[1]
|
Kaper JB, Nataro JP, Mobley HLT (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2: 123-140. https://doi.org/10.1038/nrmicro818
|
[2]
|
Brzuszkiewicz E, Gottschalk G, Ron E, et al. (2009) Adaptation of pathogenic E. coli to various niches: genome flexibility is the key. Microbial Pathogenomics. Basel: KARGER 110-125. https://doi.org/10.1159/000235766
|
[3]
|
EFSA BIOHAZ Panel, Koutsoumanis K, Allende A, et al. (2020) Pathogenicity assessment of Shiga toxin-producing Escherichia coli (STEC) and the public health risk posed by contamination of food with STEC. EFSA J 18: e05967. https://doi.org/10.2903/j.efsa.2020.5967
|
[4]
|
Lee MS, Koo S, Jeong D, et al. (2016) Shiga toxins as multi-functional proteins: induction of host cellular stress responses, role in pathogenesis and therapeutic applications. Toxins (Basel) 8: 77. https://doi.org/10.3390/toxins8030077
|
[5]
|
Melton-Celsa AR (2014) Shiga toxin (Stx) classification, structure, and function. Microbiol Spectr 2. https://doi.org/10.1128/microbiolspec.EHEC-0024-2013 |
[6]
|
Krüger A, Lucchesi PMA (2015) Shiga toxins and stx phages: Highly diverse entities. Microbiol (United Kingdom) 161: 451-462. https://doi.org/10.1099/mic.0.000003 |
[7]
|
Pinto G, Sampaio M, Dias O, et al. (2021) Insights into the genome architecture and evolution of Shiga toxin encoding bacteriophages of Escherichia coli. BMC Genomics 22: 366. https://doi.org/10.1186/s12864-021-07685-0
|
[8]
|
Mondal SI, Islam MR, Sawaguchi A, et al. (2016) Genes essential for the morphogenesis of the Shiga toxin 2-transducing phage from Escherichia coli O157:H7. Sci Rep 6: 39036. https://doi.org/10.1038/srep39036
|
[9]
|
Llarena AK, Aspholm M, O'Sullivan K, et al. (2021) Replication region analysis reveals non-lambdoid Shiga toxin converting bacteriophages. Front Microbiol 12: 640945. https://doi.org/10.3389/fmicb.2021.640945
|
[10]
|
Rodríguez-Rubio L, Haarmann N, Schwidder M, et al. (2021) Bacteriophages of Shiga toxin-producing Escherichia coli and their contribution to pathogenicity. Pathogens 10. https://doi.org/10.3390/pathogens10040404
|
[11]
|
Smith DL, Rooks DJ, Fogg PC, et al. (2012) Comparative genomics of Shiga toxin encoding bacteriophages. BMC Genomics 13: 311. https://doi.org/10.1186/1471-2164-13-311
|
[12]
|
Krüger A, Burgán J, Friedrich AW, et al. (2018) ArgO145, a Stx2a prophage of a bovine O145:H- STEC strain, is closely related to phages of virulent human strains. Infect Genet Evol 60: 126-132. https://doi.org/10.1016/j.meegid.2018.02.024
|
[13]
|
Steyert SR, Sahl JW, Fraser CM, et al. (2012) Comparative genomics and stx phage characterization of LEE-negative Shiga toxin-producing Escherichia coli. Front Cell Infect Microbiol 2: 133. https://doi.org/10.3389/fcimb.2012.00133
|
[14]
|
Schmidt H (2001) Shiga-toxin-converting bacteriophages. Res Microbiol 152: 687-695. https://doi.org/10.1016/s0923-2508(01)01249-9
|
[15]
|
Wagner PL, Neely MN, Zhang X, et al. (2001) Role for a phage promoter in Shiga toxin 2 expression from a pathogenic Escherichia coli strain. J Bacteriol 183: 2081-2085. https://doi.org/10.1128/jb.183.6.2081-2085.2001
|
[16]
|
Yin S, Rusconi B, Sanjar F, et al. (2015) Escherichia coli O157:H7 strains harbor at least three distinct sequence types of Shiga toxin 2a-converting phages. BMC Genomics 16: 733. https://doi.org/10.1186/s12864-015-1934-1
|
[17]
|
Delannoy S, Mariani-Kurkdjian P, Webb HE, et al. (2017) The mobilome; a major contributor to Escherichia coli stx2-positive O26:H11 strains intra-serotype diversity. Front Microbiol 8: 1625. https://doi.org/10.3389/fmicb.2017.01625
|
[18]
|
Nakamura K, Murase K, Sato MP, et al. (2020) Differential dynamics and impacts of prophages and plasmids on the pangenome and virulence factor repertoires of Shiga toxin-producing Escherichia coli O145:H28. Microb Genomics 6. https://doi.org/10.1099/mgen.0.000323
|
[19]
|
Rasko DA, Rosovitz MJ, Myers GSA, et al. (2008) The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 190: 6881-6893. https://doi.org/10.1128/JB.00619-08
|
[20]
|
Su LK, Lu CP, Wang Y, et al. (2010) Lysogenic infection of a Shiga toxin 2-converting bacteriophage changes host gene expression, enhances host acid resistance and motility. Mol Biol 44. https://doi.org/10.1134/s0026893310010085 |
[21]
|
Holt GS, Lodge JK, McCarthy AJ, et al. (2017) Shigatoxin encoding Bacteriophage φ24B modulates bacterial metabolism to raise antimicrobial tolerance. Sci Rep 7: 40424. https://doi.org/10.1038/srep40424
|
[22]
|
Veses-Garcia M, Liu X, Rigden DJ, et al. (2015) Transcriptomic Analysis of Shiga-Toxigenic Bacteriophage Carriage Reveals a Profound Regulatory Effect on Acid Resistance in Escherichia coli. Appl Environ Microbiol 81: 8118-8125. https://doi.org/10.1128/AEM.02034-15
|
[23]
|
Berger P, Kouzel IU, Berger M, et al. (2019) Carriage of Shiga toxin phage profoundly affects Escherichia coli gene expression and carbon source utilization. BMC Genomics 20: 504. https://doi.org/10.1186/s12864-019-5892-x
|
[24]
|
Mitsunaka S, Sudo N, Sekine Y (2018) Lysogenisation of Shiga toxin-encoding bacteriophage represses cell motility. J Gen Appl Microbiol 64: 34-41. https://doi.org/10.2323/jgam.2017.05.001
|
[25]
|
Saile N, Voigt A, Kessler S, et al. (2016) Escherichia coli O157:H7 strain EDL933 harbors multiple functional prophage-associated genes necessary for the utilization of 5- N -acetyl-9- O -acetyl neuraminic acid as a growth substrate. Appl Environ Microbiol 82: 5940-5950. https://doi.org/10.1128/AEM.01671-16
|
[26]
|
Saile N, Schwarz L, Eißenberger K, et al. (2018) Growth advantage of Escherichia coli O104:H4 strains on 5- N -acetyl-9- O -acetyl neuraminic acid as a carbon source is dependent on heterogeneous phage-Borne nanS-p esterases. Int J Med Microbiol 308: 459-468. https://doi.org/10.1016/j.ijmm.2018.03.006
|
[27]
|
McGinnis S, Madden TL (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32. https://doi.org/10.1093/nar/gkh435
|
[28]
|
Arndt D, Grant JR, Marcu A, et al. (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 4. https://doi.org/10.1093/nar/gkw387 |
[29]
|
Joensen KG, Scheutz F, Lund O, et al. (2014) Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 52: 1501-1510. https://doi.org/10.1128/JCM.03617-13
|
[30]
|
Siguier P, Perochon J, Lestrade L, et al. (2006) ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34: D32-D36. https://doi.org/10.1093/nar/gkj014
|
[31]
|
Marchler-Bauer A, Derbyshire MK, Gonzales NR, et al. (2015) CDD: NCBI's conserved domain database. Nucleic Acids Res 43: D222-D226. https://doi.org/10.1093/nar/gku1221
|
[32]
|
Jones P, Binns D, Chang HY, et al. (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30: 1236-1240. https://doi.org/10.1093/bioinformatics/btu031
|
[33]
|
Saier MHJ, Tran C V, Barabote RD (2006) TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res 34: D181-D186. https://doi.org/10.1093/nar/gkj001
|
[34]
|
Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5: e11147. https://doi.org/10.1371/journal.pone.0011147
|
[35]
|
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
|
[36]
|
Sievers F, Wilm A, Dineen D, et al. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7: 539. https://doi.org/10.1038/msb.2011.75
|
[37]
|
Burgán J, Krüger A, Lucchesi PMA (2020) Comparable stx2a expression and phage production levels between Shiga toxin-producing Escherichia coli strains from human and bovine origin. Zoonoses Public Health 67: 44-53. https://doi.org/10.1111/zph.12653
|
[38]
|
de Sablet T, Bertin Y, Vareille M, et al. (2008) Differential expression of stx2 variants in Shiga toxin-producing Escherichia coli belonging to seropathotypes A and C. Microbiology 154: 176-186. https://doi.org/10.1099/mic.0.2007/009704-0
|
[39]
|
Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45. https://doi.org/10.1093/nar/29.9.e45
|
[40]
|
Scheutz F, Teel LD, Beutin L, et al. (2012) Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J Clin Microbiol 50: 2951-2963. https://doi.org/10.1128/JCM.00860-12
|
[41]
|
Tyler JS, Beeri K, Reynolds JL, et al. (2013) Prophage induction is enhanced and required for renal disease and lethality in an EHEC mouse model. PLoS Pathog 9: e1003236. https://doi.org/10.1371/journal.ppat.1003236
|
[42]
|
Balasubramanian S, Osburne MS, BrinJones H, et al. (2019) Prophage induction, but not production of phage particles, is required for lethal disease in a microbiome-replete murine model of enterohemorrhagic E. coli infection. PLoS Pathog 15: e1007494. https://doi.org/10.1371/journal.ppat.1007494
|
[43]
|
EFSA Panel BH (BIOHAZ).Scientific Opinion on VTEC-seropathotype and scientific criteria regarding pathogenicity assessment. EFSA J (2013) 11: 3138. https://doi.org/10.2903/j.efsa.2013.3138 |
[44]
|
Fuller CA, Pellino CA, Flagler MJ, et al. (2011) Shiga toxin subtypes display dramatic differences in potency. Infect Immun 79: 1329-1337. https://doi.org/10.1128/IAI.01182-10
|
[45]
|
Forde BM, McAllister LJ, Paton JC, et al. (2019) SMRT sequencing reveals differential patterns of methylation in two O111:H- STEC isolates from a hemolytic uremic syndrome outbreak in Australia. Sci Rep 9: 9436. https://doi.org/10.1038/s41598-019-45760-5
|
[46]
|
Fagerlund A, Aspholm M, Węgrzyn G, et al. (2022) High diversity in the regulatory region of Shiga toxin encoding bacteriophages. BMC Genomics 23: 230. https://doi.org/10.1186/s12864-022-08428-5
|
[47]
|
Shaaban S, Cowley LA, McAteer SP, et al. (2016) Evolution of a zoonotic pathogen: investigating prophage diversity in enterohaemorrhagic Escherichia coli O157 by long-read sequencing. Microb Genomics 2: e000096. https://doi.org/10.1099/mgen.0.000096
|
[48]
|
Scheutz F (2014) Taxonomy Meets Public Health: The case of Shiga toxin-producing Escherichia coli. Microbiol Spectr 2. https://doi.org/10.1128/microbiolspec.EHEC-0019-2013
|
[49]
|
Lejeune JT, Abedon ST, Takemura K, et al. (2004) Human Escherichia coli O157:H7 genetic marker in isolates of bovine origin. Emerg Infect Dis 10: 1482-1485. https://doi.org/10.3201/eid1008.030784
|
[50]
|
Olavesen KK, Lindstedt BA, Løbersli I, et al. (2016) Expression of Shiga toxin 2 (Stx2) in highly virulent Stx-producing Escherichia coli (STEC) carrying different anti-terminator (q) genes. Microb Pathog 97: 1-8. https://doi.org/10.1016/j.micpath.2016.05.010
|
[51]
|
Løbersli I, Haugum K, Lindstedt BA (2012) Rapid and high resolution genotyping of all Escherichia coli serotypes using 10 genomic repeat-containing loci. J Microbiol Methods 88: 134-139. https://doi.org/10.1016/j.mimet.2011.11.003
|
[52]
|
Cahill J, Young R (2019) Phage lysis: multiple genes for multiple barriers. Adv Virus Res 103: 33-70. https://doi.org/10.1016/bs.aivir.2018.09.003
|
[53]
|
Pang T, Savva C, Fleming K, et al. (2009) Structure of the lethal phage pinhole. Proc Natl Acad Sci U S A 106: 18966-18971. https://doi.org/10.1073/pnas.0907941106
|
[54]
|
Nübling S, Eisele T, Stöber H, et al. (2014) Bacteriophage 933W encodes a functional esterase downstream of the Shiga toxin 2a operon. Int J Med Microbiol 304: 269-274. https://doi.org/10.1016/j.ijmm.2013.10.008
|
[55]
|
Unkmeir A, Schmidt H (2000) Structural analysis of phage-borne stx genes and their flanking sequences in Shiga toxin-producing Escherichia coli and Shigella dysenteriae Type 1 Strains. Infect Immun 68: 4856-4864. https://doi.org/10.1128/iai.68.9.4856-4864.2000
|
[56]
|
Vimr ER (2013) Unified theory of bacterial sialometabolism: how and why bacteria metabolize host sialic acids. ISRN Microbiol 2013: 1-26. https://doi.org/10.1155/2013/816713
|
[57]
|
Amigo N, Zhang Q, Amadio A, et al. (2016) Overexpressed proteins in hypervirulent clade 8 and clade 6 Strains of Escherichia coli O157:H7 compared to E. coli O157:H7 EDL933 clade 3 Strain. PLoS One 11: e0166883. https://doi.org/10.1371/journal.pone.0166883
|
[58]
|
Polzin S, Huber C, Eylert T, et al. (2013) Growth media simulating ileal and colonic environments affect the intracellular proteome and carbon fluxes of Enterohemorrhagic Escherichia coli O157:H7 strain EDL933. Appl Environ Microbiol 79: 3703-3715. https://doi.org/10.1128/AEM.00062-13
|
[59]
|
Herold S, Siebert J, Huber A, et al. (2005) Global expression of prophage genes in Escherichia coli O157:H7 strain EDL933 in response to norfloxacin. Antimicrob Agents Chemother 49: 931-944. https://doi.org/10.1128/aac.49.3.931-944.2005
|
[60]
|
Feuerbaum S, Saile N, Pohlentz G, et al. (2018) De-O-Acetylation of mucin-derived sialic acids by recombinant NanS-p esterases of Escherichia coli O157:H7 strain EDL933. Int J Med Microbiol 308: 1113-1120. https://doi.org/10.1016/j.ijmm.2018.10.001
|
[61]
|
Franke B, Veses-Garcia M, Diederichs K, et al. (2020) Structural annotation of the conserved carbohydrate esterase vb_24B_21 from Shiga toxin-encoding bacteriophage Φ24B. J Struct Biol 212: 107596. https://doi.org/10.1016/j.jsb.2020.107596
|
[62]
|
Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8: 275-282. https://doi.org/10.1093/bioinformatics/8.3.275 |
[63]
|
Kumar S, Stecher G, Li M, et al. (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35: 1547-1549. https://doi.org/10.1093/molbev/msy096
|
[64]
|
Schwartz RM (1978) Matrices for detecting distant relationships. Atlas protein Seq Struct : 353-359. |