Review

Biologically active compounds from marine organisms in the strategies for combating coronaviruses

  • Received: 17 September 2020 Accepted: 01 December 2020 Published: 07 December 2020
  • Despite the progress made in immunization and drug development, so far there are no prophylactic vaccines and effective therapies for many viral infections, including infections caused by coronaviruses. In this regard, the search for new antiviral substances continues to be relevant, and the enormous potential of marine resources are a stimulus for the study of marine compounds with antiviral activity in experiments and clinical trials. The highly pathogenic human coronaviruses-severe acute respiratory syndrome-related coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) remain a serious threat to human health. In this review, the authors hope to bring the attention of researchers to the use of biologically active substances of marine origin as potential broad-spectrum antiviral agents targeting common cellular pathways and various stages of the life cycle of different viruses, including coronaviruses. The review has been compiled using references from major databases such as Web of Science, PubMed, Scopus, Elsevier, Springer and Google Scholar (up to June 2020) and keywords such as ‘coronaviruses’, ‘marine organisms’, ‘biologically active substances’, ‘antiviral drugs’, ‘SARS-CoV’, ‘MERS-CoV’, ‘SARS-CoV-2’, ‘3CLpro’, ‘TMPRSS2’, ‘ACE2’. After obtaining all reports from the databases, the papers were carefully analysed in order to find data related to the topic of this review (98 references). Biologically active substances of marine origin, such as flavonoids, phlorotannins, alkaloids, terpenoids, peptides, lectins, polysaccharides, lipids and others substances, can affect coronaviruses at the stages of penetration and entry of the viral particle into the cell, replication of the viral nucleic acid and release of the virion from the cell; they also can act on the host's cellular targets. These natural compounds could be a vital resource in the fight against coronaviruses.

    Citation: Tatyana S. Zaporozhets, Nataliya N. Besednova. Biologically active compounds from marine organisms in the strategies for combating coronaviruses[J]. AIMS Microbiology, 2020, 6(4): 470-494. doi: 10.3934/microbiol.2020028

    Related Papers:

  • Despite the progress made in immunization and drug development, so far there are no prophylactic vaccines and effective therapies for many viral infections, including infections caused by coronaviruses. In this regard, the search for new antiviral substances continues to be relevant, and the enormous potential of marine resources are a stimulus for the study of marine compounds with antiviral activity in experiments and clinical trials. The highly pathogenic human coronaviruses-severe acute respiratory syndrome-related coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) remain a serious threat to human health. In this review, the authors hope to bring the attention of researchers to the use of biologically active substances of marine origin as potential broad-spectrum antiviral agents targeting common cellular pathways and various stages of the life cycle of different viruses, including coronaviruses. The review has been compiled using references from major databases such as Web of Science, PubMed, Scopus, Elsevier, Springer and Google Scholar (up to June 2020) and keywords such as ‘coronaviruses’, ‘marine organisms’, ‘biologically active substances’, ‘antiviral drugs’, ‘SARS-CoV’, ‘MERS-CoV’, ‘SARS-CoV-2’, ‘3CLpro’, ‘TMPRSS2’, ‘ACE2’. After obtaining all reports from the databases, the papers were carefully analysed in order to find data related to the topic of this review (98 references). Biologically active substances of marine origin, such as flavonoids, phlorotannins, alkaloids, terpenoids, peptides, lectins, polysaccharides, lipids and others substances, can affect coronaviruses at the stages of penetration and entry of the viral particle into the cell, replication of the viral nucleic acid and release of the virion from the cell; they also can act on the host's cellular targets. These natural compounds could be a vital resource in the fight against coronaviruses.


    加载中

    Acknowledgments



    This work was supported by the Ministry of Science and Higher Education of the Russian Federation (2019/#0545-2019-0006).

    Data availability



    The coronavirus protease structures used were obtained from Protein Data Bank, ID 2DUC DOI: 10.2210/pdb2DUC/pdb. Muramatsu T, Takemoto C, Kim YT, et al. (2016) Proc Natl Acad Sci U S A 113: 12997-13002.

    Conflicts of interest



    The authors declare no conflict of interest.

    [1] Coronaviridae Study Group of the International Committee on Taxonomy of Viruses (2020) The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat microbial 5: 536-544.
    [2] World Health Organization Director-General's opening remarks at the media briefing on COVID-19–11 March Available from: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19—11-march-2020.
    [3] Islam MT, Sarkar C, El-Kersh DM, et al. (2020) Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytoter Res 34: 2471-2492. doi: 10.1002/ptr.6700
    [4] Adalja A, Inglesby T (2019) Broad-spectrum antiviral agents: a crucial pandemic tool. Expert Rev Anti Infect Ther 17: 467-470. doi: 10.1080/14787210.2019.1635009
    [5] Khan MT, Ali A, Wang Q, et al. (2020) Marine natural compounds as potents inhibitors against the main protease of SARS-CoV-2-a molecular dynamic study. J Biomol Struct Dyn 1: 1-11.
    [6] da Silva Antonio A, Wiedemann L, Veiga-Junior V (2020) Natural products' role against COVID-19. RSC Adv 10: 23379-23393. doi: 10.1039/D0RA03774E
    [7] Malve H (2020) Exploring the ocean for new drug developments: marine pharmacology. J Pharm Bioallied Sci 8: 83-91. doi: 10.4103/0975-7406.171700
    [8] Cheung R, Wong J, Pan W, et al. (2015) Marine lectins and their medicinal applications. Appl Microbiol Biotechnol 99: 3755-3773. doi: 10.1007/s00253-015-6518-0
    [9] Donia M, Hamann MT (2003) Marine natural products and their potential applications as anti-infective agents. Lancet Infect Dis 3: 338-348. doi: 10.1016/S1473-3099(03)00655-8
    [10] Stonik V (2016) Studies on natural compounds as a road to new drugs. Her Russ Acad Sci 86: 217-225. doi: 10.1134/S1019331616030187
    [11] Yasuhara-Bell J, Lu Y (2010) Marine compounds and their antiviral activities. Antiviral Res 86: 231-240. doi: 10.1016/j.antiviral.2010.03.009
    [12] Gentile D, Patamia V, Scala A, et al. (2020) Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: a virtual screening and molecular modeling study. Mar Drugs 18: 225-264. doi: 10.3390/md18040225
    [13] Ziółkowska NE, O'Keefe BR, Mori T, et al. (2006) Domain-swapped structure of the potent antiviral protein griffithsin and its mode of carbohydrate binding. Structure 14: 1127-1135. doi: 10.1016/j.str.2006.05.017
    [14] Pyrc K, Bosch B, Berkhout B, et al. (2006) Inhibition of human coronavirus NL63 infection at early stages of the replication cycle. Antimicrob Agents Chemother 50: 2000-2008. doi: 10.1128/AAC.01598-05
    [15] Payne S (2017) Family CoronaviridaeViruses 149–158.
    [16] Fehr AR, Perlman S (2015) Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 1282: 1-23. doi: 10.1007/978-1-4939-2438-7_1
    [17] Lundin A, Dijkman R, Bergström T, et al. (2014) Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the Middle East respiratory syndrome virus. PLoS Pathog 10: e1004166. doi: 10.1371/journal.ppat.1004166
    [18] Zhou Y, Simmons G (2012) Development of novel entry inhibitors targeting emerging viruses. Expert Rev Anti Infect Ther 10: 1129-1138. doi: 10.1586/eri.12.104
    [19] Mitchell C, Ramessar K, O'Keefe B (2017) Antiviral lectins: selective inhibitors of viral entry. Antiviral Res 142: 37-54. doi: 10.1016/j.antiviral.2017.03.007
    [20] Keyaerts E, Vijgen L, Pannecouque C, et al. (2007) Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res 75: 179-187. doi: 10.1016/j.antiviral.2007.03.003
    [21] Mori T, O'Keefe B, Sowder R, et al. (2005) Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga. Griffithsia sp. J Biol Chem 280: 9345-9353. doi: 10.1074/jbc.M411122200
    [22] O'Keefe BR, Giomarelli B, Barnard DL, et al. (2010) Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein griffithsin against emerging viruses of the family CoronaviridaeJ Virol 84: 2511-2521. doi: 10.1128/JVI.02322-09
    [23] Mycroft-West C, Yates EA, Skidmore MA (2018) Marine glycosaminoglycan-like carbohydrates as potential drug candidates for infectious disease. Biochem Soc Trans 46: 919-992. doi: 10.1042/BST20170404
    [24] Kim SY, Jin W, Sood A, et al. (2020) Characterization of heparin and severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) spike glycoprotein binding interactions. Antiviral Res 181: 104873. doi: 10.1016/j.antiviral.2020.104873
    [25] Damonte EB, Matulewicz MC, Cerezo AS (2004) Sulfated seaweed polysaccharides as antiviral agents. Curr Med Chem 11: 2399-2419. doi: 10.2174/0929867043364504
    [26] Kwon PS, Oh H, Kwon S, et al. (2020) Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro. Cell Discov 6: 50. doi: 10.1038/s41421-020-00192-8
    [27] Morokutti-Kurz M, Graf F, Grassauer A, et al. (2020) SARS-CoV-2 in-vitro neutralization assay reveals inhibition of virus entry by iota-carrageenan. bioRxiv .
    [28] Chazal N, Gerlier D (2003) Virus entry, assembly, budding, and membrane rafts. Microbiol Mol Biol Rev 67: 226-237. doi: 10.1128/MMBR.67.2.226-237.2003
    [29] Chan RB, Tanner L, Wenk MR (2010) Implications for lipids during replication of enveloped viruses. Chem Phys Lipids 163: 449-459. doi: 10.1016/j.chemphyslip.2010.03.002
    [30] Nomura R, Kiyota A, Suzaki E, et al. (2004) Human coronavirus 229E binds to CD13 in rafts and enters the cell through caveolae. J Virol 78: 8701-8708. doi: 10.1128/JVI.78.16.8701-8708.2004
    [31] Baglivo M, Baronio M, Natalini G, et al. (2020) Natural small molecules as inhibitors of coronavirus lipid-dependent attachment to host cells: a possible strategy for reducing SARS-COV-2 infectivity? Acta Biomed 91: 161-164.
    [32] Lorizate M, Krausslich HG (2011) Role of lipids in virus replication. Cold Spring Harb Perspect Biol 3: a004820. doi: 10.1101/cshperspect.a004820
    [33] Oliva AF, Gonzalez PO, Risco C (2019) Targeting host lipid flows: Exploring new antiviral and antibiotic strategies. Cell Microbiol 21: e12996. doi: 10.1111/cmi.12996
    [34] Stonik VA (2001) Marine polar steroids. Usp. Khim 70: 673-715. doi: 10.1070/RC2001v070n08ABEH000679
    [35] Gauvin A, Smadja J, Aknin M, et al. (2000) Isolation of bioactive 5α,8α-epidioxy sterols from the marine sponge Luffariella cf. variabilisCan J Chem 78: 986-992.
    [36] McKee TC, Cardellina JH, Riccio RL, et al. (1994) HIV-Inhibitory natural products. 11. Comparative studies of sulfated sterols from marine invertebrates. J Med Chern 37: 793-797. doi: 10.1021/jm00032a012
    [37] Li W, Moore M, Vasilieva N, et al. (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426: 450-454. doi: 10.1038/nature02145
    [38] Hoffmann M, Kleine-Weber H, Schroeder S, et al. (2020) SARS-CoV-2 Cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181: 271-280. doi: 10.1016/j.cell.2020.02.052
    [39] Hofmann H, Pyrc K, van der Hoek L, et al. (2005) Human coronavirus NL63 the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci USA 102: 7988-7993. doi: 10.1073/pnas.0409465102
    [40] Sato AK, Viswanathan M, Kent RB, et al. (2006) Therapeutic peptides: technological advances driving peptides into development. Curr Opin Biotechnol 17: 638-642. doi: 10.1016/j.copbio.2006.10.002
    [41] Lazcano-Pérez F, Román-González SA, Sánchez-Puig N, et al. (2012) Bioactive peptides from marine organisms: a short overview. Protein Pept Lett 19: 700-707. doi: 10.2174/092986612800793208
    [42] Vilas Boas LCP, Campos ML, Berlanda RLA, et al. (2019) Antiviral peptides as promising therapeutic drugs. Cell Mol Life Sci 76: 3525-3542. doi: 10.1007/s00018-019-03138-w
    [43] Aneiros A, Garateix A (2004) Bioactive peptides from marine sources: Pharmacological properties and isolation procedures. J Chromatogr B Analyt Technol Biomed Life Sci 803: 41-53. doi: 10.1016/j.jchromb.2003.11.005
    [44] Semreen MH, El-Gamal MI, Abdin S, et al. (2018) Recent updates of marine antimicrobial peptides. Saudi Pharm J 26: 396-409. doi: 10.1016/j.jsps.2018.01.001
    [45] Rahman N, Basharat Z, Yousuf M, et al. (2020) Virtual screening of natural products against type II transmembrane serine protease (TMPRSS2), the priming agent of coronavirus 2 (SARS-CoV-2). Molecules 25: 2271-2283. doi: 10.3390/molecules25102271
    [46] Gross H, König GM (2006) Terpenoids from marine organisms: unique structures and their pharmacological potential. Phytochem Rev 5: 115-1141. doi: 10.1007/s11101-005-5464-3
    [47] Mishra S, Pandey A, Manvati S (2020) Coumarin: An emerging antiviral agent. Heliyon 6: e03217. doi: 10.1016/j.heliyon.2020.e03217
    [48] Nakao Y, Masuda A, Matsunaga S, et al. (1999) Pseudotheonamides, serine protease inhibitors from the marine sponge Theonella swinhoeiJ Am Chem Soc 121: 2425-2431. doi: 10.1021/ja9831195
    [49] Walls AC, Tortorici MA, Xiong X, et al. (2019) Structural studies of coronavirus fusion proteins. Microsc Microanal 25: 1300-1301. doi: 10.1017/S1431927619007232
    [50] Simmons G, Gosalia DN, Rennekamp AJ, et al. (2005) Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci USA 102: 11876-11881. doi: 10.1073/pnas.0505577102
    [51] Jin Z, Du X, Xu Y, et al. (2020) Structure of Mpro from COVID-19 virus and discovery of its inhibitors. Nature 582: 289-293. doi: 10.1038/s41586-020-2223-y
    [52] He J, Hu L, Huang X, et al. (2020) Potential of coronavirus 3C-like protease inhibitors for the development of new anti-SARS-CoV-2 drugs: Insights from structures of protease and inhibitors. Int J Antimicrob Agent 56: 106055. doi: 10.1016/j.ijantimicag.2020.106055
    [53] Prajapat M, Sarma P, Shekhar N, et al. (2020) Drug targets for corona virus: A systematic review. Indian J Pharmacol 52: 56-65. doi: 10.4103/ijp.IJP_115_20
    [54] Xiana Y, Zhanga J, Bianc Z, et al. (2020) Bioactive natural compounds against human coronaviruses: a review and perspective. Acta Pharm Sinica B 10: 1163-1174. doi: 10.1016/j.apsb.2020.06.002
    [55] Imbs TI, Zvyagintseva TN (2018) Phlorotannins are polyphenolic metabolites of brown algae. Russ J Mar Biol 44: 263-273. doi: 10.1134/S106307401804003X
    [56] Li YX, Wijesekara I, Li YK, et al. (2020) Phlorotannins as bioactive agents from brown algae. Proc Biochem 46: 2219-2224.
    [57] Heffernan N, Brunton NP, FitzGerald RJ, et al. (2015) Profiling of the molecular weight and structural isomer abundance of macroalgae-derived phlorotannins. Mar Drugs 13: 509-528. doi: 10.3390/md13010509
    [58] Park JY, Kim JH, Kwon JM, et al. (2013) Dieckol, a SARS-CoV 3CL(pro) inhibitor, isolated from the edible brown algae Ecklonia cavaBioorg Med Chem 21: 3730-3737. doi: 10.1016/j.bmc.2013.04.026
    [59] Felix CR, Gupta R, Geden S, et al. (2017) Selective killing of dormant mycobacterium tuberculosis by marine natural products. Antimicrob Agents Chemother 61: e00743-17.
    [60] Bergé JP, Barnathan G (2005) Fatty acids from lipids of marine organisms: Molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. Adv Biochem Eng Biotechnol 96: 49-125.
    [61] Suwannarach N, Kumla J, Sujarit K, et al. (2020) Natural bioactive compounds from fungi as potential candidates for protease inhibitors and immunomodulators to apply for coronaviruses. Molecules 25: 1800-1821. doi: 10.3390/molecules25081800
    [62] Pardo-Vargas A, de Barcelos Oliveira I, Stephens P, et al. (2014) Dolabelladienols A–C, New diterpenes isolated from brazilian brown alga Dictyota pfaffiiMar Drugs 12: 4247-4259. doi: 10.3390/md12074247
    [63] De Lira SP, Mirna H R, Seleghim M, et al. (2007) A SARS-coronovirus 3CL protease inhibitor isolated from the marine sponge Axinella cf. corrugata: structure elucidation and synthesis. J Braz Chem Soc 18: 440-443. doi: 10.1590/S0103-50532007000200030
    [64] Singh KS, Majik MS (2016) Bioactive alkaloids from marine sponges. Marine sponges: chemicobiological and biomedical applications New Delhi: Springer, 257-286. doi: 10.1007/978-81-322-2794-6_12
    [65] Jo S, Kim S, Shin DH, et al. (2020) Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem 35: 145-151. doi: 10.1080/14756366.2019.1690480
    [66] Mansuri ML, Parihar P, Solanki I, et al. (2014) Flavonoids in modulation of cell survival signalling pathways. Genes Nutr 9: 400. doi: 10.1007/s12263-014-0400-z
    [67] Martins BT, Correia da Silva M, Pinto M, et al. (2019) Marine natural flavonoids: chemistry and biological activities. Nat Prod Res 33: 3260-3272. doi: 10.1080/14786419.2018.1470514
    [68] Rowley DC, Hansen MS, Rhodes D, et al. (2002) Thalassiolins A-C: new marine-derived inhibitors of HIV cDNA integrase. Bioorg Med Chem 10: 3619-3625. doi: 10.1016/S0968-0896(02)00241-9
    [69] Yao Y, Luo Z, Zhang X (2020) In silico evaluation of marine fish proteins as nutritional supplements for COVID-19 patients. Food Funct 11: 5565-5572. doi: 10.1039/D0FO00530D
    [70] Ashraf H (2005) Cathepsin enzyme provides clue to SARS infection. Drug Discov Today 10: 1409. doi: 10.1016/S1359-6446(05)03634-2
    [71] Glowacka I, Bertram S, Muller MA, et al. (2011) Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol 85: 4122-4134. doi: 10.1128/JVI.02232-10
    [72] Liu T, Luo S, Libby P, et al. (2020) Cathepsin L-selective inhibitors: A potentially promising treatment for COVID-19 patients. Pharmacol Ther 213: 107587. doi: 10.1016/j.pharmthera.2020.107587
    [73] Shah PP, Myers MC, Beavers MP, et al. (2008) Kinetic characterization and molecular docking of a novel, potent, and selective slow-binding inhibitor of human cathepsin L. Mol Pharmacol 74: 34-41. doi: 10.1124/mol.108.046219
    [74] Miller B, Friedman AJ, Choi H, et al. (2014) The marine cyanobacterial metabolite gallinamide A is a potent and selective inhibitor of human cathepsin L. J Nat Prod 77: 92-99. doi: 10.1021/np400727r
    [75] Kwan JC, Eksioglu EA, Liu C, et al. (2009) Grassystatins A-C from marine cyanobacteria, potent cathepsin E inhibitors that reduce antigen presentation. J Med Chem 52: 5732-5747. doi: 10.1021/jm9009394
    [76] Schaschke N (2000) Miraziridine A: natures blueprint towards protease class-spanning inhibitors. Bioorg Med Chem Lett 122: 10462-10463.
    [77] Tabares P, Degel B, Schaschke N, et al. (2012) Identification of the protease inhibitor miraziridine A in the Red sea sponge Theonella swinhoeiPharmacognosy Res 4: 63-66.
    [78] Fusetani N, Fujita M, Nakao Y, et al. (1999) Tokaramide A, a new cathepsin B inhibitor from the marine sponge Theonella aff. mirabilisBioorg Med Chem Let 9: 3397-3402. doi: 10.1016/S0960-894X(99)00618-6
    [79] Oli S, Abdelmohsen UR, Hentschel U, et al. (2014) Identification of plakortide E from the Caribbean sponge Plakortis halichondroides as a trypanocidal protease inhibitor using bioactivity-guided fractionation. Mar Drugs 12: 2614-2622. doi: 10.3390/md12052614
    [80] Pimentel-Elardo SM, Buback V, Gulder TAM, et al. (2011) New tetromycin derivatives with anti-trypanosomal and protease inhibitory activities. Mar Drugs 9: 1682-1697. doi: 10.3390/md9101682
    [81] Ahlquist P (2006) Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses. Nat Rev Microbiol 4: 371-382. doi: 10.1038/nrmicro1389
    [82] Snijder EJ, Decroly E, Ziebuhr J (2016) The nonstructural proteins directing coronavirus RNA synthesis and processing. Adv Virus Res 96: 59-126. doi: 10.1016/bs.aivir.2016.08.008
    [83] Mustafa S, Balkhy H, Gabere MN (2018) Current treatment options and the role of peptides as potential therapeutic components for Middle East Respiratory Syndrome (MERS): A review. J Inf Publ Health 11: 9-17. doi: 10.1016/j.jiph.2017.08.009
    [84] Li G, Clercq ED (2020) Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov 19: 149-150. doi: 10.1038/d41573-020-00016-0
    [85] Singh S, Sk MS, Sonawane A, et al. (2020) Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA-dependent RNA polymerase (RdRp) inhibition: an in-silico analysis. J Biomol Struct Dyn 28: 1-16.
    [86] Yang N, Sun C, Zhang L, et al. (2017) Identification and analysis of novel inhibitors against NS3 helicase and NS5B RNA-dependent RNA polymerase from hepatitis C virus 1b (Con1). Front Microbiol 8: 2153-2161. doi: 10.3389/fmicb.2017.02153
    [87] Harrison C (2020) Coronavirus puts drug repurposing on the fast track. Nat Biotechnol 38: 379-381. doi: 10.1038/d41587-020-00003-1
    [88] Queiroz KC, Medeiros VP, Queiroz LS, et al. (2008) Inhibition of reverse transcriptase activity of HIV by polysaccharides of brown algae. Biomed Pharmacother 62: 303-307. doi: 10.1016/j.biopha.2008.03.006
    [89] Wang K, Xie S, Sun B (2011) Viral proteins function as ion channels. Biochim Biophys Acta 1808: 510-515. doi: 10.1016/j.bbamem.2010.05.006
    [90] Ye Y, Hogue BG (2007) Role of the coronavirus E viroporin protein transmembrane domain in virus assembly. J Virol 81: 3597-3607. doi: 10.1128/JVI.01472-06
    [91] Lu W, Zheng BJ, Xu K, et al.Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release. Proc Nat Acad Sci USA 103: 12540-12545. doi: 10.1073/pnas.0605402103
    [92] Teichert RW, Olivera BM (2010) Natural products and ion channel pharmacology. Future Med Chem 2: 731-744. doi: 10.4155/fmc.10.31
    [93] Schwarz S, Sauter D, Wang K, et al. (2014) Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Med 80: 177-182. doi: 10.1055/s-0033-1360277
    [94] Sakai R, Swanson GT (2014) Recent progress in neuroactive marine natural products. Nat Prod Rep 31: 273-309. doi: 10.1039/c3np70083f
    [95] Arias HR (2006) Marine toxins targeting ion channels. Mar Drugs 4: 37-69. doi: 10.3390/md403037
    [96] Khalifa SA, Yosri N, El-Mallah M F, et al. (2020) Screening for natural and derived bio-active compounds in preclinical and clinical studies: one of the frontlines of fighting the coronaviruses pandemic. Phytomedicine 29: 153311. doi: 10.1016/j.phymed.2020.153311
    [97] Marsden MD, Loy BA, Wu X, et al. (2017) In vivo activation of latent HIV with a synthetic bryostatin analog effects both latent cell “kick” and “kill” in strategy for virus eradication. PLoS pathogens 13: e1006575. doi: 10.1371/journal.ppat.1006575
    [98] Martinez JP, Sasse F, Brönstrup M, et al. (2015) Antiviral drug discovery: broad-spectrum drugs from nature. Nat Prod Rep 32: 29-48. doi: 10.1039/C4NP00085D
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4905) PDF downloads(501) Cited by(22)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog