for bounding certain terms. The case J̃ε = Jε can be treated with the proofs outlined in
this paper if additional cell functions are introduced and special inequalities similar to the Poincaré-
Wirtinger inequality are used. See (4.32) onward in Section 4 for the introduction of cell functions.

Remark 3. Satisfying inequality (2.12) implies that the same inequality is satisfied for the
Y∗-averaged functions Dε

iβα, Mε
βα, and Eε

i j in L∞(R+ × Ω), where we used the following notion of
Y∗-averaged functions

f (t, x) =
1
|Y |

∫
Y∗

f (t, x, y)dy. (2.14)

Remark 4. Assumption (A4) implies the following identities for the given sequence ε ∈ (0, ε0):

∂intΩ
ε = ∂T ε ∩Ω, ∂extΩ

ε = ∂Ω. (2.15)

Without (A4) perforations would intersect ∂Ω. One must then decide which parts of the boundary of
the intersected cell Y∗ satisfies which boundary condition: (2.9b) or (2.9c). This leads to non-trivial
situations, that ultimately affects the corrector estimates in non-trivial ways.

Theorem 2. Under assumptions (A1)–(A4), there exist a solution pair
(Uε ,Vε) ∈ H1((0,T ) ×Ωε)N × L∞((0,T );Vε ∩ H2(Ωε))N satisfying the
Neumann problem (2.8a)–(2.9c).

Proof. For Kε = MεG−1L, Jε = 0 and d = 1 the result follows by Theorem 1 in [21]. For non-perforated
domains the result follows by either Theorem 1 in [22] or Theorem 7 in Chapter 4 of [20].

For perforated domains, the result follows similarly. An outline of the proof is as follows. First,
time-discretization with fixed spacing ∆t is applied to the Neumann problem (2.8a)–(2.9c) such that
AεVε at t = k∆t equals H εUε at t = (k − 1)∆t and LUε at t = k∆t equals GVε at t = (k − 1)∆t. This
is an application of the Rothe method. Under assumptions (A1)–(A4), testing AεVε with a function φ
yields a continuous and coercive bilinear form on H1(Ωε)N , while testing LUε with a function ψ yields
a continuous and coercive bilinear form on L2(Ωε)N . Hence, Lax-Milgram leads to the existence of a
solution at each time slice t = k∆t.

Choosing the right functions for φ and ψ and using a discrete version of Gronwall’s inequality we
obtain upper bounds of Uε and Vε independent of ∆t. Linearly interpolating the time slices, we find
that the ∆t-independent time slices guarantee the existence of continuous weak limits. Due to
sufficient regularity, we even obtain strong convergence and existence of boundary traces. Then the
continuous weak limits are actually weak solutions of our Neumann problem (2.8a)–(2.9c). The
uniqueness follows by the linearity of our Neumann problem (2.8a)–(2.9c). �

Mathematics in Engineering Volume 1, Issue 3, 548–582.



555

3. Main results

Two special length scales are involved in the Neumann problem (2.8a)–(2.9c): The variable x is the
“macroscopic” scale, while x/ε represents the “microscopic” scale. This leads to a double dependence
of parameter functions (and, hence, of the solutions to the model equations), on both the macroscale
and the microscale. For example, if x ∈ Ωε , by the definition of Ωε , there exists g ∈ Gγ such that
x/ε = g(y) with y ∈ Y∗. This suggests that we look for a formal asymptotic expansion of the form

Vε(t, x) = V0
(
t, x,

x
ε

)
+ εV1

(
t, x,

x
ε

)
+ ε2V2

(
t, x,

x
ε

)
+ · · · , (3.1a)

Uε(t, x) = U0
(
t, x,

x
ε

)
+ εU1

(
t, x,

x
ε

)
+ ε2U2

(
t, x,

x
ε

)
+ · · · (3.1b)

with V j(t, x, y), U j(t, x, y) defined for t ∈ R+, x ∈ Ωε and y ∈ Y∗ and Y∗-periodic (i.e., V j, U j are
periodic with respect to Gε

γ).

Theorem 3. Let assumptions (A1)–(A4) hold. For all T ∈ R+ there exist a unique pair (Uε ,Vε) ∈
H1((0,T )×Ωε)N × L∞((0,T );Vε)N satisfying the Neumann problem (2.8a)–(2.9c). Moreover, for ε ↓ 0

Ûε 2
−→ U0 in H1(0,T ; L2(Ω × Y∗))N and (3.2a)

V̂ε 2
−→ V0 in L∞(0,T ; L2(Ω × Y∗))N . (3.2b)

This implies

Ûε
⇀

1
|Y |

∫
Y∗

U0(t, x, y)dy in H1((0,T ) ×Ω)N and (3.3a)

V̂ε
⇀

1
|Y |

∫
Y∗

V0(t, x, y)dy in L∞((0,T ); H1
0(Ω))N (3.3b)

for ε ↓ 0.

Proof. See Section 4 for the full details and [22] for a short proof of the two-scale convergence for a
non-perforated setting. �

Additionally, we are interested in deriving the speed of convergence of the formal asymptotic
expansion. Boundary effects are expected to occur due to intersection of the external boundary with
the perforated periodic cells. Hence, a cut-off function is introduced to remove this part from the
analysis.
Let Mε be the cut-off function defined by

Mε ∈ D(Ω),
Mε = 0 if dist(x, ∂Ω) ≤ ε diam(Y),
Mε = 1 if dist(x, ∂Ω) ≥ 2ε diam(Y),

ε

∣∣∣∣∣dMε

dxi

∣∣∣∣∣ ≤ C i ∈ {1, . . . , d}.

(3.4)

We refer to

Φε = Vε − V0 − Mε(εV1 + ε2V2), (3.5a)
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Ψε = Uε − U0 − Mε(εU1 + ε2U2) (3.5b)

as error functions. Now, we are able to state our convergence speed result.

Theorem 4. Let assumptions (A1)–(A4) hold. There exist constants l ≥ 0, κ ≥ 0, κ̃ ≥ 0, λ ≥ 0 and
µ ≥ 0 such that

‖Φε‖VN
ε
(t)≤C(ε, t), (3.6a)

‖Ψε‖H1(Ωε )N (t)≤C(ε, t)
√

tlelt (3.6b)

with
C(ε, t) = C(ε

1
2 +ε

3
2 )

[
1+ε

1
2 (1+κ̃eλt)(1+κ(1+tlelt))

]
exp

(
µtlelt

)
(3.7)

where C is a constant independent of ε and t, and tl = min{1/l, t}.

Remark 5. The upper bounds in (3.6a) and (3.6b) are O(ε
1
2 ) for ε-independent finite time intervals.

We call this type of bounds corrector estimates.

The corrector estimate of Φε in Theorem 4 becomes that of the classic linear elliptic system for
K = 0 and J = 0. This is because K = 0 and J = 0 imply κ̃ = κ = µ = 0, see A. See [17] for
the classical approach to corrector estimates of elliptic systems in perforated domains and [29] for a
spectral approach in non-perforated domains.

Corollary 2. Under the assumptions of Theorem 4,

‖V̂ε
−V0‖H1

0 (Ω)N (t)≤C(ε, t), (3.8a)

‖Ûε
−U0‖H1(Ω)N (t)≤C(ε, t)

√
tlelt (3.8b)

hold, where C is a constant independent of ε and t.

According to Remark 5, ε-independent finite time intervals yield O(ε
1
2 ) corrector estimates. Is it,

then, possible to have a converging corrector estimate for diverging time intervals in the limit ε ↓ 0?
The next theorem answers this question positively.

Theorem 5. If l > 0, we introduce the rescaled time τ ln
(

1
ε

)
= exp(lt) ≥ 1 and q ∈ (0, 1

2 ) independent
of both ε and t satisfying 0 < µτ/l < 1

2 − q. Then, for 0 < ε < exp(− 2µ
(1−2q)l ), we have the corrector

bounds

‖Φε‖VN
ε
(t) = O

(
ε

1
2−

µ
l τ
)

= o(1) = ω
(
ε

1
2
)
, (3.9a)

‖Ψε‖H1(Ωε )N (t) = O
(
ε

1
2−

µ
l τ
)
O

(
ε−q

q

)
= o(1) = ω

(
ε

1
2
)

(3.9b)

as ε ↓ 0.
If l = 0, we introduce the rescaled time τ ln

(
1
ε

)
= t ≥ 0 and p, q ∈ (0, 1

2 ) independent of both ε and t
satisfying 0 < max{µτ, (λ + µ)τ + p − 1

2 } <
1
2 − q. Then, for 0 < ε < 1, we have the corrector bounds

‖Φε‖VN
ε
(t) = O

(
ε

1
2−µτ

)
+ O

(
ε1−(λ+µ)τ

)
O

(
ε−p

p

)
, (3.10a)
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‖Ψε‖H1(Ωε )N (t) =

[
O

(
ε

1
2−µτ

)
+ O

(
ε1−(λ+µ)τ

)
O

(
ε−p

p

)]
O

(
ε−q

q

)
(3.10b)

as ε ↓ 0. If, additionally, κ = 0 holds, then the bounds change to

‖Φε‖VN
ε
(t) = O

(
εmin{ 1

2 ,1−λτ}
)
, (3.11a)

‖Ψε‖H1(Ωε )N (t) = O
(
εmin{ 1

2 ,1−λτ}
)
O

(
ε−q

q

)
. (3.11b)

Proof. Insert the definition of the rescaled time into (3.6a) and (3.6b), use tl = min{1/l, t} = t for l = 0
and tl ≤ 1/l for l > 0. Now one obtains the product εδ ln(1/ε) for some positive number δ > 0 at several
locations, which has a single maximal value of 1

δe at ln
(

1
ε

)
= 1

δ
. The minimum function is needed since

O(εr)+O(ε s) = O(εmin{r,s}). The small o and smallω orders are upper and lower asymptotic convergence
speeds, respectively, for ε ↓ 0. The upper bound for ε is needed to guarantee that the interval for τ
corresponds to t ≥ 0.

�

Theorem 5 indicates that convergence can be retained for certain diverging sequences of
time-intervals. Consequently, appropriate rescalings of the time variable yield upscaled systems and
convergence rates for systems with regularity conditions different from those in assumptions
(A1)–(A3).

Remark 6. The tensors L and G are not dependent on ε nor are unbounded functions of t. If such a
dependence or unbounded behaviour does exist, then bounds similar to those stated in Theorem 4 are
still valid in a new time-variable s ∈ I ⊂ R+ if an invertible C1-map fε from t ∈ R+ to s exists such that
tensors (Lε/ f ′ε ) ◦ f −1

ε , (Gε/ f ′ε ) ◦ f −1
ε , Mε ◦ f −1

ε , Eε ◦ f −1
ε , Dε ◦ f −1

ε , Hε ◦ f −1
ε , Kε ◦ f −1

ε , and Jε ◦ f −1
ε satisfy

(A1)–(A3).
Moreover, if fε(R+) = R+ for ε > 0 small enough, then the bounds of Theorem 5 are valid as well with
τ defined in terms of s.

4. Upscaling procedure

Upscaling of the Neumann problem (2.8a)–(2.9c) can be done by many methods, e.g., via
asymptotic expansions or two-scale convergence in suitable function spaces. We proceed in four
steps:

1. Existence and uniqueness of (Uε ,Vε).
We rely on Theorem 2.

2. Obtain ε-independent bounds for (Uε ,Vε).
See Section 4.1.

a. Obtain a priori estimates for (Uε ,Vε). See Lemma 1.
b. Obtain ε-independent bounds for (Uε ,Vε). See Theorem 6.

3. Upscaling via two-scale convergence.
See Section 4.2.

a. Two-scale limit of (Uε ,Vε) for ε ↓ 0. See Lemma 2.
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b. Two-scale limit of problem (2.8a)–(2.9c) for ε ↓0. See Theorem 7.

4. Upscaling via asymptotic expansions and relating to two-scale convergence.
See Section 4.3.

a. Expand (2.8a) and (Uε ,Vε). See equations (4.18)–(4.30).
b. Obtain existence & uniqueness of(U0,V0). See Lemma 3 and Lemma 4
c. Obtain the defining system of (U0,V0). See equations (4.32)–(4.39) and Lemma 5.
d. Statement of the upscaled system. See Theorem 8.

4.1. ε-independent bounds for (Uε ,Vε)

In this section, we show ε-independent bounds for a weak solution (Uε ,Vε) to the Neumann problem
(2.8a)–(2.9c). We define a weak solution to the Neumann problem (2.8a)–(2.9c) as a pair (Uε ,Vε) ∈
H1((0,T ) ×Ωε)N × L∞((0,T ),Vε)N satisfying

(Pε
w)



∫
Ωε

φ> [MεVε − Hε − KεUε − Jε · ∇Uε]

+(∇φ)> · (Eε · ∇Vε + DεVε) dx = 0,∫
Ωε

ψ>
[
∂Uε

∂t
+ LUε − GVε

]
dx = 0,

Uε(0, x) = U∗(x) for all x ∈ Ωε ,

for a.e. t ∈ (0,T ) and for all test-functions φ ∈ VN
ε and ψ ∈ L2(Ωε)N .

The existence and uniqueness of solutions to system (Pεw) can only hold when the parameters are well-
balanced. The next lemma provides a set of parameters for which these parameters are well-balanced.

Lemma 1. Assume assumptions (A1)–(A3) hold and we have ε ∈ (0, ε0) for ε0 > 0, then there exist
positive constants m̃α, ẽi, H̃, K̃α, J̃iα, for α ∈ {1, . . . ,N} and i ∈ {1, . . . , d} such that the a priori estimate

N∑
α=1

m̃α‖Vε
α‖

2
L2(Ωε ) +

d∑
i=1

N∑
α=1

ẽi

∥∥∥∥∥dVε
α

dxi

∥∥∥∥∥2

L2(Ωε )
≤ H̃ +

N∑
α=1

K̃α‖Uε
α‖

2
L2(Ωε ) +

d∑
i=1

N∑
α=1

J̃iα

∥∥∥∥∥dUε
α

dxi

∥∥∥∥∥2

L2(Ωε )
(4.1)

holds for a.e. t ∈ (0,T ).

Proof. We test the first equation of (Pε
w) with φ = Vε and apply Young’s inequality wherever a product

is not a square. A non-square product containing both Uε and ∇Vε can only be found in the D-term.
Hence, Young’s inequality allows all other non-square product terms to have a negligible effect on the
coercivity constants mα and ei, while affecting H̃, K̃α, J̃iα. Therefore, we only need to enforce two
inequalities to prove the lemma by guaranteeing coercivity, i.e.,

ei −

N∑
α=1

ηiβα

2
D̃iβα ≥ ẽi > 0 for β ∈ {1, . . . ,N}, i ∈ {1, . . . , d}, (4.2a)

mα −

d∑
i=1

N∑
β=1

D̃iβα

2ηiβα
≥ m̃α > 0 for α ∈ {1, . . . ,N}, (4.2b)
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where D̃iβα = ‖Diβα‖L∞(R+×Ω;C#(Y∗)). We can choose ηiβα > 0 satisfying

dND̃iβα

2mα

< ηiβα <
2ei

ND̃iβα
, (4.3)

if inequality (2.12) in assumption (A3) is satisfied. For the exact definition of the constants m̃α, ẽi, H̃,
K̃α, J̃iα, see equations (A.4a)–(A.4e) in A. �

Theorem 6. Assume (A1)–(A3) to hold, then there exist positive constants C, κ̃ and λ independent of ε
such that

‖Uε‖H1(Ωε )N (t) ≤ Ceλt, ‖Vε‖VN
ε
(t) ≤ C(1 + κ̃eλt) (4.4)

hold for t ≥ 0.

Proof. By (A1)–(A3) there exist positive numbers m̃α, ẽi, H̃, K̃α, J̃iα for α ∈ {1, . . . ,N} and
i ∈ {1, . . . , d} such that the a priori estimate (4.1) stated in Lemma 1 holds. Moreover, what concerns
system (Pε

w) there exist LG, LN , GG, and GN , see equations (A.3a)–(A.3d) in A, such that

∂

∂t
‖Uε‖2L2(Ωε )N ≤ LN‖Uε‖2L2(Ωε )N + GN‖Vε‖2L2(Ωε )N , (4.5a)

∂

∂t
‖∇Uε‖2L2(Ωε )d×N ≤ LG‖Uε‖2L2(Ωε )N + LN‖∇Uε‖2L2(Ωε )d×N

+ GG‖Vε‖2L2(Ωε )N + GN‖∇Vε‖2L2(Ωε )d×N (4.5b)

hold. Adding (4.5a) and (4.5b), and using (4.1), we obtain a positive constant I and a vector J ∈ RN
+

such that
∂

∂t
‖Uε‖2H1(Ωε )N ≤ J + I‖Uε‖2H1(Ωε )N (4.6)

with

I = max
{
0,LN +max

{
LG +GMmax

1≤α≤N
{K̃α},GMmax

1≤α≤N,1≤i≤d
{J̃iα}

}}
, (4.7a)

GM = max
1≤α<N,1≤i≤d

{
GN + GG

m̃α

,
GN

ẽi

}
. (4.7b)

Applying Gronwall’s inequality, see [30, Thm. 1], to (4.6) yields the existence of a constant λ defined
as λ = I/2, such that

‖Uε‖H1(Ωε )N (t) ≤ Ceλt, ‖Vε‖VN
ε
(t) ≤ C(1 + κ̃eλt) (4.8)

with κ̃ = max1≤α≤N,1≤i≤d{K̃α, J̃iα}. �

Remark 7. It is difficult to obtain exact expressions for optimal values of LN , LG, GN and GG such
that a minimal positive value of λ is obtained. See A for the exact dependence of λ on the parameters
involved in the Neumann problem (2.8a)–(2.9c).

Remark 8. The (0,T ) × Ωε-measurability of Uε and Vε can be proven based on the Rothe-method
(discretization in time) in combination with the convergence of piecewise linear functions to any
function in the spaces H1((0,T ) × Ωε) or L∞((0,T );Vε). One can prove that both Uε and Vε are
measurable and are weak solutions to (Pε

w). See Chapter 2 in [20] for a pseudo-parabolic system for
which the Rothe-method is used to show existence (and hence also measurability).
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Remark 9. Since we have G ∈ L∞(R+;W1,∞(Ω))N×N and Vε ∈ L∞((0,T );Vε)N , we are allowed to
differentiate equation (2.8b) with respect to x and test the resulting identity with both ∇Uε and ∂

∂t∇Uε .
However, conversely, we are not allowed to differentiate equation (2.8a) with respect to t as all
tensors have insufficient regularity: They are in L∞(R+ ×Ωε)N×N .

Remark 10. We cannot differentiate equation (2.8b) with respect to x when L or G has decreased
spatial regularity, for example L∞((0,T ) × Ω)N×N . One can still obtain unique solutions of (Pε

w) if and
only if Jε = 0 holds, since it removes the ∇Uε term from equation (2.8a). Consequently, Theorem
6 holds with Uε ∈ H1((0,T ); L2(Ωε)) and Jε = 0 under the additional relaxed regularity assumption
L,G ∈ L∞((0,T ) × Ω)N×N and with λ modified by taking LG = J̃iα = 0 and by replacing GM with
GN/min1≤α≤N m̃α.

4.2. Upscaling the system (Pε
w) via two-scale convergence

We recall the notation f̂ ε to denote the extension on Ω via the operator Pε for f ε defined on Ωε .
This extension operator Pε , as defined in Theorem 1, is well-defined if both ∂T and ∂Ω are C2-regular,
assumption (A4) holds, and ∂T ∩ ∂Y = ∅. Hence, the extension operator is well-defined in our setting.

Lemma 2. Assume (A1)–(A4) to hold. For each ε ∈ (0, ε0), let the pair of sequences (Uε ,Vε) ∈
H1((0,T ) × Ωε)N × L∞((0,T );Vε)N be the unique weak solution to (P ε

w). Then this sequence of weak
solutions satisfies the estimates

‖Uε‖H1((0,T )×Ωε )N + ‖Vε‖L∞((0,T );Vε )N ≤ C, (4.9)

for all ε ∈ (0, ε0) and there exist vector functions

u in H1((0,T ) ×Ω)N , (4.10a)
U in H1((0,T ); L2(Ω; H1

#(Y∗)/R))N , (4.10b)
v in L∞((0,T ); H1

0(Ω))N , (4.10c)
V in L∞((0,T ) ×Ω; H1

#(Y∗)/R)N , (4.10d)

and a subsequence ε′ ⊂ ε, for which the following two-scale convergences

Ûε′ 2
−→ u (4.11a)

∂

∂t
Ûε′ 2
−→

∂

∂t
u (4.11b)

∇Ûε′ 2
−→ ∇u + ∇yU (4.11c)

∂

∂t
∇Ûε′ 2

−→
∂

∂t
∇u +

∂

∂t
∇yU (4.11d)

V̂ε′ 2
−→ v (4.11e)

∇V̂ε′ 2
−→ ∇v + ∇yV (4.11f)

hold.
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Proof. For all ε > 0, Theorem 6 gives the bounds (4.9) independent of the choice of ε. Hence,
Ûε

⇀ u in H1((0,T ) × Ω)N and V̂ε
⇀ v in L∞((0,T ); H1

0(Ω))N as ε → 0. By Proposition 1 in B, we
obtain a subsequence ε′ ⊂ ε and functions u ∈ H1((0,T ) × Ω)N , v ∈ L2((0,T ); H1

0(Ω))N ,
U,V ∈ L2((0,T ) × Ω; H1

#(Y∗)/R)N such that (4.11a), (4.11b), (4.11c), (4.11e), and (4.11f) hold for
a.e. t ∈ (0,T ). Moreover, there exists a vector function Ũ ∈ L2((0,T ) × Ω; H1

#(Y∗)/R)N such that the
following two-scale convergence

∂

∂t
∇Ûε′ 2

−→
∂

∂t
∇u + ∇yŨ (4.12)

holds for the same subsequence ε′. Using two-scale convergence, Fubini’s Theorem and partial
integration in time, we obtain an increased regularity for U, i.e., U ∈ H1((0,T ); L2(Ω; H1

#(Y∗)/R))N ,
with ∂

∂t∇yU = ∇yŨ. �

By Lemma 2, we can determine what the macroscopic version of (Pε
w), which we denote by (P0

w).
This is as stated in Theorem 7.

Theorem 7. Assume the hypotheses of Lemma 2 to be satisfied. Then the two-scale limits
u ∈ H1((0,T ) ×Ω)N and v ∈ L∞((0,T ); H1

0(Ω))N introduced in Lemma 2 form a weak solution to

(P0
w)



∫
Ω

φ>
[
Mv − H − Ku

]
+(∇φ)> · (E∗ · ∇v + D∗v) dx = 0,∫

Ω

ψ>
[
∂u
∂t

+ Lu − Gv
]

dx = 0,

u(0, x) = U∗(x) for x ∈ Ω,

for a.e. t ∈ (0,T ) for all test functions φ ∈ H1
0(Ω)N , and ψ ∈ L2(Ω)N , where the barred tensors and

vectors are Y∗ averaged functions as introduced in (A2). Furthermore,

E∗ =
1
|Y |

∫
Y∗

E · (1 + ∇yW)dy, D∗ =
1
|Y |

∫
Y∗

D + E · ∇yZdy (4.13)

are the wanted effective coefficients. The auxiliary tensors
Zαβ,Wi ∈ L∞(0,T ; W2,∞(Ω; H1

#(Y∗)/R)) satisfy the cell problems

0 =

∫
Y∗
Φ> · (∇y ·

[
E · (1 + ∇yW)

]
)dy =

∫
Y∗
Φ> · (∇y · Ê)dy, (4.14a)

0 =

∫
Y∗
Ψ>(∇y ·

[
D + E · ∇yZ

]
)dy =

∫
Y∗
Ψ>(∇y · D̂)dy (4.14b)

for all Φ ∈ C#(Y∗)d, Ψ ∈ C#(Y∗)N .

Proof. The solution to system (Pε
w) is extended to Ω by taking Ĥε

, V̂ε
, Ûε

for Hε , Vε , Uε , respectively.
The extended system is satisfied on T ε ∩Ω and it satisfies the boundary conditions on ∂intΩ

ε of system
(Pε

w). Hence, it is sufficient to look at (Pε
w) only. In (Pε

w), we choose ψ = ψε = Ψ
(
t, x, x

ε

)
for the

test function Ψ ∈ L2((0,T );D(Ωε; C∞# (Y∗)))N , φ = φε = Φ(t, x) + εϕ
(
t, x, x

ε

)
for the test functions

Φ ∈ L2((0,T ); C∞0 (Ωε))N , ϕ ∈ L2((0,T );D(Ωε; C∞# (Y∗)))N . Corollary 5 and Theorem 9 in combination
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with (B.4) lead to Tε 2
−→ T, where Tε is an arbitrary tensor or vector in (Pεw) other than L and G.

Moreover, by Corollary 5 and Propositions 1 and 2 we have ψε
2
−→ Ψ(t, x, y), φε

2
−→ Φ(t, x), and

∇φε
2
−→ ∇Φ(t, x) + ∇yϕ(t, x, y). By Corollary 5 and Theorem 9, there is a two-scale limit of (Pε

w),
reading∫

Ω

1
|Y |

∫
Y∗
Φ> [Mv − H − Ku]

+ (∇Φ + ∇yϕ)> ·
[
E · (∇v + ∇yV) + Dv

]
+Ψ>

[
∂u
∂t

+ Lu − Gv
]

dydx = 0. (4.15)

Similarly, the initial condition
u(0, x) = U∗(x), x ∈ Ω, (4.16)

is satisfied by u as ∇yu = 0 holds.
For Φ = Ψ = 0, we can take V = W · ∇v + Zv + Ṽ, where W and Z satisfy the cell problems (4.14a)
and (4.14b), respectively, and ∇yṼ = 0. The existence and uniqueness of W and Z follows from
Lax-Milgram as cell problems (4.14a) and (4.14b) are linear elliptic systems by (A2) for the Hilbert
space H1

#(Y∗). The regularity of W and Z in t ∈ (0,T ) and x ∈ Ω follows from the regularity of E
and D as stated in (A1), (A2) and (A3). Moreover, we obtain v ∈ L∞((0,T ); H2(Ω)) due to (A1). Then
Proposition 1, Theorem 9 and the embedding H1/2(Y∗) ↪→ L2(∂T ) yields 0 = ∂Vε

∂νDε

2
−→ (Ê·∇v+D̂v)·n =

0 on ∂Y∗, which is automatically guaranteed by (4.14a) and (4.14b). �

Hence, (P0
w) yields the strong form system

(P0
s)



Mv − ∇ · (E∗ · ∇v + D∗v) = H + Ku in (0,T ) ×Ω,

∂u
∂t

+ Lu = Gv in (0,T ) ×Ω,

v = 0 on (0,T ) × ∂Ω,

u = U∗ on {0} ×Ω,

when, next to the regularity of (A1), the following regularity holds:

Mαβ,Hα,Kαβ ∈ C(0,T ; C1(Ω; C1
#(Y∗))), (4.17a)

Ei j,Diαβ ∈ C(0,T ; C2(Ω; C2
#(Y∗))), (4.17b)

Lαβ,Gαβ ∈ C(0,T ; C1(Ω)), (4.17c)

U∗ ∈ C(Ω), (4.17d)

for all T ∈ R+, when both ∂Ω and ∂T are C3-boundaries.

4.3. Upscaling via asymptotic expansions

Even though the previous section showed that there is a two-scale limit (u, v), it is necessary to show
the relation between (u, v) and (Uε ,Vε). To this end, we first rewrite the Neumann problem (2.8a)–
(2.9c) and then use asymptotic expansions such that we are lead to the two-scale limit, including the
cell-functions, in a natural way.
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The Neumann problem (2.8a)–(2.9c) can be written in operator form as

AεVε = H εUε on (0,T ) ×Ωε ,

LUε = GVε on (0,T ) ×Ωε ,

Uε = U∗ in {0} ×Ωε ,

Vε = 0 on (0,T ) × ∂extΩ
ε ,

dVε

dνDε

= 0 on (0,T ) × ∂intΩ
ε .

(4.18)

as indicated in Section 2.
We postulate the following asymptotic expansions in ε of Uε and Vε:

Vε(t, x) = V0
(
t, x,

x
ε

)
+ εV1

(
t, x,

x
ε

)
+ ε2V2

(
t, x,

x
ε

)
+ · · · , (4.19a)

Uε(t, x) = U0
(
t, x,

x
ε

)
+ εU1

(
t, x,

x
ε

)
+ ε2U2

(
t, x,

x
ε

)
+ · · · . (4.19b)

Let Φ = Φ(t, x, y) ∈ L∞(0,T ; C2(Ω; C2
#(Y∗)))N be a vector function depending on two spatial variables

x and y, and introduceΦε(t, x) = Φ(t, x, x/ε). Then the total spatial derivatives in x become two partial
derivatives, one in x and one in y:

∇Φε(t, x) =
1
ε

(∇yΦ)
(
t, x,

x
ε

)
+ (∇xΦ)

(
t, x,

x
ε

)
, (4.20a)

∇ ·Φε(t, x) =
1
ε

(∇y ·Φ)
(
t, x,

x
ε

)
+ (∇x ·Φ)

(
t, x,

x
ε

)
. (4.20b)

Do note, the evaluation y = x/ε is suspended as is common in formal asymptotic expansions, leading
to the use of y ∈ Y∗ and x ∈ Ω.
Hence,AεΦε can be formally expanded:

AεΦε =

[(
1
ε2A

0 +
1
ε
A1 +A2

)
Φ

] (
t, x,

x
ε

)
, (4.21)

where

A0Φ = −∇y ·
(
E · ∇yΦ

)
, (4.22a)

A1Φ = −∇y · (E · ∇xΦ) − ∇x ·
(
E · ∇yΦ

)
− ∇y · (DΦ) , (4.22b)

A2Φ = MΦ − ∇x · (E · ∇xΦ) − ∇x · (DΦ) . (4.22c)

Moreover,H εΦε can be written as H + (H0 + εH1)Φ, where

H0 = K + J · ∇y, (4.23a)
H1 = J · ∇x. (4.23b)

Since the outward normal n on ∂T depends only on y and the outward normal nε on ∂intΩ
ε = ∂T ε ∩Ω

is defined as the Y-periodic function n|y=x/ε , one has
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∂Φε

∂νDε

=

(
Eε ·

dΦε

dx
+ DεΦε

)
· nε

=

(
1
ε

E · ∇yΦ + E · ∇xΦ + DΦ
)
· nε

=:
1
ε

∂Φε

∂νE
+
∂Φε

∂νD
. (4.24)

Inserting (4.19a), (4.19b), (4.21)–(4.24) into the Neumann problem (4.18) and expanding the full
problem into powers of ε, we obtain the following auxilliary systems:

A0V0 = 0 in (0,T ) ×Ω × Y∗,

∂V0

∂νE
= 0 on (0,T ) ×Ω × ∂T ,

V0 = 0 on (0,T ) × ∂Ω × Y∗,

V0 Y-periodic,

(4.25)



A0V1 = −A1V0 in (0,T ) ×Ω × Y∗,

∂V1

∂νE
= −

∂V0

∂νD
on (0,T ) ×Ω × ∂T ,

V1 = 0 on (0,T ) × ∂Ω × Y∗,

V1 Y-periodic,

(4.26)



A0V2 = −A1V1 −A2V0 + H +H0U0 in (0,T ) ×Ω × Y∗,

∂V2

∂νE
= −

∂V1

∂νD
on (0,T ) ×Ω × ∂T ,

V2 = 0 on (0,T ) × ∂Ω × Y∗,

V2 Y-periodic.

(4.27)

For i ≥ 3, we have

A0Vi = −A1Vi−1 −A2Vi−2 +H0Ui−2 +H1Ui−3 in (0,T ) ×Ω × Y∗,

∂Vi

∂νE
= −

∂Vi−1

∂νD
on (0,T ) ×Ω × ∂T ,

Vi = 0 on (0,T ) × ∂Ω × Y∗,

Vi Y-periodic.

(4.28)

Furthermore, we have 
LU0 = GV0 in (0,T ) ×Ω × Y∗,

U0 = U∗ in {0} ×Ω × Y∗,

U0 Y-periodic,
(4.29)

and, for j ≥ 1, 
LU j = GV j in (0,T ) ×Ω × Y∗,

U j = 0 in {0} ×Ω × Y∗,

U j Y-periodic.
(4.30)
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The existence and uniqueness of weak solutions of the systems (4.25)–(4.28) is stated in the following
Lemma:

Lemma 3. Let F ∈ L2(Y∗) and g ∈ L2(∂T ) be Y-periodic. Let A(y) ∈ L∞# (Y∗)N×N satisfy
n∑

i, j=1
Ai j(y)ξiξ j ≥

a
n∑

i=1
ξ2

i for all ξ ∈ Rn for some a > 0.

Consider the following boundary value problem for ω(y):
−∇y ·

(
A(y) · ∇yω

)
= F(y) on Y∗,

−
[
A(y)∇yω

]
· n = g(y) on ∂T ,

ω is Y-periodic.

(4.31)

Then the following statements hold:

(i) There exists a weak Y-periodic solution ω ∈ H1
#(Y∗)/R to (4.31) if and only if

∫
Y∗

F(y)dy =∫
∂T

g(y)dσy.
(ii) If (i) holds, then the uniqueness of weak solutions is ensured up to an additive constant.

See Lemma 2.1 in [26].

Existence and uniqueness of the solutions of the systems (4.29) and (4.30) can be handled via the
application of Rothe’s method, see [31] for details on Rothe’s method, and Gronwall’s inequality, and
see [30] for various different versions of useful discrete Gronwall’s inequalities.

Lemma 4. The function V0 depends only on (t, x) ∈ (0,T ) ×Ω.

Proof. Applying Lemma 3 to system (4.25) yields the weak solution V0(t, x, y) ∈ H1
#(Y∗)/R pointwise

in (t, x) ∈ (0,T ) × Ω with uniqueness ensured up to an additive function depending only on (t, x) ∈
(0,T ) ×Ω. Direct testing of (4.25) with V0 yields ‖∇yV0‖L2

#(Y∗) = 0. Hence, ∇yV0 = 0 a.e. in Y∗. �

Corollary 3. The function U0 depends only on (t, x) ∈ (0,T ) ×Ω.

Proof. Apply the gradient ∇y to system (4.29). The independence of y follows directly from (A1) and
Lemma 4. �

The application of Lemma 3 to system (4.26) yields, due to the divergence theorem, again a weak
solution V1(t, x, y) ∈ H1

#(Y∗)/R pointwise in (t, x) ∈ (0,T ) × Ω with uniqueness ensured up to an
additive function depending only on (t, x) ∈ (0,T ) ×Ω. One can determine V1 from V0 with the use of
a decomposition of V1 into products of V0 derivatives and so-called cell functions:

V1 = W · ∇xV0 + ZV0 + Ṽ1 (4.32)

with Ṽ1 the Y∗-average of V1 satisfying ∇yṼ
1

= 0, and for α, β ∈ {1, . . . ,N} and i ∈ {1, . . . , d} with cell
functions

Zαβ,Wi ∈ L∞(R+; W2,∞(Ω; C2
#(Y∗)/R)) (4.33)
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with vanishing Y∗-average. Insertion of (4.32) into system (4.26) leads to systems for the cell-functions
W and Z: 

A0W = −∇y · E in Y∗,
∂W
∂νE

= −n · E on ∂T ,

W Y-periodic,
1
|Y |

∫
Y∗

Wdy = 0.

(4.34)

and 

A0Z = −∇y · D in Y∗,
∂Z
∂νE

= −n · D on ∂T ,

Zαβ Y-periodic,
1
|Y |

∫
Y∗

Zdy = 0.

(4.35)

Again the existence and uniqueness up to an additive constant of the cell functions in systems (4.34)
and (4.35) follow from Lemma 3 and convenient applications of the divergence theorem. The
regularity of solutions follows from Theorem 9.25 and Theorem 9.26 in [32].

The existence and uniqueness for V2 follows from applying Lemma 3 to system (4.27), which states
that a solvability condition has to be satisfied. Using the divergence theorem, this solvability
condition becomes∫

Y∗
A2V0 +A1

[
(W · ∇x + Z)V0

]
+ ∇y ·

[
(E · ∇x + D)(W · ∇x + Z)V0

]
dy

=

∫
Y∗

Hdy +

∫
Y∗
H0dy U0. (4.36)

Inserting (4.22b), (4.22c), and (4.23a) and using both ∇yV0 = 0 and ∇yU0 = 0, we find∫
Y∗

MV0dy −
∫

Y∗
∇x · (DV0)dy −

∫
Y∗
∇x ·

(
E · ∇xV0

)
dy

−

∫
Y∗
∇x ·

(
E ·

[
∇y(W · ∇x + Z)

]
V0

)
dy =

∫
Y∗

Hdy +

∫
Y∗

Kdy U0, (4.37)

which after rearrangement looks like∫
Y∗

MdyV0 − ∇x ·

(∫
Y∗

E + E · ∇yWdy · ∇xV0
)

− ∇x ·

(∫
Y∗

D + E · ∇yZdyV0
)

=

∫
Y∗

Hdy +

∫
Y∗

Kdy U0. (4.38)

Dividing all terms by |Y |, we realize that this solvability condition is an upscaled version of (2.8a):

MV0 − ∇x ·
(
E∗ · ∇xV0 + D∗V0

)
= H + KU0, (4.39)
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where we have used (4.32), the cell function decomposition, and the new short-hand notation

E∗ =
1
|Y |

∫
Y∗

E ·
(
1 + ∇yW

)
dy, (4.40a)

D∗ =
1
|Y |

∫
Y∗

D + E · ∇yZdy. (4.40b)

Lemma 5. The pair (U0,V0) ∈ H1((0,T )×Ω)× L∞((0,T ); H1
0(Ω)) are weak solutions to the following

system 

MV0 − ∇x ·
(
E∗ · ∇xV0 + D∗V0

)
= H + KU0 in (0,T ) ×Ω,

∂U0

∂t
+ LU0 = GV0 in (0,T ) ×Ω,

V0 = 0 on (0,T ) × ∂Ω,

U0 = U∗ on {0} ×Ω.

(4.41)

Proof. From system (4.25), equation (4.39), ∇yV0 = 0, assumption (A3) and system (4.29), we see
that ∇yU0 = 0. This leads automatically to system (4.41), since there is no y-dependence and Ωε ⊂ Ω,
Ωε → Ω, ∂extΩ

ε = ∂Ω. Analogous to the proof of Theorem 6 we obtain the required spatial regularity.
Moreover, by testing the second line with ∂

∂t U
0, applying a gradient to the second line and testing it

with ∂
∂t∇U0, we obtain the required temporal regularity as well. �

4.4. Combining two-scale convergence and asymptotic expansions

Theorem 8. Let (A1)–(A3) be valid, then (u, v) = (U0,V0).

Proof. From (P0
s) and Lemma 5, we see that (u, v) and (U0,V0) satisfy the same linear boundary value

problem. We only have to prove the uniqueness for this boundary value problem.
From testing (4.35) with W and (4.34) with Z, we obtain the identity∫

Y∗
(∇yW)> · Ddy =

∫
Y∗

E · ∇yZdy. (4.42)

Hence, from (4.40b) we get

D∗ =
1
|Y |

∫
Y∗

(
1 + (∇yW)

)>
· Ddy. (4.43)

Moreover, testing system (4.34) with W yields the identity

E∗ =
1
|Y |

∫
Y∗

(
1 + (∇yW)

)>
· E ·

(
1 + (∇yW)

)
dy. (4.44)

We subtract (P0
s) from (4.41) and introduce Ũ, Ṽ as

Ũ = U0 − u and Ṽ = V0 − v. (4.45)

Testing with Ṽ, we obtain the equation

0 =

∫
Ω

1
|Y |

∫
Y∗

[
Ṽ>MṼ + ζ> ·

(
E · ζ + DṼ

)
− Ṽ>KŨ

]
dydx, (4.46)
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where
ζ =

(
1 + (∇yW)

)
· ∇xṼ. (4.47)

This equation is identical to the Neumann problem (2.8a)–(2.9c) with H = 0, J = 0, and replacements
∇xV → ζ, U → Ũ and V → Ṽ in (2.8a). Moreover, (2.8a) is coercive due to assumption (A3).
Therefore, we can follow the argument of the proof of Theorem 6, but we only use equations (4.1) and
(4.5a) with constants H̃ and J̃iα set to 0. For some R > 0, this leads to

∂

∂t
‖Ũ‖2L2(Ω;L2

#(Y∗))N ≤ R‖Ũ‖2L2(Ω;L2
#(Y∗))N . (4.48)

Applying Gronwall inequality and using the initial value Ũ = U∗ − U∗ = 0, we obtain
‖Ũ‖L2(Ω;L2

#(Y∗))N = 0 a.e. in (0,T ). By the coercivity, we obtain ‖Ṽ‖L2(Ω;L2
#(Y∗))N = 0 and

‖ζ‖L2(Ω;L2
#(Y∗))N = 0.

From the proof of Proposition 6.12 in [33], we see that 1 + ∇yW does not have a kernel that contains
non-zero Y-periodic solutions. Therefore, ζ = 0 yields ∇yṼ = 0. Thus, we have Ũ = 0 in
L∞((0,T ); L2(Ω))N and Ṽ = 0 in L∞((0,T ); H1

0(Ω))N . Hence, (u, v) = (U0,V0). �

Corollary 4. Let λ ≥ 0 and κ̃ ≥ 0 be as in Theorem 6. Then there exists a positive constant C
independent of ε such that

‖U0‖H1(Ωε )N (t) ≤ Ceλt, ‖V0‖VN
ε
(t) ≤ C(1 + κ̃eλt) (4.49)

holds for t ≥ 0.

Proof. Bochner’s Theorem, see Chapter 2 in [28], states that ‖Ûε
‖H1(Ω)N (t), ‖V̂ε

‖H1
0 (Ω)N (t),

‖Uε‖H1(Ωε )N (t), and ‖Vε‖VN
ε
(t) are Lebesgue integrable, and, therefore, elements of L1(0,T ). Since Ω

does not depend on t, Theorem 1 is applicable for a.e. t ∈ (0,T ). From Theorem 6 we obtain that both
‖Ûε
‖H1(Ω)N (t) and ‖V̂ε

‖H1
0 (Ω)N (t) have ε-independent upper bounds for a.e. t ∈ (0,T ). Hence, the

Eberlein-Šmuljan Theorem states that there is a subsequence ε′ ⊂ ε such that Ûε′

(t) and V̂ε′

(t)
converge weakly in H1(Ω)N and H1

0(Ω)N , respectively, for a.e. t ∈ (0,T ). Moreover, Lemma 2 states

that Ûε′

and V̂ε′

two scale converge (and therefore weakly) to u ∈ H1(0,T ; L2(Ω))N and
v ∈ L∞(0,T ; L2(Ω))N , respectively. Limits of weak convergences are unique. Hence, Ûε′

(t) ⇀ u(t) in
H1(Ω)N and V̂ε′

(t) ⇀ v(t) in H1
0(Ω)N for a.e. t ∈ (0,T ) as ε′ ↓ 0.

Using these weak convergences, (2.5) and (2.6) in Theorem 1, Theorem 6, and the limit inferior
property of weakly convergent sequences, we obtain

‖U0‖H1(Ωε )N (t) ≤ ‖U0‖H1(Ω)N (t) = lim inf
ε→0

‖Ûε
‖H1(Ω)N (t)

≤ lim inf
ε→0

C‖Uε‖H1(Ωε )N (t) ≤ Ceλt, (4.50a)

‖V0‖VN
ε
(t) ≤ ‖V0‖H1

0 (Ω)N (t) = lim inf
ε→0

‖V̂ε
‖H1

0 (Ω)N (t)

≤ lim inf
ε→0

C‖Vε‖VN
ε
(t) ≤ C

(
1 + κ̃eλt

)
. (4.50b)

Hence, the bounds of Theorem 6 hold for U0 and V0 as well. �

This concludes the proof of Theorem 3.
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5. Corrector estimates via asymptotic expansions

It is natural to determine the speed of convergence of the weak solutions (Uε ,Vε) to (U0,V0).
However, certain boundary effects are expected due to intersection of the external boundary with the
perforated periodic cells. It is clear that Ωε → Ω for ε ↓ 0, but the boundary effects impact the
periodic behavior, which can lead to V j , 0 at ∂extΩ

ε for j > 0. Hence, a cut-off function is introduced
to remove this potentially problematic part of the domain. The use of a cut-off function is a standard
technique in corrector estimates for periodic homogenization. See [17] for a similar introduction of a
cut-off function.
Let us again introduce the cut-off function Mε defined by

Mε ∈ D(Ω),
Mε = 0 if dist(x, ∂Ω) ≤ ε,
Mε = 1 if dist(x, ∂Ω) ≥ 2ε,

ε

∣∣∣∣∣dMε

dxi

∣∣∣∣∣ ≤ C i ∈ {1, . . . , d}.

(5.1)

With this cut-off function defined, we introduce again the error functions

Φε = Vε − V0 − Mε(εV1 + ε2V2), (5.2a)
Ψε = Uε − U0 − Mε(εU1 + ε2U2), (5.2b)

where the Mε terms are the so-called corrector terms.

5.1. Preliminaries

The solvability condition for system (4.27) naturally leds to the fact that (U0,V0) has to satisfy
system (4.41). Similar to solving system (4.26) for V1, we handle system (4.27) for V2 with a
decomposition into cell-functions:

V2 = P + Q0V0 + R0U0 + Q1 · ∇xV0 + R1 · ∇xU0 + Q2 : D2
xV0 (5.3)

where we have the cell-functions
Pα,R0

αβ,R
1
iαβ ∈ L∞(R+; W2,∞(Ωε; C3

#(Y∗))),
Q0
αβ,Q

1
iαβ ∈ L∞(R+; W2,∞(Ωε; C2

#(Y∗))),
Q2

i j ∈ L∞(R+; W2,∞(Ωε; C2
#(Y∗)))

(5.4)

for α, β ∈ {1, . . . ,N} and for i, j ∈ {1, . . . , d}, and where

(Q2 : D2
xV0)α :=

d∑
i, j=1

Qi j
∂2V0

α

∂xi∂x j
. (5.5)

The cell-functions P, Q0, R0, Q1, R1, Q2 satisfy the following systems of partial differential equations,
obtained from subtracting (4.39) from (4.27) and inserting (5.3):

A0 P = H − H in Y∗,
∂P
∂νE

= 0 on ∂T ,

P Y-periodic,

(5.6)
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570

A0Q0 = ∇y · (E · ∇xZ) + ∇x ·
(
E · ∇yZ

)
+ ∇y · (DZ)

+∇x · (D − D∗) + M −M in Y∗,

∂Q0

∂νE
= − (DZ + E · ∇xZ) · n on ∂T ,

Q0 Y-periodic,

(5.7)


A0R0 = K − K in Y∗,

∂R0
αβ

∂νE
= 0 on ∂T ,

R0 Y-periodic,

(5.8)



A0Q1 = ∇y · (E · ∇xW) ⊗ 1 + ∇y · (E ⊗ Z)
+∇x · (E · ∇yW) ⊗ 1 + E · ∇yZ

+∇y · (D ⊗W) + ∇x · (E − E∗) ⊗ 1 + D − D∗ in Y∗,

∂Q1

∂νE
= W ⊗ (D · n) + n · (E ⊗ Z + E · ∇xW ⊗ 1) on ∂T ,

Q1 Y-periodic,

(5.9)


A0R1 = 0 in Y∗,

∂R1

∂νE
= 0 on ∂T ,

R1 Y-periodic,

(5.10)


A0Q2 =∇y · (E ⊗W) + E · ∇yW + E − E∗ in Y∗,

∂Q2

∂νE
= −n · E ⊗W on ∂T ,

Q2 Y-periodic.

(5.11)

The well-posedness of the cell-problems (4.34)–(5.11) is given by Lemma 3, while the regularity
follows from Theorem 9.25 and Theorem 9.26 in [32]. Note that cell-problem (5.10) yields R1 = 0.

5.2. Proof of Theorem 4

Let C denote a constant independent of ε, x, y and t.
We rewrite the error-function Φε as

Φε = Vε − V0 − Mε(εV1 + ε2V2) = φε + (1 − Mε)(εV1 + ε2V2), (5.12)

where
φε = Vε − (V0 + εV1 + ε2V2). (5.13)

Similarly, we make use of the error-function Ψε

Ψε = Uε − U0 − Mε(εU1 + ε2U2). (5.14)
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The goal is to estimate both Φε and Ψε uniformly in ε.

Even though our problem for (Uε ,Vε) is defined on Ωε , while the asymptotic expansion terms (Ui,Vi)
are defined on Ω × Y∗, we are still able to use spaces defined on Ωε such as VN

ε since the evaluation
y = x/ε transfers the zero-extension on T to T ε .

Introduce the coercive bilinear form aε : VN
ε × V

N
ε → R defined as

aε(ψ,φ) =

∫
Ωε

φ>Aεψdx (5.15)

pointwise in t ∈ R+, on which it depends implicitly.
By construction, Φε vanishes on ∂extΩ

ε , which allows for the estimation of ‖Φε‖VN
ε
. This estimation

follows the standard approach, see [17] for the details.
First the inequality |aε(Φε ,φ)| ≤ C(ε, t)‖φ‖VN

ε
, where C(ε, t) is a constant depending on ε and t ∈ R+, is

obtained for any φ ∈ VN
ε . Second, we take φ = Φε and using the coercivity, one immediately obtains

‖Φε‖VN
ε
.

Our pseudo-parabolic system complicates this approach. Instead of C(ε, t), one gets C‖Ψε‖H1
0 (Ωε )N . Via

an ordinary differential equation for Ψε , we obtain a temporal inequality for ‖Ψε‖H1
0 (Ωε )N that contains

‖Φε‖VN
ε
. The upper bound for ‖Φε‖VN

ε
now follows from applying Gronwall’s inequality, leading to an

upper bound for ‖Ψε‖H1
0 (Ωε )N .

From equation (5.12), we have

aε(Φε ,φ) = aε(φε ,φ) + aε((1 − Mε)(εV1 + ε2V2),φ) (5.16)

for φ ∈ VN
ε .

Do note that Mε vanishes in a neighbourhood of the boundary ∂extΩ
ε , see (5.1), because of which the

second term in (5.16) vanishes outside this neighbourhood.
We start by estimating the first term of (5.16), aε(φε ,φ). From the asymptotic expansion of Aε , we
obtain

Aεφε = (ε−2A0 + ε−1A1 +A2)φε

= AεVε − ε−2A0V0 − ε−1(A0V1 +A1V0) − (A0V2 +A1V1 +A2V0)
− ε(A1V2 +A2V1) − ε2A2V2. (5.17)

Using the definitions ofA0,A1,A2, V0, V1, V2, we have

Aεφε = KεUε − K|y=x/ε U0 + εJε∇Uε − ε(A2V1 +A1V2) − ε2A2V2. (5.18)

The function φε satisfies the following boundary condition on ∂T ε

∂φε

∂νDε

= −ε2∂V2

∂νD
, (5.19)
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as a consequence of the boundary conditions for the Vi-terms. Hence, φε satisfies the following system:
Aεφε = f ε − ε gε in Ωε ,

∂φε

∂νDε

= ε2hε · nε on ∂T ε ,

φε = −εV1 − ε2V2 on ∂Ω.

(5.20)

Testing with φ> ∈ VN
ε and performing a partial integration, we obtain

aε(φε ,φ) =

∫
Ωε

φ> f εdx −
∫

Ωε

εφ>gεdx +

∫
∂T ε

ε2φ>hε · nεds, (5.21)

where f ε , gε and hε are given by
f ε = KεUε − K|y=x/ε U0 (5.22)

gε = A1
[
P + Q0V0 + R0U0 + Q1 · ∇xV0 + R1 · ∇xU0 + Q2 : D2

xV0
]

+A2
[
W · ∇xV0 + ZV0

]
− Jε · ∇xUε

+ εA2
[
P + Q0V0 + R0U0 + Q1 · ∇xV0 + R1 · ∇xU0 + Q2 : D2

xV0
]
, (5.23)

hε = −
∂

∂νD

[
P + Q0V0 + R0U0 + Q1 · ∇xV0 + R1 · ∇xU0 + Q2 : D2

xV0
]
. (5.24)

Estimates for f ε , gε and hε follow from estimates on V0, U0, P, Q0, R0, Q1, R1, Q2, and W. Due
to the regularity of H, K, J, G, classical regularity results for elliptic systems, see Theorem 8.12 and
Theorem 8.13 in [34], quarantee that all spatial derivatives up to the fourth order of (U0,V0) are in
L∞(R+ × Ω). Similarly, from Theorem 9.25 and Theorem 9.26 in [32], the cell-functions W, P, Q0,
R0, Q1, R1 and Q2 have higher regularity, than given by Lemma 3: Wi, Pα,Q0

αβ,R
0
αβ,Q

1
iαβ,R

1
αβ,Q

2
i j are

in L∞(R+; W2,∞(Ω; H3
#(Y∗)/R)). We denote with κ the time-independent bound

κ = sup
1≤α,β≤N

‖Kαβ‖L∞(R+;W1,∞(Ω;C1
#(Y∗))).

Note that ‖R0‖L∞(R+×Ω;C1
#(Y∗)))N×N ≤ Cκ by the Poincaré-Wirtinger inequality.

Bounding gε follows now directly from equation (5.23) and Corollary 4:

‖gεα‖L2(Ωε )N ≤ C(1 + ε)(1 + (κ + κ̃)eλt), (5.25)

where C is independent of ε.
Bounding hε is more difficult as it is defined on the boundary ∂T ε . The following result, see Lemma
2.31 on page 47 in [17], gives a trace inequality, which shows that hε is properly defined.

Lemma 6. Let ψ ∈ H1(Ωε). Then
‖ψ‖L2(∂T ε ) ≤ Cε−1/2‖ψ‖Vε , (5.26)

where C is independent of ε.
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By (5.24), the regularity of the cell-functions, the regularity of the normal at the boundary, Corollary
4 and using Lemma 6 twice, we have∣∣∣∣∣∫

∂T ε

ε2φ>hε · nεds(x)
∣∣∣∣∣ ≤ Cε(1 + (κ + κ̃)eλt)‖φ‖VN

ε
. (5.27)

We estimate f ε in L2(Ωε)N from the standard inequality |a1b1 − a2b2| ≤ |a1 − a2||b2|+ |a1||b1 − b2| for all
a1, a2, b1, b2 ∈ R. This leads to

‖ f ε‖L2(Ωε )N ≤ ‖Kε − K‖L2(Ωε )N×N‖Uε‖L∞(Ωε )N + ‖K‖L∞(Ωε )N×N‖Uε − U0‖L2(Ωε )N . (5.28)

With this inequality, the estimation depends on the convergence of Kε and Uε to K and U0, respectively,
but with the notation according to (2.7) we have Kε − K|y=x/ε = 0 a.e.
From the definition of Ψε , we obtain

‖Uε − U0‖L2(Ωε )N = ‖Ψε + Mε(εU1 + ε2U2)‖L2(Ωε )N ≤ ‖Ψε‖L2(Ωε )N + ε‖U1‖L2(Ωε )N + ε2‖U2‖L2(Ωε )N . (5.29)

Introduce the notations l = LN and tl = min{1/l, t}. Using system (4.30), the bounds C(1+ (κ+ κ̃)eλt) for
‖V1‖H1(Ωε )N and ‖V2‖H1(Ωε )N obtained via the cell-function decompositions (4.32) and (5.3), respectively,
the inequalities (4.5a) and (4.5b), and by employing Gronwall’s inequality, we obtain

‖U1‖H1(Ωε )N ≤ C(1 + (κ + κ̃)eλt)
√

tlelt + t2
l e2lt, (5.30a)

‖U2‖H1(Ωε )N ≤ C(1 + (κ + κ̃)eλt)
√

tlelt + t2
l e2lt, (5.30b)

‖Uε−U0‖L2(Ωε )N ≤ ‖Ψε‖L2(Ωε )N

+ C(ε + ε2)(1 + (κ + κ̃)eλt)
√

tlelt + t2
l e2lt. (5.30c)

Thus from identity (5.28) we obtain

‖ f ε‖L2(Ωε )N ≤ κ‖Ψε‖L2(Ωε )N + C(ε + ε2)κ(1 + (κ + κ̃)eλt)
√

tlelt + t2
l e2lt, (5.31)

We now have all the ingredients to estimate aε(φε ,φ). Inserting estimates (5.25), (5.27) and (5.31) into
(5.21), we find

|aε(φε ,φ)|≤
[
κ‖Ψε‖L2(Ωε )N + C(ε+ε2)(1+(κ + κ̃)eλt)(1 + κ(1 + tlelt))

]
‖φ‖VN

ε
. (5.32)

Next, we need to estimate the second right-hand term of (5.16), aε((1 − Mε)(εV1 + ε2V2),φ). Trusting
[17] (see pages 48 and 49 in the reference) and using the bounds C(1 + (κ + κ̃)eλt) for ‖V1‖H1(Ωε )N and
‖V2‖H1(Ωε )N , we obtain

|aε((1 − Mε)(εV1 + ε2V2),φ)| ≤
[
C(ε

1
2 + ε

3
2 ) + C(ε + ε2)

(
1 + (κ + κ̃)eλt

)]
‖φ‖VN

ε
. (5.33)

The combination of (5.32) and (5.33) yields

|aε(Φε ,φ)|≤
[
κ‖Ψε‖L2(Ωε )N + C(ε

1
2 +ε

3
2 )

(
1 + ε

1
2 (1+(κ + κ̃)eλt)(1+κ(1 + tlelt))

)]
‖φ‖VN

ε
. (5.34)
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Since LΨε = GΦε , we obtain an identity similar to (4.5a) to which we apply Gronwall’s inequality,
leading to

‖Ψε‖2L2(Ωε )N (t) ≤
∫ t

0
el(t−s)GN‖Φ

ε‖2L2(Ωε )N (s)ds. (5.35)

Choosing φ = Φε and with m denoting the coercivity constant min
1≤i≤n,1≤α≤N

{m̃α, ẽi}, we obtain

m‖Φε‖2
VN
ε
≤

κ
√∫ t

0
el(t−s)GN‖Φε‖2

L2(Ωε )N (s)ds+B(ε, t)

‖Φε‖VN
ε
, (5.36)

where
B(ε, t) = C(ε

1
2 +ε

3
2 )

(
1 + ε

1
2 (1+(κ + κ̃)eλt)(1+κ(1 + tlelt))

)
. (5.37)

Applying Young’s inequality twice, once with η > 0 and once with η1 > 0, using the Poincaré
inequality (see Remark 1) and Gronwall’s inequality to (5.36), we arrive at

‖Φε‖2
VN
ε
≤

B(ε, t)2

η1(2m − η1 − η)
+

∫ t

0

κ2GNel(t−s)B(ε, s)2

η(2m − η1 − η)2η1
exp

(∫ t

s

κGN

η(2m − η1 − η)
el(t−u)du

)
ds. (5.38)

Since 0 < B(ε, s) ≤ B(ε, t) for s ≤ t, we can use the Leibniz rule to obtain

‖Φε‖2
VN
ε
≤

B(ε, t)2

η1(2m − η1 − η)
exp

(
κ2GN

η(2m − η1 − η)
tlelt

)
. (5.39)

Minimizing the two fractions separately leads us to η1 = m − η

2 and η = m − η1
2 , whence η = η1 = 2

3m.
Hence, we obtain

‖Φε‖VN
ε
≤ C(ε

1
2+ε

3
2)
(
1+ε

1
2(1+(κ+κ̃)eλt)(1+κ(1+tlelt))

)
exp

(
µtlelt

)
,

= C(ε, t)
(5.40)

and from (5.35), we arrive at
‖Ψε‖H1(Ωε )N ≤C(ε, t)

√
tlelt (5.41)

with

µ =
9κ2GN

8m2 . (5.42)

This completes the proof of Theorem 4.

6. Upscaling and convergence speeds for a concrete corrosion model

In [19] a concrete corrosion model has been derived from first principles. This model combines
mixture theory with balance laws, while incorporating chemical reaction effects, mechanical
deformations, incompressible flow, diffusion, and moving boundary effects. The model represents the
onset of concrete corrosion by representing the corroded part as a layer of cement (the mixture) on top
of a concrete bed and below an acidic fluid. The mixture contains three components φ = (φ1, φ2, φ3),
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which react chemically via 3 + 2 → 1. For simplification, we work in volume fractions. Hence, the
identity φ1 + φ2 + φ3 = 1 holds. The model equations on a domain Ω become for α ∈ {1, 2, 3}

∂φα
∂t

+ ε∇ · (φαvα) − εδα∆φα = εκαF (φ1, φ3), (6.1a)

∇ ·

 3∑
α=1

φαvα

 − 3∑
α=1

δα∆φα =

3∑
α=1

καF (φ1, φ3), (6.1b)

∇(−φαp +[λα+µα]∇·uα)+µα∆uα = χα(vα−v3)−
3∑
β=1

γαβ∆vβ, (6.1c)

∇

−p +

2∑
α=1

(λα + µα)∇ · uα

 +

2∑
α=1

µα∆uα +

3∑
α=1

3∑
β=1

γαβ∆vβ = 0, (6.1d)

where Uα and vα = ∂Uα/∂t are the displacement and velocity of component α, respectively, and ε is a
small positive number independent of any spatial scale. Equation (6.1a) denotes a mass balance law,
(6.1b) denotes the incompressibility condition, (6.1c) the partial (for component α) momentum
balance law, and (6.1d) the total momentum balance.
For t = O(ε0), we can treat φ as constant, which removes some nonlinearities from the model.
Moreover, with equation (6.1b) we can eliminate v3 in favor of v1 and v2, while with equation (6.1d)
we can eliminate p. This leads to a final expression for u = (U1,U2):

M̃∂tu − Ãu − div
(
B̃u + D̃∂tu + E · ∇

(
Fu + G̃∂tu

))
= H, (6.2)

with

M̃ =

 χ1
φ1+φ3
φ3

χ1
φ2
φ3

χ2
φ1
φ3

χ2
φ2+φ3
φ3

 , Ã = B̃ = D̃ = 0, (6.3a)

F =

(
µ1(φ2 + φ3) −µ2φ1

−µ1φ2 µ2(φ1 + φ3)

)
, E = I, (6.3b)

G̃αβ = −γαβ + φα

3∑
λ=1

γλβ, Hα =
χα
φ3
F (φ1, φ3)

3∑
λ=1

κλ. (6.3c)

According to [19], there are several options for γαβ, but all these options lead to non-invertible G̃.
Suppose we take γ11 = γ22 = γ1 < 0 and γ12 = γ21 = γ2 < 0 with γ1 > γ2. Then G̃ is invertible and
positive definite for φ3 > 0, since the determinant of G̃ equals (γ2

1 − γ
2
2)φ3.

According to Section 4.3 of [20], we obtain the Neumann problem (2.8a), (2.8b) with

M = M̃G̃−1, D = 0, L = G̃−1F, G = G̃−1, K = −M̃G̃−1F, J = 0. (6.4)

Note, that both E and H do not change in this transformation. Moreover, M is positive definite, since
both M̃ and G̃ are positive definite.

Suppose the cement mixture has a periodic microstructure, satisfying assumption (A4), inherited
from the concrete microstructure if corroded. Assume the constants χα, µα, κα, and γαβ are actually
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functions of both the macroscopic scale x and the microscopic scale y, such that Assumptions
(A1)–(A3) are satisfied. Note that (A3) is trivially satisfied.

From the main results we see that a macroscale limit (U0,V0) of this microscale corrosion problem
exists, which satisfies system (P0

w), and that the convergence speed is given by Theorem 4 with
constants l, κ, λ and µ given by A.
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A. Appendix: Determining κ, κ̃ and exponents l, λ and µ

In Theorem 4, the three constants l, λ and µ are introduced as exponents indicating the exponential
growth in time of the corrector bounds. Moreover, there was also a constant κ that indicated whether
additional exponential growth occurs or not. For brevity it was not stated how these constants depend
on the given matrices and tensors. Here we will give an exact determination procedure of these
constants.
The constant κ denotes the maximal operator norm of the tensor K.

κ = sup
1≤α,β≤N

‖Kαβ‖L∞(R+;W1,∞(Ω;C1
#(Y∗))). (A.1)

The constants l, λ, κ̃ and µ were obtained via Young’s inequality, which make them a coupled system
via several additional positive constants: η, η1, η2, η3. The obtained expressions are

l = max{0, LN}, (A.2a)

λ =
1
2

max
{
0, LN + max

{
LG + GM max

1≤α≤N
K̃α,GM max

1≤α≤N
max
1≤i≤d

J̃iα

}}
, (A.2b)

µ =
9κ2

8m2 GN , (A.2c)

κ̃ = max
1≤α≤N,1≤i≤d

{K̃α, J̃iα} (A.2d)
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with the values

LN = 2Lmin + ηGmax + η1dNLG, (A.3a)

LG = 2Lmin +
dN
η1
LG + η2Gmax + η3dNGG, (A.3b)

GN =
1
η

Gmax +
dN
η3

GG, (A.3c)

GG =
1
η2

Gmax, (A.3d)

GM = max
1≤α≤N

max
1≤i≤d

{
GN + GG

m̃α

,
GN

ẽi

}
, (A.3e)

m = min
1≤α≤N

min
1≤i≤d
{m̃α, ẽi}, (A.3f)

where we have the positive values

m̃α = mα −

d∑
i=1

N∑
β=1

‖Diβα‖L∞(R+×Ω;C#(Y∗))

2ηiβα
− ηα −

N∑
β=1

ηαβ −

d∑
i=1

N∑
β=1

η̃iαβ, (A.4a)

ẽi = ei −

N∑
α,β=1

ηiβα

2
‖Diβα‖L∞(R+×Ω;C#(Y∗)), (A.4b)

H̃ =

N∑
α=1

1
4ηα
‖Hα‖

2
L∞(R+×Ω;C#(Y∗)), (A.4c)

K̃α =

N∑
β=1

1
4ηβα
‖Kβα‖

2
L∞(R+×Ω;C#(Y∗)), (A.4d)

J̃iα =

N∑
β=1

ε2
0

4η̃iβα
‖Jiβα‖

2
L∞(R+×Ω;C#(Y∗)) (A.4e)

for ηiβα > 0, ηβ > 0, ηαβ > 0, η̃iαβ > 0 and ε0 the supremum of allowed ε values (which is 1 for Theorem
5). Moreover, we have

• Lmin as the L∞(R+ × Ω)-norm of the absolute value of the largest negative eigenvalue or it is -1
times the smallest positive eigenvalue of L if no negative or 0 eigenvalues exist,
• LG as the L∞(R+ ×Ω)-norm of the largest absolute value of the ∇L components,
• Gmax as the L∞(R+ ×Ω)-norm of the largest eigenvalue of G,
• GG as the L∞(R+ ×Ω)-norm of the largest absolute value of the ∇G components.

Remark 11. Remark that smaller l and µ yield longer times τ in Theorem 5 and faster convergence
rates in ε. However, l and µ are only coupled via λ. Hence, l and µ can be made as small as needed as
long as λ remains finite and independent of ε.

Remark 12. Note that Lmin < 0 allows for a hyperplane of positive values of η and η1 in (η, η1, η2, η3)-
space such that l = LN = 0. In this case not λ or µ should be minimized. Instead τend should be
maximized, the time τ for which the bounds of Theorem 5 equal O(1) for p = q = 0. For µ ≥ λ this
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yields a minimization of µ, while for µ < λ a minimization of µ + λ. Due to the use of maximums in the
definition of λ and τend, we refrain from maximizing τend as any attempt leads to a large tree of cases
for which an optimization problem has to be solved.

B. Appendix: Two-scale convergence

Two-scale convergence is a method invented in 1989 by Nguetseng, see [35]. This method removes
many technicalities by basing the convergence itself on functional analytic grounds as a property of
functions in certain spaces. In some sense the function spaces natural to periodic boundary conditions
have nice convergence properties of their oscillating continuous functions. This is made precise in the
First Oscillation Lemma:

Lemma 7 (‘First Oscillation Lemma’). Let Bp(Ω,Y), 1 ≤ p < ∞, denote any of the spaces
Lp(Ω; C#(Y)), Lp

#(Ω; C(Y)), C(Ω; C#(Y)). Then Bp(Ω,Y) has the following properties:

1. Bp(Ω,Y) is a separable Banach space.
2. Bp(Ω,Y) is dense in Lp(Ω × Y).
3. If f (x, y) ∈ Bp(Ω,Y). Then f (x, x/ε) is a measurable function on Ω such that∥∥∥∥∥ f

(
x,

x
ε

)∥∥∥∥∥
Lp(Ω)

≤ ‖ f (x, y)‖Bp(Ω,Y) . (B.1)

4. For every f (x, y) ∈ Bp(Ω,Y), one has

lim
ε→0

∫
Ω

f
(
x,

x
ε

)
dx =

1
|Y |

∫
Ω

∫
Y

f (x, y)dydx. (B.2)

5. For every f (x, y) ∈ Bp(Ω,Y), one has

lim
ε→0

∫
Ω

∣∣∣∣∣ f (
x,

x
ε

)∣∣∣∣∣p dx =
1
|Y |

∫
Ω

∫
Y
| f (x, y)|pdydx. (B.3)

See Theorems 2 and 4 in [36].

However, application of the First Oscillation Lemma is not sufficient as it cannot be applied to weak
solutions nor to gradients. Essentially two-scale convergence overcomes these problems by extending
the First Oscillation Lemma in a weak sense.

Two-scale convergence: Definition and results

For each function c(t, x, y) on (0,T ) × Ω × Y , we introduce a corresponding sequence of functions
cε(t, x) on (0,T ) ×Ω by

cε(t, x) = c
(
t, x,

x
ε

)
(B.4)

for all ε ∈ (0, ε0), although two-scale convergence is valid for more general bounded sequences of
functions cε(t, x).
Introduce the notation ∇y for the gradient in the y-variable. Moreover, we introduce the notations→,

⇀, and
2
−→ to point out strong convergence, weak convergence, and two-scale convergence,
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respectively.

The two-scale convergence was first introduced in [35] and popularized with the seminal paper [37],
in which the term two-scale convergence was actually coined. For our explanation we use both the
seminal paper [37] as the modern exposition of two-scale convergence in [36]. From now on, p and q
are real numbers such that 1 < p < ∞ and 1/p + 1/q = 1.

Definition 1. Let (εh)h be a fixed sequence of positive real numbers‡ converging to 0. A sequence (uε)
of functions in Lp(Ω) is said to two-scale converge to a limit u0 ∈ Lp(Ω × Y) if∫

Ω

uε(x)φ
(
x,

x
ε

)
dx→

1
|Y |

∫
Ω

∫
Y

u0(x, y)φ(x, y)dydx, (B.5)

for every φ ∈ Lq(Ω; C#(Y)).
See Definition 6 on page 41 of [36].

Remark 13. Definition 1 allows for an extension of two-scale convergence to Bochner spaces
Lr(I; Lp(Ω × Y)) of the additional variable t ∈ I for r = p ∈ [1,∞) by having the regularity
uε ∈ Lp(I × Ω), u0 ∈ Lp(I × Ω × Y) and φ ∈ Lq(I × Ω; C#(Y)) with q =

p
p−1 . Moreover (B.5) changes

into ∫
I

∫
Ω

uε(t, x)φ
(
t, x,

x
ε

)
dxdt →

1
|Y |

∫
I

∫
Ω

∫
Y

u0(t, x, y)φ(t, x, y)dydxdt. (B.6)

This Bochner-like extension is well-defined because for y-independent u0 limits two-scale convergence
is identical to weak convergence.
Note, for r , p convergence (B.6) is valid for the regularity uε ∈ Lr(I; Lp(Ω)), u0 ∈ Lr(I; Lp(Ω × Y))
and φ ∈ Ls(I; L1(Ω; C#(Y))) for s = r

r−1 .
For r = ∞ we need φ ∈ baac(I; L1(Ω; C#(Y))), where baac(I) denotes L∞(I)∗ as the dual of L∞(I) can
be identified with the set of all finitely additive signed measures that are absolutely continuous with
respect to dt on I.

With the Bochner version of Definition 1 introduced in Remark 13, we can give the Sobolev space
version of Definition 1.

Definition 2. Let r, p ∈ [1,∞), s = r
r−1 , and q =

p
p−1 . A sequence (uε) of functions in W1,r(I; Lp(Ω)) is

said to two-scale converge to a limit u0 ∈ W1,r(I; Lp(Ω × Y)) if both∫
I

∫
Ω

uε(t, x)φ
(
t, x,

x
ε

)
dxdt →

1
|Y |

∫
I

∫
Ω

∫
Y

u0(t, x, y)φ(t, x, y)dydxdt, (B.7a)∫
I

∫
Ω

∂uε
∂t

(t, x)φ
(
t, x,

x
ε

)
dxdt →

1
|Y |

∫
I

∫
Ω

∫
Y

∂u0

∂t
(t, x, y)φ(t, x, y)dydxdt (B.7b)

hold for every φ ∈ Ls(I; Lq(Ω; C#(Y))). Or in short notation

uε
2
→ u0 in Lr(I; Lp(Ω)) and

∂uε
∂t

2
→

∂u0

∂t
in Lr(I; Lp(Ω)). (B.8)

We now list several important results concerning the two-scale convergence, which can all be
extended in a natural way for Bochner spaces, see Section 2.5.2 in [38].

‡when it is clear from the context we will omit the subscript h
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Proposition 1. Let (uε) be a bounded sequence in W1,p(Ω) for 1 < p ≤ ∞ such that

uε ⇀ u0 in W1,p(Ω). (B.9)

Then uε
2
−→ u0 and there exist a subsequence ε′ and a u1 ∈ Lp(Ω; W1,p

# (Y)/R) such that

∇uε′
2
−→ ∇u0 + ∇yu1. (B.10)

Proposition 1 for 1 < p < ∞ is Theorem 20 in [36], while for p = 2 it is identity (i) in Proposition
1.14 in [37]. On page 1492 of [37] it is mentioned that the p = ∞ case holds as well. The case of
interest for us here is p = 2.

Proposition 2. Let (uε) and (ε∇uε) be two bounded sequence in L2(Ω). Then there exists a function

u0(x, y) in L2(Ω; H1
#(Y)) such that, up to a subsequence, uε

2
−→ u0(x, y) and ε∇uε

2
−→ ∇yu0(x, y). See

identity (ii) in Proposition 1.14 in [37].

Corollary 5. Let (uε) be a bounded sequence in Lp(Ω), with 1 < p ≤ ∞. There exists a function

u0(x, y) in Lp(Ω × Y) such that, up to a subsequence, uε
2
−→ u0(x, y), i.e., for any function ψ(x, y) ∈

D(Ω; C∞# (Y)), we have

lim
ε→0

∫
Ω

uε(x)ψ
(
x,

x
ε

)
dx =

1
|Y |

∫
Ω

∫
Y

u0(x, y)ψ(x, y)dydx. (B.11)

See Corollary 1.15 in [37].

Note, that Propositions 1 and 2 are straightforwardly extended to Bochner spaces by applying the
two-scale convergence notions of Remark 13 and Definition 2 instead of the notion from Definition 1.

Theorem 9. Let (uε) be a sequence in Lp(Ω) for 1 < p < ∞, which two-scale converges to u0 ∈

Lp(Ω × Y) and assume that
lim
ε→0
‖uε‖Lp(Ω) = ‖u0‖Lp(Ω×Y). (B.12)

Then, for any sequence (vε) in Lq(Ω) with 1
p + 1

q = 1, which two-scale converges to v0 ∈ Lq(Ω × Y), we
have that ∫

Ω

uε(x)vε(x)τ
(
x,

x
ε

)
dx→

∫
Ω

1
|Y |

∫
Y

u0(x, y)v0(x, y)τ(x, y)dydx, (B.13)

for every τ inD(Ω,C∞# (Y)). Moreover, if the Y-periodic extension of u belong to Lp(Ω; C#(Y)), then

lim
ε→0

∥∥∥∥∥uε(x) − u0

(
x,

x
ε

)∥∥∥∥∥
Lp(Ω)

= 0. (B.14)

See Theorem 18 in [36].

These results generalize properties 3, 4 and 5 of the First Oscillation Lemma in such a way that
the convergence applies to weak solutions, products and gradients AND it even guarantees that the
convergence is strong for oscillating continuous functions.

Hence, two-scale convergence is suitable for upscaling problems.
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